Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.54.2.17
      1 /*	$NetBSD: kern_time.c,v 1.54.2.17 2002/08/30 23:59:43 nathanw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the University of
     54  *	California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     72  */
     73 
     74 #include <sys/cdefs.h>
     75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.54.2.17 2002/08/30 23:59:43 nathanw Exp $");
     76 
     77 #include "fs_nfs.h"
     78 #include "opt_nfs.h"
     79 #include "opt_nfsserver.h"
     80 
     81 #include <sys/param.h>
     82 #include <sys/resourcevar.h>
     83 #include <sys/kernel.h>
     84 #include <sys/systm.h>
     85 #include <sys/malloc.h>
     86 #include <sys/proc.h>
     87 #include <sys/sa.h>
     88 #include <sys/savar.h>
     89 #include <sys/vnode.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/syslog.h>
     92 
     93 #include <sys/mount.h>
     94 #include <sys/syscallargs.h>
     95 
     96 #include <uvm/uvm_extern.h>
     97 
     98 #if defined(NFS) || defined(NFSSERVER)
     99 #include <nfs/rpcv2.h>
    100 #include <nfs/nfsproto.h>
    101 #include <nfs/nfs_var.h>
    102 #endif
    103 
    104 #include <machine/cpu.h>
    105 
    106 static void realtimerupcall(struct lwp *, void *);
    107 
    108 
    109 /* Time of day and interval timer support.
    110  *
    111  * These routines provide the kernel entry points to get and set
    112  * the time-of-day and per-process interval timers.  Subroutines
    113  * here provide support for adding and subtracting timeval structures
    114  * and decrementing interval timers, optionally reloading the interval
    115  * timers when they expire.
    116  */
    117 
    118 /* This function is used by clock_settime and settimeofday */
    119 int
    120 settime(struct timeval *tv)
    121 {
    122 	struct timeval delta;
    123 	struct cpu_info *ci;
    124 	int s;
    125 
    126 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    127 	s = splclock();
    128 	timersub(tv, &time, &delta);
    129 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    130 		splx(s);
    131 		return (EPERM);
    132 	}
    133 #ifdef notyet
    134 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    135 		splx(s);
    136 		return (EPERM);
    137 	}
    138 #endif
    139 	time = *tv;
    140 	(void) spllowersoftclock();
    141 	timeradd(&boottime, &delta, &boottime);
    142 	/*
    143 	 * XXXSMP
    144 	 * This is wrong.  We should traverse a list of all
    145 	 * CPUs and add the delta to the runtime of those
    146 	 * CPUs which have a process on them.
    147 	 */
    148 	ci = curcpu();
    149 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    150 	    &ci->ci_schedstate.spc_runtime);
    151 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    152 		nqnfs_lease_updatetime(delta.tv_sec);
    153 #	endif
    154 	splx(s);
    155 	resettodr();
    156 	return (0);
    157 }
    158 
    159 /* ARGSUSED */
    160 int
    161 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    162 {
    163 	struct sys_clock_gettime_args /* {
    164 		syscallarg(clockid_t) clock_id;
    165 		syscallarg(struct timespec *) tp;
    166 	} */ *uap = v;
    167 	clockid_t clock_id;
    168 	struct timeval atv;
    169 	struct timespec ats;
    170 	int s;
    171 
    172 	clock_id = SCARG(uap, clock_id);
    173 	switch (clock_id) {
    174 	case CLOCK_REALTIME:
    175 		microtime(&atv);
    176 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    177 		break;
    178 	case CLOCK_MONOTONIC:
    179 		/* XXX "hz" granularity */
    180 		s = splclock();
    181 		atv = mono_time;
    182 		splx(s);
    183 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    184 		break;
    185 	default:
    186 		return (EINVAL);
    187 	}
    188 
    189 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    190 }
    191 
    192 /* ARGSUSED */
    193 int
    194 sys_clock_settime(l, v, retval)
    195 	struct lwp *l;
    196 	void *v;
    197 	register_t *retval;
    198 {
    199 	struct sys_clock_settime_args /* {
    200 		syscallarg(clockid_t) clock_id;
    201 		syscallarg(const struct timespec *) tp;
    202 	} */ *uap = v;
    203 	struct proc *p = l->l_proc;
    204 	int error;
    205 
    206 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    207 		return (error);
    208 
    209 	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
    210 }
    211 
    212 
    213 int
    214 clock_settime1(clock_id, tp)
    215 	clockid_t clock_id;
    216 	const struct timespec *tp;
    217 {
    218 	struct timespec ats;
    219 	struct timeval atv;
    220 	int error;
    221 
    222 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    223 		return (error);
    224 
    225 	switch (clock_id) {
    226 	case CLOCK_REALTIME:
    227 		TIMESPEC_TO_TIMEVAL(&atv, &ats);
    228 		if ((error = settime(&atv)) != 0)
    229 			return (error);
    230 		break;
    231 	case CLOCK_MONOTONIC:
    232 		return (EINVAL);	/* read-only clock */
    233 	default:
    234 		return (EINVAL);
    235 	}
    236 
    237 	return 0;
    238 }
    239 
    240 int
    241 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    242 {
    243 	struct sys_clock_getres_args /* {
    244 		syscallarg(clockid_t) clock_id;
    245 		syscallarg(struct timespec *) tp;
    246 	} */ *uap = v;
    247 	clockid_t clock_id;
    248 	struct timespec ts;
    249 	int error = 0;
    250 
    251 	clock_id = SCARG(uap, clock_id);
    252 	switch (clock_id) {
    253 	case CLOCK_REALTIME:
    254 	case CLOCK_MONOTONIC:
    255 		ts.tv_sec = 0;
    256 		ts.tv_nsec = 1000000000 / hz;
    257 		break;
    258 	default:
    259 		return (EINVAL);
    260 	}
    261 
    262 	if (SCARG(uap, tp))
    263 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    264 
    265 	return error;
    266 }
    267 
    268 /* ARGSUSED */
    269 int
    270 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    271 {
    272 	static int nanowait;
    273 	struct sys_nanosleep_args/* {
    274 		syscallarg(struct timespec *) rqtp;
    275 		syscallarg(struct timespec *) rmtp;
    276 	} */ *uap = v;
    277 	struct timespec rqt;
    278 	struct timespec rmt;
    279 	struct timeval atv, utv;
    280 	int error, s, timo;
    281 
    282 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    283 		       sizeof(struct timespec));
    284 	if (error)
    285 		return (error);
    286 
    287 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    288 	if (itimerfix(&atv) || atv.tv_sec > 1000000000)
    289 		return (EINVAL);
    290 
    291 	s = splclock();
    292 	timeradd(&atv,&time,&atv);
    293 	timo = hzto(&atv);
    294 	/*
    295 	 * Avoid inadvertantly sleeping forever
    296 	 */
    297 	if (timo == 0)
    298 		timo = 1;
    299 	splx(s);
    300 
    301 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    302 	if (error == ERESTART)
    303 		error = EINTR;
    304 	if (error == EWOULDBLOCK)
    305 		error = 0;
    306 
    307 	if (SCARG(uap, rmtp)) {
    308 		int error;
    309 
    310 		s = splclock();
    311 		utv = time;
    312 		splx(s);
    313 
    314 		timersub(&atv, &utv, &utv);
    315 		if (utv.tv_sec < 0)
    316 			timerclear(&utv);
    317 
    318 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    319 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    320 			sizeof(rmt));
    321 		if (error)
    322 			return (error);
    323 	}
    324 
    325 	return error;
    326 }
    327 
    328 /* ARGSUSED */
    329 int
    330 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    331 {
    332 	struct sys_gettimeofday_args /* {
    333 		syscallarg(struct timeval *) tp;
    334 		syscallarg(struct timezone *) tzp;
    335 	} */ *uap = v;
    336 	struct timeval atv;
    337 	int error = 0;
    338 	struct timezone tzfake;
    339 
    340 	if (SCARG(uap, tp)) {
    341 		microtime(&atv);
    342 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    343 		if (error)
    344 			return (error);
    345 	}
    346 	if (SCARG(uap, tzp)) {
    347 		/*
    348 		 * NetBSD has no kernel notion of time zone, so we just
    349 		 * fake up a timezone struct and return it if demanded.
    350 		 */
    351 		tzfake.tz_minuteswest = 0;
    352 		tzfake.tz_dsttime = 0;
    353 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    354 	}
    355 	return (error);
    356 }
    357 
    358 /* ARGSUSED */
    359 int
    360 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    361 {
    362 	struct sys_settimeofday_args /* {
    363 		syscallarg(const struct timeval *) tv;
    364 		syscallarg(const struct timezone *) tzp;
    365 	} */ *uap = v;
    366 	struct proc *p = l->l_proc;
    367 	int error;
    368 
    369 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    370 		return (error);
    371 
    372 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
    373 }
    374 
    375 int
    376 settimeofday1(utv, utzp, p)
    377 	const struct timeval *utv;
    378 	const struct timezone *utzp;
    379 	struct proc *p;
    380 {
    381 	struct timeval atv;
    382 	struct timezone atz;
    383 	struct timeval *tv = NULL;
    384 	struct timezone *tzp = NULL;
    385 	int error;
    386 
    387 	/* Verify all parameters before changing time. */
    388 	if (utv) {
    389 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    390 			return (error);
    391 		tv = &atv;
    392 	}
    393 	/* XXX since we don't use tz, probably no point in doing copyin. */
    394 	if (utzp) {
    395 		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
    396 			return (error);
    397 		tzp = &atz;
    398 	}
    399 
    400 	if (tv)
    401 		if ((error = settime(tv)) != 0)
    402 			return (error);
    403 	/*
    404 	 * NetBSD has no kernel notion of time zone, and only an
    405 	 * obsolete program would try to set it, so we log a warning.
    406 	 */
    407 	if (tzp)
    408 		log(LOG_WARNING, "pid %d attempted to set the "
    409 		    "(obsolete) kernel time zone\n", p->p_pid);
    410 	return (0);
    411 }
    412 
    413 int	tickdelta;			/* current clock skew, us. per tick */
    414 long	timedelta;			/* unapplied time correction, us. */
    415 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    416 
    417 /* ARGSUSED */
    418 int
    419 sys_adjtime(struct lwp *l, void *v, register_t *retval)
    420 {
    421 	struct sys_adjtime_args /* {
    422 		syscallarg(const struct timeval *) delta;
    423 		syscallarg(struct timeval *) olddelta;
    424 	} */ *uap = v;
    425 	struct proc *p = l->l_proc;
    426 	int error;
    427 
    428 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    429 		return (error);
    430 
    431 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
    432 }
    433 
    434 int
    435 adjtime1(delta, olddelta, p)
    436 	const struct timeval *delta;
    437 	struct timeval *olddelta;
    438 	struct proc *p;
    439 {
    440 	struct timeval atv;
    441 	struct timeval *oatv = NULL;
    442 	long ndelta, ntickdelta, odelta;
    443 	int error;
    444 	int s;
    445 
    446 	error = copyin(delta, &atv, sizeof(struct timeval));
    447 	if (error)
    448 		return (error);
    449 
    450 	if (olddelta != NULL) {
    451 		if (uvm_useracc((caddr_t)olddelta,
    452 		    sizeof(struct timeval), B_WRITE) == FALSE)
    453 			return (EFAULT);
    454 		oatv = olddelta;
    455 	}
    456 
    457 	/*
    458 	 * Compute the total correction and the rate at which to apply it.
    459 	 * Round the adjustment down to a whole multiple of the per-tick
    460 	 * delta, so that after some number of incremental changes in
    461 	 * hardclock(), tickdelta will become zero, lest the correction
    462 	 * overshoot and start taking us away from the desired final time.
    463 	 */
    464 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    465 	if (ndelta > bigadj || ndelta < -bigadj)
    466 		ntickdelta = 10 * tickadj;
    467 	else
    468 		ntickdelta = tickadj;
    469 	if (ndelta % ntickdelta)
    470 		ndelta = ndelta / ntickdelta * ntickdelta;
    471 
    472 	/*
    473 	 * To make hardclock()'s job easier, make the per-tick delta negative
    474 	 * if we want time to run slower; then hardclock can simply compute
    475 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    476 	 */
    477 	if (ndelta < 0)
    478 		ntickdelta = -ntickdelta;
    479 	s = splclock();
    480 	odelta = timedelta;
    481 	timedelta = ndelta;
    482 	tickdelta = ntickdelta;
    483 	splx(s);
    484 
    485 	if (olddelta) {
    486 		atv.tv_sec = odelta / 1000000;
    487 		atv.tv_usec = odelta % 1000000;
    488 		(void) copyout(&atv, olddelta, sizeof(struct timeval));
    489 	}
    490 	return (0);
    491 }
    492 
    493 /*
    494  * Interval timer support. Both the BSD getitimer() family and the POSIX
    495  * timer_*() family of routines are supported.
    496  *
    497  * All timers are kept in an array pointed to by p_timers, which is
    498  * allocated on demand - many processes don't use timers at all. The
    499  * first three elements in this array are reserved for the BSD timers:
    500  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    501  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    502  * syscall.
    503  *
    504  * Realtime timers are kept in the ptimer structure as an absolute
    505  * time; virtual time timers are kept as deltas.  Virtual time timers
    506  * are processed in the hardclock() routine of kern_clock.c.  The real
    507  * time timer is processed by a callout routine, called from the
    508  * softclock() routine.  Since a callout may be delayed in real time
    509  * due to interrupt processing in the system, it is possible for the
    510  * real time timeout routine (realtimeexpire, given below), to be
    511  * delayed in real time past when it is supposed to occur.  It does
    512  * not suffice, therefore, to reload the real timer .it_value from the
    513  * real time timers .it_interval.  Rather, we compute the next time in
    514  * absolute time the timer should go off.
    515  */
    516 
    517 /* Allocate a POSIX realtime timer. */
    518 int
    519 sys_timer_create(struct lwp *l, void *v, register_t *retval)
    520 {
    521 	struct sys_timer_create_args /* {
    522 		syscallarg(clockid_t) clock_id;
    523 		syscallarg(struct sigevent *) evp;
    524 		syscallarg(timer_t *) timerid;
    525 	} */ *uap = v;
    526 	struct proc *p = l->l_proc;
    527 	clockid_t id;
    528 	struct sigevent *evp;
    529 	struct ptimer *pt;
    530 	int timerid, error;
    531 
    532 	id = SCARG(uap, clock_id);
    533 	if (id != CLOCK_REALTIME)
    534 		return (EINVAL);
    535 
    536 	if (p->p_timers == NULL)
    537 		timers_alloc(p);
    538 
    539 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    540 		if (p->p_timers[timerid] == NULL)
    541 			break;
    542 
    543 	if (timerid == TIMER_MAX)
    544 		return EAGAIN;
    545 
    546 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    547 	evp = SCARG(uap, evp);
    548 	if (evp) {
    549 		if (((error =
    550 		    copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
    551 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    552 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    553 			pool_put(&ptimer_pool, pt);
    554 			return (error ? error : EINVAL);
    555 		}
    556 	} else {
    557 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    558 		pt->pt_ev.sigev_signo = SIGALRM;
    559 		pt->pt_ev.sigev_value.sival_int = timerid;
    560 	}
    561 	pt->pt_info.si_signo = pt->pt_ev.sigev_signo;
    562 	pt->pt_info.si_errno = 0;
    563 	pt->pt_info.si_code = 0;
    564 	pt->pt_info.si_pid = p->p_pid;
    565 	pt->pt_info.si_uid = p->p_cred->p_ruid;
    566 	pt->pt_info.si_addr = NULL;
    567 	pt->pt_info.si_status = 0;
    568 	pt->pt_info.si_value = pt->pt_ev.sigev_value;
    569 
    570 	callout_init(&pt->pt_ch);
    571 	pt->pt_type = CLOCK_REALTIME;
    572 	pt->pt_proc = p;
    573 	pt->pt_overruns = 0;
    574 
    575 	p->p_timers[timerid] = pt;
    576 
    577 	return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
    578 }
    579 
    580 
    581 /* Delete a POSIX realtime timer */
    582 int
    583 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    584 {
    585 	struct sys_timer_delete_args /*  {
    586 		syscallarg(timer_t) timerid;
    587 	} */ *uap = v;
    588 	struct proc *p = l->l_proc;
    589 	int timerid;
    590 	struct ptimer *pt;
    591 
    592 	timerid = SCARG(uap, timerid);
    593 
    594 	if ((p->p_timers == NULL) ||
    595 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    596 	    ((pt = p->p_timers[timerid]) == NULL))
    597 		return (EINVAL);
    598 
    599 	callout_stop(&pt->pt_ch);
    600 	p->p_timers[timerid] = NULL;
    601 	pool_put(&ptimer_pool, pt);
    602 
    603 	return (0);
    604 }
    605 
    606 /* Set and arm a POSIX realtime timer */
    607 int
    608 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    609 {
    610 	struct sys_timer_settime_args /* {
    611 		syscallarg(timer_t) timerid;
    612 		syscallarg(int) flags;
    613 		syscallarg(const struct itimerspec *) value;
    614 		syscallarg(struct itimerspec *) ovalue;
    615 	} */ *uap = v;
    616 	struct proc *p = l->l_proc;
    617 	int error, s, timerid;
    618 	struct itimerval val, oval;
    619 	struct itimerspec value, ovalue;
    620 	struct ptimer *pt;
    621 
    622 	timerid = SCARG(uap, timerid);
    623 
    624 	if ((p->p_timers == NULL) ||
    625 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    626 	    ((pt = p->p_timers[timerid]) == NULL))
    627 		return (EINVAL);
    628 
    629 	if ((error = copyin(SCARG(uap, value), &value,
    630 	    sizeof(struct itimerspec))) != 0)
    631 		return (error);
    632 
    633 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
    634 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
    635 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    636 		return (EINVAL);
    637 
    638 	oval = pt->pt_time;
    639 	pt->pt_time = val;
    640 
    641 	s = splclock();
    642 	callout_stop(&pt->pt_ch);
    643 	if (timerisset(&pt->pt_time.it_value)) {
    644 		if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
    645 			timeradd(&pt->pt_time.it_value, &time,
    646 			    &pt->pt_time.it_value);
    647 		/*
    648 		 * Don't need to check hzto() return value, here.
    649 		 * callout_reset() does it for us.
    650 		 */
    651 		callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    652 		    realtimerexpire, pt);
    653 	}
    654 	splx(s);
    655 
    656 	if (SCARG(uap, ovalue)) {
    657 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
    658 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
    659 		return copyout(&ovalue, SCARG(uap, ovalue),
    660 		    sizeof(struct itimerspec));
    661 	}
    662 
    663 	return (0);
    664 }
    665 
    666 /* Return the time remaining until a POSIX timer fires. */
    667 int
    668 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    669 {
    670 	struct sys_timer_gettime_args /* {
    671 		syscallarg(timer_t) timerid;
    672 		syscallarg(struct itimerspec *) value;
    673 	} */ *uap = v;
    674 	struct itimerval aitv;
    675 	struct itimerspec its;
    676 	struct proc *p = l->l_proc;
    677 	int timerid;
    678 	struct ptimer *pt;
    679 
    680 	timerid = SCARG(uap, timerid);
    681 
    682 	if ((p->p_timers == NULL) ||
    683 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    684 	    ((pt = p->p_timers[timerid]) == NULL))
    685 		return (EINVAL);
    686 
    687 	aitv = pt->pt_time;
    688 
    689 	/*
    690 	 * Real-time timers are kept in absolute time, but this interface
    691 	 * is supposed to return a relative time.
    692 	 */
    693 	if (timerisset(&aitv.it_value)) {
    694 		if (timercmp(&aitv.it_value, &time, <))
    695 			timerclear(&aitv.it_value);
    696 		else
    697 			timersub(&aitv.it_value, &time, &aitv.it_value);
    698 	}
    699 
    700 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
    701 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
    702 
    703 	return copyout(&its, SCARG(uap, value), sizeof(its));
    704 }
    705 
    706 /*
    707  * Return the count of the number of times a periodic timer expired
    708  * while a notification was already pending. The counter is reset when
    709  * a timer expires and a notification can be posted.
    710  */
    711 int
    712 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    713 {
    714 	struct sys_timer_getoverrun_args /* {
    715 		syscallarg(timer_t) timerid;
    716 	} */ *uap = v;
    717 	struct proc *p = l->l_proc;
    718 	int timerid;
    719 	struct ptimer *pt;
    720 
    721 	timerid = SCARG(uap, timerid);
    722 
    723 	if ((p->p_timers == NULL) ||
    724 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    725 	    ((pt = p->p_timers[timerid]) == NULL))
    726 		return (EINVAL);
    727 
    728 	*retval = pt->pt_overruns;
    729 
    730 	return (0);
    731 }
    732 
    733 /* Glue function that triggers an upcall; called from userret(). */
    734 static void
    735 realtimerupcall(struct lwp *l, void *arg)
    736 {
    737 	struct ptimer *pt;
    738 
    739 	/*
    740 	 * The LWP that is running doesn't change, so we don't need
    741 	 * to touch sa_vp.
    742 	 */
    743 	pt = (struct ptimer *)arg;
    744 	if (sa_upcall(l, SA_UPCALL_SIGEV, NULL, l, sizeof(siginfo_t),
    745 	    &pt->pt_info) != 0)
    746 		pt->pt_overruns++;
    747 
    748 	/* The upcall should only be generated once. */
    749 	l->l_proc->p_userret = NULL;
    750 }
    751 
    752 
    753 /*
    754  * Real interval timer expired:
    755  * send process whose timer expired an alarm signal.
    756  * If time is not set up to reload, then just return.
    757  * Else compute next time timer should go off which is > current time.
    758  * This is where delay in processing this timeout causes multiple
    759  * SIGALRM calls to be compressed into one.
    760  */
    761 void
    762 realtimerexpire(void *arg)
    763 {
    764 	struct ptimer *pt;
    765 	struct proc *p;
    766 	int s;
    767 
    768 	pt = (struct ptimer *)arg;
    769 	p = pt->pt_proc;
    770 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
    771 		/*
    772 		 * No RT signal infrastructure exists at this time;
    773 		 * just post the signal number and throw away the
    774 		 * value.
    775 		 */
    776 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
    777 			pt->pt_overruns++;
    778 		else {
    779 			pt->pt_overruns = 0;
    780 			psignal(p, pt->pt_ev.sigev_signo);
    781 		}
    782 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
    783 		/* Cause the process to generate an upcall when it returns. */
    784 		struct sadata *sa = p->p_sa;
    785 
    786 		if (p->p_userret == NULL) {
    787 			if (sa->sa_idle)
    788 				wakeup(p);
    789 			pt->pt_overruns = 0;
    790 			p->p_userret = realtimerupcall;
    791 			p->p_userret_arg = pt;
    792 		} else
    793 			pt->pt_overruns++;
    794 	}
    795 	if (!timerisset(&pt->pt_time.it_interval)) {
    796 		timerclear(&pt->pt_time.it_value);
    797 		return;
    798 	}
    799 	for (;;) {
    800 		s = splclock();
    801 		timeradd(&pt->pt_time.it_value,
    802 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    803 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
    804 			/*
    805 			 * Don't need to check hzto() return value, here.
    806 			 * callout_reset() does it for us.
    807 			 */
    808 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    809 			    realtimerexpire, pt);
    810 			splx(s);
    811 			return;
    812 		}
    813 		splx(s);
    814 		pt->pt_overruns++;
    815 	}
    816 }
    817 
    818 /* BSD routine to get the value of an interval timer. */
    819 /* ARGSUSED */
    820 int
    821 sys_getitimer(struct lwp *l, void *v, register_t *retval)
    822 {
    823 	struct sys_getitimer_args /* {
    824 		syscallarg(int) which;
    825 		syscallarg(struct itimerval *) itv;
    826 	} */ *uap = v;
    827 	struct proc *p = l->l_proc;
    828 	struct itimerval aitv;
    829 	int s, which;
    830 
    831 	which = SCARG(uap, which);
    832 
    833 	if ((u_int)which > ITIMER_PROF)
    834 		return (EINVAL);
    835 
    836 	if ((p->p_timers == NULL) || (p->p_timers[which] == NULL)) {
    837 		timerclear(&aitv.it_value);
    838 		timerclear(&aitv.it_interval);
    839 	} else {
    840 		s = splclock();
    841 		if (which == ITIMER_REAL) {
    842 			/*
    843 			 * Convert from absolute to relative time in
    844 			 * .it_value part of real time timer.  If time
    845 			 * for real time timer has passed return 0,
    846 			 * else return difference between current time
    847 			 * and time for the timer to go off.
    848 			 */
    849 			aitv = p->p_timers[ITIMER_REAL]->pt_time;
    850 			if (timerisset(&aitv.it_value)) {
    851 				if (timercmp(&aitv.it_value, &time, <))
    852 					timerclear(&aitv.it_value);
    853 				else
    854 					timersub(&aitv.it_value, &time, &aitv.it_value);
    855 			}
    856 		} else
    857 			aitv = p->p_timers[which]->pt_time;
    858 		splx(s);
    859 	}
    860 
    861 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    862 
    863 }
    864 
    865 /* BSD routine to set/arm an interval timer. */
    866 /* ARGSUSED */
    867 int
    868 sys_setitimer(struct lwp *l, void *v, register_t *retval)
    869 {
    870 	struct sys_setitimer_args /* {
    871 		syscallarg(int) which;
    872 		syscallarg(const struct itimerval *) itv;
    873 		syscallarg(struct itimerval *) oitv;
    874 	} */ *uap = v;
    875 	struct proc *p = l->l_proc;
    876 	int which = SCARG(uap, which);
    877 	struct sys_getitimer_args getargs;
    878 	struct itimerval aitv;
    879 	const struct itimerval *itvp;
    880 	struct ptimer *pt;
    881 	int s, error;
    882 
    883 	if ((u_int)which > ITIMER_PROF)
    884 		return (EINVAL);
    885 	itvp = SCARG(uap, itv);
    886 	if (itvp &&
    887 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    888 		return (error);
    889 	if (SCARG(uap, oitv) != NULL) {
    890 		SCARG(&getargs, which) = which;
    891 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    892 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
    893 			return (error);
    894 	}
    895 	if (itvp == 0)
    896 		return (0);
    897 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    898 		return (EINVAL);
    899 
    900 	/*
    901 	 * Don't bother allocating data structures if the process just
    902 	 * wants to clear the timer.
    903 	 */
    904 	if (!timerisset(&aitv.it_value) &&
    905 	    ((p->p_timers == NULL) || (p->p_timers[which] == NULL)))
    906 		return (0);
    907 
    908 	if (p->p_timers == NULL)
    909 		timers_alloc(p);
    910 	if (p->p_timers[which] == NULL) {
    911 		pt = pool_get(&ptimer_pool, PR_WAITOK);
    912 		callout_init(&pt->pt_ch);
    913 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    914 		pt->pt_overruns = 0;
    915 		pt->pt_proc = p;
    916 		pt->pt_type = which;
    917 		switch (which) {
    918 		case ITIMER_REAL:
    919 			pt->pt_ev.sigev_signo = SIGALRM;
    920 			break;
    921 		case ITIMER_VIRTUAL:
    922 			pt->pt_ev.sigev_signo = SIGVTALRM;
    923 			break;
    924 		case ITIMER_PROF:
    925 			pt->pt_ev.sigev_signo = SIGPROF;
    926 			break;
    927 		}
    928 	} else
    929 		pt = p->p_timers[which];
    930 
    931 	pt->pt_time = aitv;
    932 	p->p_timers[which] = pt;
    933 	if (which == ITIMER_REAL) {
    934 		s = splclock();
    935 		callout_stop(&pt->pt_ch);
    936 		if (timerisset(&pt->pt_time.it_value)) {
    937 			timeradd(&pt->pt_time.it_value, &time,
    938 			    &pt->pt_time.it_value);
    939 			/*
    940 			 * Don't need to check hzto() return value, here.
    941 			 * callout_reset() does it for us.
    942 			 */
    943 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    944 			    realtimerexpire, pt);
    945 		}
    946 		splx(s);
    947 	}
    948 
    949 	return (0);
    950 }
    951 
    952 /* Utility routines to manage the array of pointers to timers. */
    953 void
    954 timers_alloc(struct proc *p)
    955 {
    956 	int i;
    957 	struct ptimer **pts;
    958 
    959 	pts = malloc(TIMER_MAX * sizeof(struct timer *), M_SUBPROC, 0);
    960 	for (i = 0; i < TIMER_MAX; i++)
    961 		pts[i] = NULL;
    962 	p->p_timers = pts;
    963 }
    964 
    965 /*
    966  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
    967  * then clean up all timers and free all the data structures. If
    968  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
    969  * by timer_create(), not the BSD setitimer() timers, and only free the
    970  * structure if none of those remain.
    971  */
    972 void
    973 timers_free(struct proc *p, int which)
    974 {
    975 	int i;
    976 	struct ptimer *pt, **pts;
    977 
    978 	if (p->p_timers) {
    979 		pts = p->p_timers;
    980 		if (which == TIMERS_ALL)
    981 			i = 0;
    982 		else
    983 			i = 3;
    984 		for ( ; i < TIMER_MAX; i++)
    985 			if ((pt = pts[i]) != NULL) {
    986 				if (pt->pt_type == CLOCK_REALTIME)
    987 					callout_stop(&pt->pt_ch);
    988 				pts[i] = NULL;
    989 				pool_put(&ptimer_pool, pt);
    990 			}
    991 		if ((pts[0] == NULL) &&
    992 		    (pts[1] == NULL) &&
    993 		    (pts[2] == NULL)) {
    994 			p->p_timers = NULL;
    995 			free(pts, M_SUBPROC);
    996 		}
    997 	}
    998 }
    999 
   1000 /*
   1001  * Check that a proposed value to load into the .it_value or
   1002  * .it_interval part of an interval timer is acceptable, and
   1003  * fix it to have at least minimal value (i.e. if it is less
   1004  * than the resolution of the clock, round it up.)
   1005  */
   1006 int
   1007 itimerfix(struct timeval *tv)
   1008 {
   1009 
   1010 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1011 		return (EINVAL);
   1012 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1013 		tv->tv_usec = tick;
   1014 	return (0);
   1015 }
   1016 
   1017 /*
   1018  * Decrement an interval timer by a specified number
   1019  * of microseconds, which must be less than a second,
   1020  * i.e. < 1000000.  If the timer expires, then reload
   1021  * it.  In this case, carry over (usec - old value) to
   1022  * reduce the value reloaded into the timer so that
   1023  * the timer does not drift.  This routine assumes
   1024  * that it is called in a context where the timers
   1025  * on which it is operating cannot change in value.
   1026  */
   1027 int
   1028 itimerdecr(struct itimerval *itp, int usec)
   1029 {
   1030 
   1031 	if (itp->it_value.tv_usec < usec) {
   1032 		if (itp->it_value.tv_sec == 0) {
   1033 			/* expired, and already in next interval */
   1034 			usec -= itp->it_value.tv_usec;
   1035 			goto expire;
   1036 		}
   1037 		itp->it_value.tv_usec += 1000000;
   1038 		itp->it_value.tv_sec--;
   1039 	}
   1040 	itp->it_value.tv_usec -= usec;
   1041 	usec = 0;
   1042 	if (timerisset(&itp->it_value))
   1043 		return (1);
   1044 	/* expired, exactly at end of interval */
   1045 expire:
   1046 	if (timerisset(&itp->it_interval)) {
   1047 		itp->it_value = itp->it_interval;
   1048 		itp->it_value.tv_usec -= usec;
   1049 		if (itp->it_value.tv_usec < 0) {
   1050 			itp->it_value.tv_usec += 1000000;
   1051 			itp->it_value.tv_sec--;
   1052 		}
   1053 	} else
   1054 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1055 	return (0);
   1056 }
   1057 
   1058 /*
   1059  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1060  * for usage and rationale.
   1061  */
   1062 int
   1063 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1064 {
   1065 	struct timeval tv, delta;
   1066 	int s, rv = 0;
   1067 
   1068 	s = splclock();
   1069 	tv = mono_time;
   1070 	splx(s);
   1071 
   1072 	timersub(&tv, lasttime, &delta);
   1073 
   1074 	/*
   1075 	 * check for 0,0 is so that the message will be seen at least once,
   1076 	 * even if interval is huge.
   1077 	 */
   1078 	if (timercmp(&delta, mininterval, >=) ||
   1079 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1080 		*lasttime = tv;
   1081 		rv = 1;
   1082 	}
   1083 
   1084 	return (rv);
   1085 }
   1086 
   1087 /*
   1088  * ppsratecheck(): packets (or events) per second limitation.
   1089  */
   1090 int
   1091 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1092 {
   1093 	struct timeval tv, delta;
   1094 	int s, rv;
   1095 
   1096 	s = splclock();
   1097 	tv = mono_time;
   1098 	splx(s);
   1099 
   1100 	timersub(&tv, lasttime, &delta);
   1101 
   1102 	/*
   1103 	 * check for 0,0 is so that the message will be seen at least once.
   1104 	 * if more than one second have passed since the last update of
   1105 	 * lasttime, reset the counter.
   1106 	 *
   1107 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1108 	 * try to use *curpps for stat purposes as well.
   1109 	 */
   1110 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1111 	    delta.tv_sec >= 1) {
   1112 		*lasttime = tv;
   1113 		*curpps = 0;
   1114 		rv = 1;
   1115 	} else if (maxpps < 0)
   1116 		rv = 1;
   1117 	else if (*curpps < maxpps)
   1118 		rv = 1;
   1119 	else
   1120 		rv = 0;
   1121 
   1122 #if 1 /*DIAGNOSTIC?*/
   1123 	/* be careful about wrap-around */
   1124 	if (*curpps + 1 > *curpps)
   1125 		*curpps = *curpps + 1;
   1126 #else
   1127 	/*
   1128 	 * assume that there's not too many calls to this function.
   1129 	 * not sure if the assumption holds, as it depends on *caller's*
   1130 	 * behavior, not the behavior of this function.
   1131 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1132 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1133 	 */
   1134 	*curpps = *curpps + 1;
   1135 #endif
   1136 
   1137 	return (rv);
   1138 }
   1139