kern_time.c revision 1.54.2.2 1 /* $NetBSD: kern_time.c,v 1.54.2.2 2001/06/21 20:06:57 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include "fs_nfs.h"
75 #include "opt_nfs.h"
76 #include "opt_nfsserver.h"
77
78 #include <sys/param.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/systm.h>
82 #include <sys/lwp.h>
83 #include <sys/proc.h>
84 #include <sys/vnode.h>
85 #include <sys/signalvar.h>
86 #include <sys/syslog.h>
87
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90
91 #include <uvm/uvm_extern.h>
92
93 #if defined(NFS) || defined(NFSSERVER)
94 #include <nfs/rpcv2.h>
95 #include <nfs/nfsproto.h>
96 #include <nfs/nfs_var.h>
97 #endif
98
99 #include <machine/cpu.h>
100
101 /*
102 * Time of day and interval timer support.
103 *
104 * These routines provide the kernel entry points to get and set
105 * the time-of-day and per-process interval timers. Subroutines
106 * here provide support for adding and subtracting timeval structures
107 * and decrementing interval timers, optionally reloading the interval
108 * timers when they expire.
109 */
110
111 /* This function is used by clock_settime and settimeofday */
112 int
113 settime(tv)
114 struct timeval *tv;
115 {
116 struct timeval delta;
117 struct cpu_info *ci;
118 int s;
119
120 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
121 s = splclock();
122 timersub(tv, &time, &delta);
123 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
124 splx(s);
125 return (EPERM);
126 }
127 #ifdef notyet
128 if ((delta.tv_sec < 86400) && securelevel > 0) {
129 splx(s);
130 return (EPERM);
131 }
132 #endif
133 time = *tv;
134 (void) spllowersoftclock();
135 timeradd(&boottime, &delta, &boottime);
136 /*
137 * XXXSMP
138 * This is wrong. We should traverse a list of all
139 * CPUs and add the delta to the runtime of those
140 * CPUs which have a process on them.
141 */
142 ci = curcpu();
143 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
144 &ci->ci_schedstate.spc_runtime);
145 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
146 nqnfs_lease_updatetime(delta.tv_sec);
147 # endif
148 splx(s);
149 resettodr();
150 return (0);
151 }
152
153 /* ARGSUSED */
154 int
155 sys_clock_gettime(l, v, retval)
156 struct lwp *l;
157 void *v;
158 register_t *retval;
159 {
160 struct sys_clock_gettime_args /* {
161 syscallarg(clockid_t) clock_id;
162 syscallarg(struct timespec *) tp;
163 } */ *uap = v;
164 clockid_t clock_id;
165 struct timeval atv;
166 struct timespec ats;
167
168 clock_id = SCARG(uap, clock_id);
169 if (clock_id != CLOCK_REALTIME)
170 return (EINVAL);
171
172 microtime(&atv);
173 TIMEVAL_TO_TIMESPEC(&atv,&ats);
174
175 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
176 }
177
178 /* ARGSUSED */
179 int
180 sys_clock_settime(l, v, retval)
181 struct lwp *l;
182 void *v;
183 register_t *retval;
184 {
185 struct sys_clock_settime_args /* {
186 syscallarg(clockid_t) clock_id;
187 syscallarg(const struct timespec *) tp;
188 } */ *uap = v;
189 struct proc *p = l->l_proc;
190 clockid_t clock_id;
191 struct timeval atv;
192 struct timespec ats;
193 int error;
194
195 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
196 return (error);
197
198 clock_id = SCARG(uap, clock_id);
199 if (clock_id != CLOCK_REALTIME)
200 return (EINVAL);
201
202 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
203 return (error);
204
205 TIMESPEC_TO_TIMEVAL(&atv,&ats);
206 if ((error = settime(&atv)))
207 return (error);
208
209 return 0;
210 }
211
212 int
213 sys_clock_getres(l, v, retval)
214 struct lwp *l;
215 void *v;
216 register_t *retval;
217 {
218 struct sys_clock_getres_args /* {
219 syscallarg(clockid_t) clock_id;
220 syscallarg(struct timespec *) tp;
221 } */ *uap = v;
222 clockid_t clock_id;
223 struct timespec ts;
224 int error = 0;
225
226 clock_id = SCARG(uap, clock_id);
227 if (clock_id != CLOCK_REALTIME)
228 return (EINVAL);
229
230 if (SCARG(uap, tp)) {
231 ts.tv_sec = 0;
232 ts.tv_nsec = 1000000000 / hz;
233
234 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
235 }
236
237 return error;
238 }
239
240 /* ARGSUSED */
241 int
242 sys_nanosleep(l, v, retval)
243 struct lwp *l;
244 void *v;
245 register_t *retval;
246 {
247 static int nanowait;
248 struct sys_nanosleep_args/* {
249 syscallarg(struct timespec *) rqtp;
250 syscallarg(struct timespec *) rmtp;
251 } */ *uap = v;
252 struct timespec rqt;
253 struct timespec rmt;
254 struct timeval atv, utv;
255 int error, s, timo;
256
257 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
258 sizeof(struct timespec));
259 if (error)
260 return (error);
261
262 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
263 if (itimerfix(&atv))
264 return (EINVAL);
265
266 s = splclock();
267 timeradd(&atv,&time,&atv);
268 timo = hzto(&atv);
269 /*
270 * Avoid inadvertantly sleeping forever
271 */
272 if (timo == 0)
273 timo = 1;
274 splx(s);
275
276 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
277 if (error == ERESTART)
278 error = EINTR;
279 if (error == EWOULDBLOCK)
280 error = 0;
281
282 if (SCARG(uap, rmtp)) {
283 int error;
284
285 s = splclock();
286 utv = time;
287 splx(s);
288
289 timersub(&atv, &utv, &utv);
290 if (utv.tv_sec < 0)
291 timerclear(&utv);
292
293 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
294 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
295 sizeof(rmt));
296 if (error)
297 return (error);
298 }
299
300 return error;
301 }
302
303 /* ARGSUSED */
304 int
305 sys_gettimeofday(l, v, retval)
306 struct lwp *l;
307 void *v;
308 register_t *retval;
309 {
310 struct sys_gettimeofday_args /* {
311 syscallarg(struct timeval *) tp;
312 syscallarg(struct timezone *) tzp;
313 } */ *uap = v;
314 struct timeval atv;
315 int error = 0;
316 struct timezone tzfake;
317
318 if (SCARG(uap, tp)) {
319 microtime(&atv);
320 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
321 if (error)
322 return (error);
323 }
324 if (SCARG(uap, tzp)) {
325 /*
326 * NetBSD has no kernel notion of time zone, so we just
327 * fake up a timezone struct and return it if demanded.
328 */
329 tzfake.tz_minuteswest = 0;
330 tzfake.tz_dsttime = 0;
331 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
332 }
333 return (error);
334 }
335
336 /* ARGSUSED */
337 int
338 sys_settimeofday(l, v, retval)
339 struct lwp *l;
340 void *v;
341 register_t *retval;
342 {
343 struct sys_settimeofday_args /* {
344 syscallarg(const struct timeval *) tv;
345 syscallarg(const struct timezone *) tzp;
346 } */ *uap = v;
347 struct proc *p = l->l_proc;
348 struct timeval atv;
349 struct timezone atz;
350 int error;
351
352 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
353 return (error);
354 /* Verify all parameters before changing time. */
355 if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
356 &atv, sizeof(atv))))
357 return (error);
358 /* XXX since we don't use tz, probably no point in doing copyin. */
359 if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
360 &atz, sizeof(atz))))
361 return (error);
362 if (SCARG(uap, tv))
363 if ((error = settime(&atv)))
364 return (error);
365 /*
366 * NetBSD has no kernel notion of time zone, and only an
367 * obsolete program would try to set it, so we log a warning.
368 */
369 if (SCARG(uap, tzp))
370 log(LOG_WARNING, "pid %d attempted to set the "
371 "(obsolete) kernel time zone\n", p->p_pid);
372 return (0);
373 }
374
375 int tickdelta; /* current clock skew, us. per tick */
376 long timedelta; /* unapplied time correction, us. */
377 long bigadj = 1000000; /* use 10x skew above bigadj us. */
378
379 /* ARGSUSED */
380 int
381 sys_adjtime(l, v, retval)
382 struct lwp *l;
383 void *v;
384 register_t *retval;
385 {
386 struct sys_adjtime_args /* {
387 syscallarg(const struct timeval *) delta;
388 syscallarg(struct timeval *) olddelta;
389 } */ *uap = v;
390 struct proc *p = l->l_proc;
391 struct timeval atv;
392 long ndelta, ntickdelta, odelta;
393 int s, error;
394
395 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
396 return (error);
397
398 error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
399 if (error)
400 return (error);
401 if (SCARG(uap, olddelta) != NULL &&
402 uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
403 B_WRITE) == FALSE)
404 return (EFAULT);
405
406 /*
407 * Compute the total correction and the rate at which to apply it.
408 * Round the adjustment down to a whole multiple of the per-tick
409 * delta, so that after some number of incremental changes in
410 * hardclock(), tickdelta will become zero, lest the correction
411 * overshoot and start taking us away from the desired final time.
412 */
413 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
414 if (ndelta > bigadj || ndelta < -bigadj)
415 ntickdelta = 10 * tickadj;
416 else
417 ntickdelta = tickadj;
418 if (ndelta % ntickdelta)
419 ndelta = ndelta / ntickdelta * ntickdelta;
420
421 /*
422 * To make hardclock()'s job easier, make the per-tick delta negative
423 * if we want time to run slower; then hardclock can simply compute
424 * tick + tickdelta, and subtract tickdelta from timedelta.
425 */
426 if (ndelta < 0)
427 ntickdelta = -ntickdelta;
428 s = splclock();
429 odelta = timedelta;
430 timedelta = ndelta;
431 tickdelta = ntickdelta;
432 splx(s);
433
434 if (SCARG(uap, olddelta)) {
435 atv.tv_sec = odelta / 1000000;
436 atv.tv_usec = odelta % 1000000;
437 (void) copyout(&atv, SCARG(uap, olddelta),
438 sizeof(struct timeval));
439 }
440 return (0);
441 }
442
443 /*
444 * Get value of an interval timer. The process virtual and
445 * profiling virtual time timers are kept in the p_stats area, since
446 * they can be swapped out. These are kept internally in the
447 * way they are specified externally: in time until they expire.
448 *
449 * The real time interval timer is kept in the process table slot
450 * for the process, and its value (it_value) is kept as an
451 * absolute time rather than as a delta, so that it is easy to keep
452 * periodic real-time signals from drifting.
453 *
454 * Virtual time timers are processed in the hardclock() routine of
455 * kern_clock.c. The real time timer is processed by a timeout
456 * routine, called from the softclock() routine. Since a callout
457 * may be delayed in real time due to interrupt processing in the system,
458 * it is possible for the real time timeout routine (realitexpire, given below),
459 * to be delayed in real time past when it is supposed to occur. It
460 * does not suffice, therefore, to reload the real timer .it_value from the
461 * real time timers .it_interval. Rather, we compute the next time in
462 * absolute time the timer should go off.
463 */
464 /* ARGSUSED */
465 int
466 sys_getitimer(l, v, retval)
467 struct lwp *l;
468 void *v;
469 register_t *retval;
470 {
471 struct sys_getitimer_args /* {
472 syscallarg(int) which;
473 syscallarg(struct itimerval *) itv;
474 } */ *uap = v;
475 struct proc *p = l->l_proc;
476 int which = SCARG(uap, which);
477 struct itimerval aitv;
478 int s;
479
480 if ((u_int)which > ITIMER_PROF)
481 return (EINVAL);
482 s = splclock();
483 if (which == ITIMER_REAL) {
484 /*
485 * Convert from absolute to relative time in .it_value
486 * part of real time timer. If time for real time timer
487 * has passed return 0, else return difference between
488 * current time and time for the timer to go off.
489 */
490 aitv = p->p_realtimer;
491 if (timerisset(&aitv.it_value)) {
492 if (timercmp(&aitv.it_value, &time, <))
493 timerclear(&aitv.it_value);
494 else
495 timersub(&aitv.it_value, &time, &aitv.it_value);
496 }
497 } else
498 aitv = p->p_stats->p_timer[which];
499 splx(s);
500 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
501 }
502
503 /* ARGSUSED */
504 int
505 sys_setitimer(l, v, retval)
506 struct lwp *l;
507 void *v;
508 register_t *retval;
509 {
510 struct sys_setitimer_args /* {
511 syscallarg(int) which;
512 syscallarg(const struct itimerval *) itv;
513 syscallarg(struct itimerval *) oitv;
514 } */ *uap = v;
515 struct proc *p = l->l_proc;
516 int which = SCARG(uap, which);
517 struct sys_getitimer_args getargs;
518 struct itimerval aitv;
519 const struct itimerval *itvp;
520 int s, error;
521
522 if ((u_int)which > ITIMER_PROF)
523 return (EINVAL);
524 itvp = SCARG(uap, itv);
525 if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
526 return (error);
527 if (SCARG(uap, oitv) != NULL) {
528 SCARG(&getargs, which) = which;
529 SCARG(&getargs, itv) = SCARG(uap, oitv);
530 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
531 return (error);
532 }
533 if (itvp == 0)
534 return (0);
535 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
536 return (EINVAL);
537 s = splclock();
538 if (which == ITIMER_REAL) {
539 callout_stop(&p->p_realit_ch);
540 if (timerisset(&aitv.it_value)) {
541 /*
542 * Don't need to check hzto() return value, here.
543 * callout_reset() does it for us.
544 */
545 timeradd(&aitv.it_value, &time, &aitv.it_value);
546 callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
547 realitexpire, p);
548 }
549 p->p_realtimer = aitv;
550 } else
551 p->p_stats->p_timer[which] = aitv;
552 splx(s);
553 return (0);
554 }
555
556 /*
557 * Real interval timer expired:
558 * send process whose timer expired an alarm signal.
559 * If time is not set up to reload, then just return.
560 * Else compute next time timer should go off which is > current time.
561 * This is where delay in processing this timeout causes multiple
562 * SIGALRM calls to be compressed into one.
563 */
564 void
565 realitexpire(arg)
566 void *arg;
567 {
568 struct proc *p;
569 int s;
570
571 p = (struct proc *)arg;
572 psignal(p, SIGALRM);
573 if (!timerisset(&p->p_realtimer.it_interval)) {
574 timerclear(&p->p_realtimer.it_value);
575 return;
576 }
577 for (;;) {
578 s = splclock();
579 timeradd(&p->p_realtimer.it_value,
580 &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
581 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
582 /*
583 * Don't need to check hzto() return value, here.
584 * callout_reset() does it for us.
585 */
586 callout_reset(&p->p_realit_ch,
587 hzto(&p->p_realtimer.it_value), realitexpire, p);
588 splx(s);
589 return;
590 }
591 splx(s);
592 }
593 }
594
595 /*
596 * Check that a proposed value to load into the .it_value or
597 * .it_interval part of an interval timer is acceptable, and
598 * fix it to have at least minimal value (i.e. if it is less
599 * than the resolution of the clock, round it up.)
600 */
601 int
602 itimerfix(tv)
603 struct timeval *tv;
604 {
605
606 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
607 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
608 return (EINVAL);
609 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
610 tv->tv_usec = tick;
611 return (0);
612 }
613
614 /*
615 * Decrement an interval timer by a specified number
616 * of microseconds, which must be less than a second,
617 * i.e. < 1000000. If the timer expires, then reload
618 * it. In this case, carry over (usec - old value) to
619 * reduce the value reloaded into the timer so that
620 * the timer does not drift. This routine assumes
621 * that it is called in a context where the timers
622 * on which it is operating cannot change in value.
623 */
624 int
625 itimerdecr(itp, usec)
626 struct itimerval *itp;
627 int usec;
628 {
629
630 if (itp->it_value.tv_usec < usec) {
631 if (itp->it_value.tv_sec == 0) {
632 /* expired, and already in next interval */
633 usec -= itp->it_value.tv_usec;
634 goto expire;
635 }
636 itp->it_value.tv_usec += 1000000;
637 itp->it_value.tv_sec--;
638 }
639 itp->it_value.tv_usec -= usec;
640 usec = 0;
641 if (timerisset(&itp->it_value))
642 return (1);
643 /* expired, exactly at end of interval */
644 expire:
645 if (timerisset(&itp->it_interval)) {
646 itp->it_value = itp->it_interval;
647 itp->it_value.tv_usec -= usec;
648 if (itp->it_value.tv_usec < 0) {
649 itp->it_value.tv_usec += 1000000;
650 itp->it_value.tv_sec--;
651 }
652 } else
653 itp->it_value.tv_usec = 0; /* sec is already 0 */
654 return (0);
655 }
656
657 /*
658 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
659 * for usage and rationale.
660 */
661 int
662 ratecheck(lasttime, mininterval)
663 struct timeval *lasttime;
664 const struct timeval *mininterval;
665 {
666 struct timeval tv, delta;
667 int s, rv = 0;
668
669 s = splclock();
670 tv = mono_time;
671 splx(s);
672
673 timersub(&tv, lasttime, &delta);
674
675 /*
676 * check for 0,0 is so that the message will be seen at least once,
677 * even if interval is huge.
678 */
679 if (timercmp(&delta, mininterval, >=) ||
680 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
681 *lasttime = tv;
682 rv = 1;
683 }
684
685 return (rv);
686 }
687
688 /*
689 * ppsratecheck(): packets (or events) per second limitation.
690 */
691 int
692 ppsratecheck(lasttime, curpps, maxpps)
693 struct timeval *lasttime;
694 int *curpps;
695 int maxpps; /* maximum pps allowed */
696 {
697 struct timeval tv, delta;
698 int s, rv;
699
700 s = splclock();
701 tv = mono_time;
702 splx(s);
703
704 timersub(&tv, lasttime, &delta);
705
706 /*
707 * check for 0,0 is so that the message will be seen at least once.
708 * if more than one second have passed since the last update of
709 * lasttime, reset the counter.
710 *
711 * we do increment *curpps even in *curpps < maxpps case, as some may
712 * try to use *curpps for stat purposes as well.
713 */
714 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
715 delta.tv_sec >= 1) {
716 *lasttime = tv;
717 *curpps = 0;
718 rv = 1;
719 } else if (maxpps < 0)
720 rv = 1;
721 else if (*curpps < maxpps)
722 rv = 1;
723 else
724 rv = 0;
725
726 #if 1 /*DIAGNOSTIC?*/
727 /* be careful about wrap-around */
728 if (*curpps + 1 > *curpps)
729 *curpps = *curpps + 1;
730 #else
731 /*
732 * assume that there's not too many calls to this function.
733 * not sure if the assumption holds, as it depends on *caller's*
734 * behavior, not the behavior of this function.
735 * IMHO it is wrong to make assumption on the caller's behavior,
736 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
737 */
738 *curpps = *curpps + 1;
739 #endif
740
741 return (rv);
742 }
743