kern_time.c revision 1.54.2.22 1 /* $NetBSD: kern_time.c,v 1.54.2.22 2002/11/11 22:13:54 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.54.2.22 2002/11/11 22:13:54 nathanw Exp $");
76
77 #include "fs_nfs.h"
78 #include "opt_nfs.h"
79 #include "opt_nfsserver.h"
80
81 #include <sys/param.h>
82 #include <sys/resourcevar.h>
83 #include <sys/kernel.h>
84 #include <sys/systm.h>
85 #include <sys/malloc.h>
86 #include <sys/proc.h>
87 #include <sys/sa.h>
88 #include <sys/savar.h>
89 #include <sys/vnode.h>
90 #include <sys/signalvar.h>
91 #include <sys/syslog.h>
92
93 #include <sys/mount.h>
94 #include <sys/syscallargs.h>
95
96 #include <uvm/uvm_extern.h>
97
98 #if defined(NFS) || defined(NFSSERVER)
99 #include <nfs/rpcv2.h>
100 #include <nfs/nfsproto.h>
101 #include <nfs/nfs_var.h>
102 #endif
103
104 #include <machine/cpu.h>
105
106 static void timerupcall(struct lwp *, void *);
107
108
109 /* Time of day and interval timer support.
110 *
111 * These routines provide the kernel entry points to get and set
112 * the time-of-day and per-process interval timers. Subroutines
113 * here provide support for adding and subtracting timeval structures
114 * and decrementing interval timers, optionally reloading the interval
115 * timers when they expire.
116 */
117
118 /* This function is used by clock_settime and settimeofday */
119 int
120 settime(struct timeval *tv)
121 {
122 struct timeval delta;
123 struct cpu_info *ci;
124 int s;
125
126 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
127 s = splclock();
128 timersub(tv, &time, &delta);
129 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
130 splx(s);
131 return (EPERM);
132 }
133 #ifdef notyet
134 if ((delta.tv_sec < 86400) && securelevel > 0) {
135 splx(s);
136 return (EPERM);
137 }
138 #endif
139 time = *tv;
140 (void) spllowersoftclock();
141 timeradd(&boottime, &delta, &boottime);
142 /*
143 * XXXSMP
144 * This is wrong. We should traverse a list of all
145 * CPUs and add the delta to the runtime of those
146 * CPUs which have a process on them.
147 */
148 ci = curcpu();
149 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
150 &ci->ci_schedstate.spc_runtime);
151 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
152 nqnfs_lease_updatetime(delta.tv_sec);
153 # endif
154 splx(s);
155 resettodr();
156 return (0);
157 }
158
159 /* ARGSUSED */
160 int
161 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
162 {
163 struct sys_clock_gettime_args /* {
164 syscallarg(clockid_t) clock_id;
165 syscallarg(struct timespec *) tp;
166 } */ *uap = v;
167 clockid_t clock_id;
168 struct timeval atv;
169 struct timespec ats;
170 int s;
171
172 clock_id = SCARG(uap, clock_id);
173 switch (clock_id) {
174 case CLOCK_REALTIME:
175 microtime(&atv);
176 TIMEVAL_TO_TIMESPEC(&atv,&ats);
177 break;
178 case CLOCK_MONOTONIC:
179 /* XXX "hz" granularity */
180 s = splclock();
181 atv = mono_time;
182 splx(s);
183 TIMEVAL_TO_TIMESPEC(&atv,&ats);
184 break;
185 default:
186 return (EINVAL);
187 }
188
189 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
190 }
191
192 /* ARGSUSED */
193 int
194 sys_clock_settime(l, v, retval)
195 struct lwp *l;
196 void *v;
197 register_t *retval;
198 {
199 struct sys_clock_settime_args /* {
200 syscallarg(clockid_t) clock_id;
201 syscallarg(const struct timespec *) tp;
202 } */ *uap = v;
203 struct proc *p = l->l_proc;
204 int error;
205
206 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
207 return (error);
208
209 return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
210 }
211
212
213 int
214 clock_settime1(clock_id, tp)
215 clockid_t clock_id;
216 const struct timespec *tp;
217 {
218 struct timespec ats;
219 struct timeval atv;
220 int error;
221
222 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
223 return (error);
224
225 switch (clock_id) {
226 case CLOCK_REALTIME:
227 TIMESPEC_TO_TIMEVAL(&atv, &ats);
228 if ((error = settime(&atv)) != 0)
229 return (error);
230 break;
231 case CLOCK_MONOTONIC:
232 return (EINVAL); /* read-only clock */
233 default:
234 return (EINVAL);
235 }
236
237 return 0;
238 }
239
240 int
241 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
242 {
243 struct sys_clock_getres_args /* {
244 syscallarg(clockid_t) clock_id;
245 syscallarg(struct timespec *) tp;
246 } */ *uap = v;
247 clockid_t clock_id;
248 struct timespec ts;
249 int error = 0;
250
251 clock_id = SCARG(uap, clock_id);
252 switch (clock_id) {
253 case CLOCK_REALTIME:
254 case CLOCK_MONOTONIC:
255 ts.tv_sec = 0;
256 ts.tv_nsec = 1000000000 / hz;
257 break;
258 default:
259 return (EINVAL);
260 }
261
262 if (SCARG(uap, tp))
263 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
264
265 return error;
266 }
267
268 /* ARGSUSED */
269 int
270 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
271 {
272 static int nanowait;
273 struct sys_nanosleep_args/* {
274 syscallarg(struct timespec *) rqtp;
275 syscallarg(struct timespec *) rmtp;
276 } */ *uap = v;
277 struct timespec rqt;
278 struct timespec rmt;
279 struct timeval atv, utv;
280 int error, s, timo;
281
282 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
283 sizeof(struct timespec));
284 if (error)
285 return (error);
286
287 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
288 if (itimerfix(&atv) || atv.tv_sec > 1000000000)
289 return (EINVAL);
290
291 s = splclock();
292 timeradd(&atv,&time,&atv);
293 timo = hzto(&atv);
294 /*
295 * Avoid inadvertantly sleeping forever
296 */
297 if (timo == 0)
298 timo = 1;
299 splx(s);
300
301 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
302 if (error == ERESTART)
303 error = EINTR;
304 if (error == EWOULDBLOCK)
305 error = 0;
306
307 if (SCARG(uap, rmtp)) {
308 int error;
309
310 s = splclock();
311 utv = time;
312 splx(s);
313
314 timersub(&atv, &utv, &utv);
315 if (utv.tv_sec < 0)
316 timerclear(&utv);
317
318 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
319 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
320 sizeof(rmt));
321 if (error)
322 return (error);
323 }
324
325 return error;
326 }
327
328 /* ARGSUSED */
329 int
330 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
331 {
332 struct sys_gettimeofday_args /* {
333 syscallarg(struct timeval *) tp;
334 syscallarg(struct timezone *) tzp;
335 } */ *uap = v;
336 struct timeval atv;
337 int error = 0;
338 struct timezone tzfake;
339
340 if (SCARG(uap, tp)) {
341 microtime(&atv);
342 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
343 if (error)
344 return (error);
345 }
346 if (SCARG(uap, tzp)) {
347 /*
348 * NetBSD has no kernel notion of time zone, so we just
349 * fake up a timezone struct and return it if demanded.
350 */
351 tzfake.tz_minuteswest = 0;
352 tzfake.tz_dsttime = 0;
353 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
354 }
355 return (error);
356 }
357
358 /* ARGSUSED */
359 int
360 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
361 {
362 struct sys_settimeofday_args /* {
363 syscallarg(const struct timeval *) tv;
364 syscallarg(const struct timezone *) tzp;
365 } */ *uap = v;
366 struct proc *p = l->l_proc;
367 int error;
368
369 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
370 return (error);
371
372 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
373 }
374
375 int
376 settimeofday1(utv, utzp, p)
377 const struct timeval *utv;
378 const struct timezone *utzp;
379 struct proc *p;
380 {
381 struct timeval atv;
382 struct timezone atz;
383 struct timeval *tv = NULL;
384 struct timezone *tzp = NULL;
385 int error;
386
387 /* Verify all parameters before changing time. */
388 if (utv) {
389 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
390 return (error);
391 tv = &atv;
392 }
393 /* XXX since we don't use tz, probably no point in doing copyin. */
394 if (utzp) {
395 if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
396 return (error);
397 tzp = &atz;
398 }
399
400 if (tv)
401 if ((error = settime(tv)) != 0)
402 return (error);
403 /*
404 * NetBSD has no kernel notion of time zone, and only an
405 * obsolete program would try to set it, so we log a warning.
406 */
407 if (tzp)
408 log(LOG_WARNING, "pid %d attempted to set the "
409 "(obsolete) kernel time zone\n", p->p_pid);
410 return (0);
411 }
412
413 int tickdelta; /* current clock skew, us. per tick */
414 long timedelta; /* unapplied time correction, us. */
415 long bigadj = 1000000; /* use 10x skew above bigadj us. */
416
417 /* ARGSUSED */
418 int
419 sys_adjtime(struct lwp *l, void *v, register_t *retval)
420 {
421 struct sys_adjtime_args /* {
422 syscallarg(const struct timeval *) delta;
423 syscallarg(struct timeval *) olddelta;
424 } */ *uap = v;
425 struct proc *p = l->l_proc;
426 int error;
427
428 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
429 return (error);
430
431 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
432 }
433
434 int
435 adjtime1(delta, olddelta, p)
436 const struct timeval *delta;
437 struct timeval *olddelta;
438 struct proc *p;
439 {
440 struct timeval atv;
441 long ndelta, ntickdelta, odelta;
442 int error;
443 int s;
444
445 error = copyin(delta, &atv, sizeof(struct timeval));
446 if (error)
447 return (error);
448
449 if (olddelta != NULL) {
450 if (uvm_useracc((caddr_t)olddelta,
451 sizeof(struct timeval), B_WRITE) == FALSE)
452 return (EFAULT);
453 }
454
455 /*
456 * Compute the total correction and the rate at which to apply it.
457 * Round the adjustment down to a whole multiple of the per-tick
458 * delta, so that after some number of incremental changes in
459 * hardclock(), tickdelta will become zero, lest the correction
460 * overshoot and start taking us away from the desired final time.
461 */
462 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
463 if (ndelta > bigadj || ndelta < -bigadj)
464 ntickdelta = 10 * tickadj;
465 else
466 ntickdelta = tickadj;
467 if (ndelta % ntickdelta)
468 ndelta = ndelta / ntickdelta * ntickdelta;
469
470 /*
471 * To make hardclock()'s job easier, make the per-tick delta negative
472 * if we want time to run slower; then hardclock can simply compute
473 * tick + tickdelta, and subtract tickdelta from timedelta.
474 */
475 if (ndelta < 0)
476 ntickdelta = -ntickdelta;
477 s = splclock();
478 odelta = timedelta;
479 timedelta = ndelta;
480 tickdelta = ntickdelta;
481 splx(s);
482
483 if (olddelta) {
484 atv.tv_sec = odelta / 1000000;
485 atv.tv_usec = odelta % 1000000;
486 (void) copyout(&atv, olddelta, sizeof(struct timeval));
487 }
488 return (0);
489 }
490
491 /*
492 * Interval timer support. Both the BSD getitimer() family and the POSIX
493 * timer_*() family of routines are supported.
494 *
495 * All timers are kept in an array pointed to by p_timers, which is
496 * allocated on demand - many processes don't use timers at all. The
497 * first three elements in this array are reserved for the BSD timers:
498 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
499 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
500 * syscall.
501 *
502 * Realtime timers are kept in the ptimer structure as an absolute
503 * time; virtual time timers are kept as a linked list of deltas.
504 * Virtual time timers are processed in the hardclock() routine of
505 * kern_clock.c. The real time timer is processed by a callout
506 * routine, called from the softclock() routine. Since a callout may
507 * be delayed in real time due to interrupt processing in the system,
508 * it is possible for the real time timeout routine (realtimeexpire,
509 * given below), to be delayed in real time past when it is supposed
510 * to occur. It does not suffice, therefore, to reload the real timer
511 * .it_value from the real time timers .it_interval. Rather, we
512 * compute the next time in absolute time the timer should go off. */
513
514 /* Allocate a POSIX realtime timer. */
515 int
516 sys_timer_create(struct lwp *l, void *v, register_t *retval)
517 {
518 struct sys_timer_create_args /* {
519 syscallarg(clockid_t) clock_id;
520 syscallarg(struct sigevent *) evp;
521 syscallarg(timer_t *) timerid;
522 } */ *uap = v;
523 struct proc *p = l->l_proc;
524 clockid_t id;
525 struct sigevent *evp;
526 struct ptimer *pt;
527 int timerid, error;
528
529 id = SCARG(uap, clock_id);
530 if (id < CLOCK_REALTIME ||
531 id > CLOCK_PROF)
532 return (EINVAL);
533
534 if (p->p_timers == NULL)
535 timers_alloc(p);
536
537 /* Find a free timer slot, skipping those reserved for setitimer(). */
538 for (timerid = 3; timerid < TIMER_MAX; timerid++)
539 if (p->p_timers->pts_timers[timerid] == NULL)
540 break;
541
542 if (timerid == TIMER_MAX)
543 return EAGAIN;
544
545 pt = pool_get(&ptimer_pool, PR_WAITOK);
546 evp = SCARG(uap, evp);
547 if (evp) {
548 if (((error =
549 copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
550 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
551 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
552 pool_put(&ptimer_pool, pt);
553 return (error ? error : EINVAL);
554 }
555 } else {
556 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
557 switch (id) {
558 case CLOCK_REALTIME:
559 pt->pt_ev.sigev_signo = SIGALRM;
560 break;
561 case CLOCK_VIRTUAL:
562 pt->pt_ev.sigev_signo = SIGVTALRM;
563 break;
564 case CLOCK_PROF:
565 pt->pt_ev.sigev_signo = SIGPROF;
566 break;
567 }
568 pt->pt_ev.sigev_value.sival_int = timerid;
569 }
570 pt->pt_info.si_signo = pt->pt_ev.sigev_signo;
571 pt->pt_info.si_errno = 0;
572 pt->pt_info.si_code = 0;
573 pt->pt_info.si_pid = p->p_pid;
574 pt->pt_info.si_uid = p->p_cred->p_ruid;
575 pt->pt_info.si_addr = NULL;
576 pt->pt_info.si_status = 0;
577 pt->pt_info.si_value = pt->pt_ev.sigev_value;
578
579 pt->pt_type = id;
580 pt->pt_proc = p;
581 pt->pt_overruns = 0;
582 pt->pt_poverruns = 0;
583 timerclear(&pt->pt_time.it_value);
584 if (id == CLOCK_REALTIME)
585 callout_init(&pt->pt_ch);
586 else
587 pt->pt_active = 0;
588
589 p->p_timers->pts_timers[timerid] = pt;
590
591 return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
592 }
593
594
595 /* Delete a POSIX realtime timer */
596 int
597 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
598 {
599 struct sys_timer_delete_args /* {
600 syscallarg(timer_t) timerid;
601 } */ *uap = v;
602 struct proc *p = l->l_proc;
603 int timerid;
604 struct ptimer *pt, *ptn;
605 int s;
606
607 timerid = SCARG(uap, timerid);
608
609 if ((p->p_timers == NULL) ||
610 (timerid < 2) || (timerid >= TIMER_MAX) ||
611 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
612 return (EINVAL);
613
614 if (pt->pt_type == CLOCK_REALTIME)
615 callout_stop(&pt->pt_ch);
616 else if (pt->pt_active) {
617 s = splclock();
618 ptn = LIST_NEXT(pt, pt_list);
619 LIST_REMOVE(pt, pt_list);
620 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
621 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
622 &ptn->pt_time.it_value);
623 splx(s);
624 }
625
626 p->p_timers->pts_timers[timerid] = NULL;
627 pool_put(&ptimer_pool, pt);
628
629 return (0);
630 }
631
632 /*
633 * Set up the given timer. The value in pt->pt_time.it_value is taken to be
634 * relative to now.
635 * Must be called at splclock().
636 */
637 void
638 timer_settime(struct ptimer *pt)
639 {
640 struct ptimer *ptn, *pptn;
641 struct ptlist *ptl;
642
643 if (pt->pt_type == CLOCK_REALTIME) {
644 callout_stop(&pt->pt_ch);
645 if (timerisset(&pt->pt_time.it_value)) {
646 timeradd(&pt->pt_time.it_value, &time,
647 &pt->pt_time.it_value);
648 /*
649 * Don't need to check hzto() return value, here.
650 * callout_reset() does it for us.
651 */
652 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
653 realtimerexpire, pt);
654 }
655 } else {
656 if (pt->pt_active) {
657 ptn = LIST_NEXT(pt, pt_list);
658 LIST_REMOVE(pt, pt_list);
659 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
660 timeradd(&pt->pt_time.it_value,
661 &ptn->pt_time.it_value,
662 &ptn->pt_time.it_value);
663 }
664 if (timerisset(&pt->pt_time.it_value)) {
665 if (pt->pt_type == CLOCK_VIRTUAL)
666 ptl = &pt->pt_proc->p_timers->pts_virtual;
667 else
668 ptl = &pt->pt_proc->p_timers->pts_prof;
669
670 for (ptn = LIST_FIRST(ptl), pptn = NULL;
671 ptn && timercmp(&pt->pt_time.it_value,
672 &ptn->pt_time.it_value, >);
673 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
674 timersub(&pt->pt_time.it_value,
675 &ptn->pt_time.it_value,
676 &pt->pt_time.it_value);
677
678 if (pptn)
679 LIST_INSERT_AFTER(pptn, pt, pt_list);
680 else
681 LIST_INSERT_HEAD(ptl, pt, pt_list);
682
683 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
684 timersub(&ptn->pt_time.it_value,
685 &pt->pt_time.it_value,
686 &ptn->pt_time.it_value);
687
688 pt->pt_active = 1;
689 } else
690 pt->pt_active = 0;
691 }
692 }
693
694 void
695 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
696 {
697 struct ptimer *ptn;
698
699 *aitv = pt->pt_time;
700 if (pt->pt_type == CLOCK_REALTIME) {
701 /*
702 * Convert from absolute to relative time in .it_value
703 * part of real time timer. If time for real time
704 * timer has passed return 0, else return difference
705 * between current time and time for the timer to go
706 * off.
707 */
708 if (timerisset(&aitv->it_value)) {
709 if (timercmp(&aitv->it_value, &time, <))
710 timerclear(&aitv->it_value);
711 else
712 timersub(&aitv->it_value, &time,
713 &aitv->it_value);
714 }
715 } else if (pt->pt_active) {
716 if (pt->pt_type == CLOCK_VIRTUAL)
717 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
718 else
719 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
720 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
721 timeradd(&aitv->it_value,
722 &ptn->pt_time.it_value, &aitv->it_value);
723 KASSERT(ptn != NULL); /* pt should be findable on the list */
724 } else
725 timerclear(&aitv->it_value);
726 }
727
728
729
730 /* Set and arm a POSIX realtime timer */
731 int
732 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
733 {
734 struct sys_timer_settime_args /* {
735 syscallarg(timer_t) timerid;
736 syscallarg(int) flags;
737 syscallarg(const struct itimerspec *) value;
738 syscallarg(struct itimerspec *) ovalue;
739 } */ *uap = v;
740 struct proc *p = l->l_proc;
741 int error, s, timerid;
742 struct itimerval val, oval;
743 struct itimerspec value, ovalue;
744 struct ptimer *pt;
745
746 timerid = SCARG(uap, timerid);
747
748 if ((p->p_timers == NULL) ||
749 (timerid < 2) || (timerid >= TIMER_MAX) ||
750 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
751 return (EINVAL);
752
753 if ((error = copyin(SCARG(uap, value), &value,
754 sizeof(struct itimerspec))) != 0)
755 return (error);
756
757 TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
758 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
759 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
760 return (EINVAL);
761
762 oval = pt->pt_time;
763 pt->pt_time = val;
764
765 s = splclock();
766 /* If we've been passed an absolute time, convert it to relative. */
767 if (timerisset(&pt->pt_time.it_value) &&
768 (SCARG(uap, flags) & TIMER_ABSTIME))
769 timersub(&pt->pt_time.it_value, &time,
770 &pt->pt_time.it_value);
771 timer_settime(pt);
772 splx(s);
773
774 if (SCARG(uap, ovalue)) {
775 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
776 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
777 return copyout(&ovalue, SCARG(uap, ovalue),
778 sizeof(struct itimerspec));
779 }
780
781 return (0);
782 }
783
784 /* Return the time remaining until a POSIX timer fires. */
785 int
786 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
787 {
788 struct sys_timer_gettime_args /* {
789 syscallarg(timer_t) timerid;
790 syscallarg(struct itimerspec *) value;
791 } */ *uap = v;
792 struct itimerval aitv;
793 struct itimerspec its;
794 struct proc *p = l->l_proc;
795 int s, timerid;
796 struct ptimer *pt;
797
798 timerid = SCARG(uap, timerid);
799
800 if ((p->p_timers == NULL) ||
801 (timerid < 2) || (timerid >= TIMER_MAX) ||
802 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
803 return (EINVAL);
804
805 s = splclock();
806 timer_gettime(pt, &aitv);
807 splx(s);
808
809 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
810 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
811
812 return copyout(&its, SCARG(uap, value), sizeof(its));
813 }
814
815 /*
816 * Return the count of the number of times a periodic timer expired
817 * while a notification was already pending. The counter is reset when
818 * a timer expires and a notification can be posted.
819 */
820 int
821 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
822 {
823 struct sys_timer_getoverrun_args /* {
824 syscallarg(timer_t) timerid;
825 } */ *uap = v;
826 struct proc *p = l->l_proc;
827 int timerid;
828 struct ptimer *pt;
829
830 timerid = SCARG(uap, timerid);
831
832 if ((p->p_timers == NULL) ||
833 (timerid < 2) || (timerid >= TIMER_MAX) ||
834 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
835 return (EINVAL);
836
837 *retval = pt->pt_poverruns;
838
839 return (0);
840 }
841
842 /* Glue function that triggers an upcall; called from userret(). */
843 static void
844 timerupcall(struct lwp *l, void *arg)
845 {
846 struct ptimer *pt = (struct ptimer *)arg;
847
848 /* The upcall should be generated exactly once. */
849 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
850 sizeof(siginfo_t), &pt->pt_info) == 0)
851 l->l_proc->p_userret = NULL;
852 }
853
854
855 /*
856 * Real interval timer expired:
857 * send process whose timer expired an alarm signal.
858 * If time is not set up to reload, then just return.
859 * Else compute next time timer should go off which is > current time.
860 * This is where delay in processing this timeout causes multiple
861 * SIGALRM calls to be compressed into one.
862 */
863 void
864 realtimerexpire(void *arg)
865 {
866 struct ptimer *pt;
867 int s;
868
869 pt = (struct ptimer *)arg;
870
871 itimerfire(pt);
872
873 if (!timerisset(&pt->pt_time.it_interval)) {
874 timerclear(&pt->pt_time.it_value);
875 return;
876 }
877 for (;;) {
878 s = splclock();
879 timeradd(&pt->pt_time.it_value,
880 &pt->pt_time.it_interval, &pt->pt_time.it_value);
881 if (timercmp(&pt->pt_time.it_value, &time, >)) {
882 /*
883 * Don't need to check hzto() return value, here.
884 * callout_reset() does it for us.
885 */
886 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
887 realtimerexpire, pt);
888 splx(s);
889 return;
890 }
891 splx(s);
892 pt->pt_overruns++;
893 }
894 }
895
896 /* BSD routine to get the value of an interval timer. */
897 /* ARGSUSED */
898 int
899 sys_getitimer(struct lwp *l, void *v, register_t *retval)
900 {
901 struct sys_getitimer_args /* {
902 syscallarg(int) which;
903 syscallarg(struct itimerval *) itv;
904 } */ *uap = v;
905 struct proc *p = l->l_proc;
906 struct itimerval aitv;
907 int s, which;
908
909 which = SCARG(uap, which);
910
911 if ((u_int)which > ITIMER_PROF)
912 return (EINVAL);
913
914 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
915 timerclear(&aitv.it_value);
916 timerclear(&aitv.it_interval);
917 } else {
918 s = splclock();
919 timer_gettime(p->p_timers->pts_timers[which], &aitv);
920 splx(s);
921 }
922
923 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
924
925 }
926
927 /* BSD routine to set/arm an interval timer. */
928 /* ARGSUSED */
929 int
930 sys_setitimer(struct lwp *l, void *v, register_t *retval)
931 {
932 struct sys_setitimer_args /* {
933 syscallarg(int) which;
934 syscallarg(const struct itimerval *) itv;
935 syscallarg(struct itimerval *) oitv;
936 } */ *uap = v;
937 struct proc *p = l->l_proc;
938 int which = SCARG(uap, which);
939 struct sys_getitimer_args getargs;
940 struct itimerval aitv;
941 const struct itimerval *itvp;
942 struct ptimer *pt;
943 int s, error;
944
945 if ((u_int)which > ITIMER_PROF)
946 return (EINVAL);
947 itvp = SCARG(uap, itv);
948 if (itvp &&
949 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
950 return (error);
951 if (SCARG(uap, oitv) != NULL) {
952 SCARG(&getargs, which) = which;
953 SCARG(&getargs, itv) = SCARG(uap, oitv);
954 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
955 return (error);
956 }
957 if (itvp == 0)
958 return (0);
959 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
960 return (EINVAL);
961
962 /*
963 * Don't bother allocating data structures if the process just
964 * wants to clear the timer.
965 */
966 if (!timerisset(&aitv.it_value) &&
967 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
968 return (0);
969
970 if (p->p_timers == NULL)
971 timers_alloc(p);
972 if (p->p_timers->pts_timers[which] == NULL) {
973 pt = pool_get(&ptimer_pool, PR_WAITOK);
974 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
975 pt->pt_overruns = 0;
976 pt->pt_proc = p;
977 pt->pt_type = which;
978 switch (which) {
979 case ITIMER_REAL:
980 callout_init(&pt->pt_ch);
981 pt->pt_ev.sigev_signo = SIGALRM;
982 break;
983 case ITIMER_VIRTUAL:
984 pt->pt_active = 0;
985 pt->pt_ev.sigev_signo = SIGVTALRM;
986 break;
987 case ITIMER_PROF:
988 pt->pt_active = 0;
989 pt->pt_ev.sigev_signo = SIGPROF;
990 break;
991 }
992 } else
993 pt = p->p_timers->pts_timers[which];
994
995 pt->pt_time = aitv;
996 p->p_timers->pts_timers[which] = pt;
997
998 s = splclock();
999 timer_settime(pt);
1000 splx(s);
1001
1002 return (0);
1003 }
1004
1005 /* Utility routines to manage the array of pointers to timers. */
1006 void
1007 timers_alloc(struct proc *p)
1008 {
1009 int i;
1010 struct ptimers *pts;
1011
1012 pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1013 LIST_INIT(&pts->pts_virtual);
1014 LIST_INIT(&pts->pts_prof);
1015 for (i = 0; i < TIMER_MAX; i++)
1016 pts->pts_timers[i] = NULL;
1017 p->p_timers = pts;
1018 }
1019
1020 /*
1021 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1022 * then clean up all timers and free all the data structures. If
1023 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1024 * by timer_create(), not the BSD setitimer() timers, and only free the
1025 * structure if none of those remain.
1026 */
1027 void
1028 timers_free(struct proc *p, int which)
1029 {
1030 int i, s;
1031 struct ptimers *pts;
1032 struct ptimer *pt, *ptn;
1033 struct timeval tv;
1034
1035 if (p->p_timers) {
1036 pts = p->p_timers;
1037 if (which == TIMERS_ALL)
1038 i = 0;
1039 else {
1040 s = splclock();
1041 timerclear(&tv);
1042 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1043 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1044 ptn = LIST_NEXT(ptn, pt_list))
1045 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1046 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1047 if (ptn) {
1048 timeradd(&tv, &ptn->pt_time.it_value,
1049 &ptn->pt_time.it_value);
1050 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1051 ptn, pt_list);
1052 }
1053
1054 timerclear(&tv);
1055 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1056 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1057 ptn = LIST_NEXT(ptn, pt_list))
1058 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1059 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1060 if (ptn) {
1061 timeradd(&tv, &ptn->pt_time.it_value,
1062 &ptn->pt_time.it_value);
1063 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1064 pt_list);
1065 }
1066 splx(s);
1067 i = 3;
1068 }
1069 for ( ; i < TIMER_MAX; i++)
1070 if ((pt = pts->pts_timers[i]) != NULL) {
1071 if (pt->pt_type == CLOCK_REALTIME)
1072 callout_stop(&pt->pt_ch);
1073 pts->pts_timers[i] = NULL;
1074 pool_put(&ptimer_pool, pt);
1075 }
1076 if ((pts->pts_timers[0] == NULL) &&
1077 (pts->pts_timers[1] == NULL) &&
1078 (pts->pts_timers[2] == NULL)) {
1079 p->p_timers = NULL;
1080 free(pts, M_SUBPROC);
1081 }
1082 }
1083 }
1084
1085 /*
1086 * Check that a proposed value to load into the .it_value or
1087 * .it_interval part of an interval timer is acceptable, and
1088 * fix it to have at least minimal value (i.e. if it is less
1089 * than the resolution of the clock, round it up.)
1090 */
1091 int
1092 itimerfix(struct timeval *tv)
1093 {
1094
1095 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1096 return (EINVAL);
1097 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1098 tv->tv_usec = tick;
1099 return (0);
1100 }
1101
1102 /*
1103 * Decrement an interval timer by a specified number
1104 * of microseconds, which must be less than a second,
1105 * i.e. < 1000000. If the timer expires, then reload
1106 * it. In this case, carry over (usec - old value) to
1107 * reduce the value reloaded into the timer so that
1108 * the timer does not drift. This routine assumes
1109 * that it is called in a context where the timers
1110 * on which it is operating cannot change in value.
1111 */
1112 int
1113 itimerdecr(struct ptimer *pt, int usec)
1114 {
1115 struct itimerval *itp;
1116
1117 itp = &pt->pt_time;
1118 if (itp->it_value.tv_usec < usec) {
1119 if (itp->it_value.tv_sec == 0) {
1120 /* expired, and already in next interval */
1121 usec -= itp->it_value.tv_usec;
1122 goto expire;
1123 }
1124 itp->it_value.tv_usec += 1000000;
1125 itp->it_value.tv_sec--;
1126 }
1127 itp->it_value.tv_usec -= usec;
1128 usec = 0;
1129 if (timerisset(&itp->it_value))
1130 return (1);
1131 /* expired, exactly at end of interval */
1132 expire:
1133 if (timerisset(&itp->it_interval)) {
1134 itp->it_value = itp->it_interval;
1135 itp->it_value.tv_usec -= usec;
1136 if (itp->it_value.tv_usec < 0) {
1137 itp->it_value.tv_usec += 1000000;
1138 itp->it_value.tv_sec--;
1139 }
1140 timer_settime(pt);
1141 } else
1142 itp->it_value.tv_usec = 0; /* sec is already 0 */
1143 return (0);
1144 }
1145
1146 void
1147 itimerfire(struct ptimer *pt)
1148 {
1149 struct proc *p = pt->pt_proc;
1150
1151 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1152 /*
1153 * No RT signal infrastructure exists at this time;
1154 * just post the signal number and throw away the
1155 * value.
1156 */
1157 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1158 pt->pt_overruns++;
1159 else {
1160 pt->pt_poverruns = pt->pt_overruns;
1161 pt->pt_overruns = 0;
1162 psignal(p, pt->pt_ev.sigev_signo);
1163 }
1164 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1165 /* Cause the process to generate an upcall when it returns. */
1166 struct sadata *sa = p->p_sa;
1167
1168 if (p->p_userret == NULL) {
1169 if (sa->sa_idle)
1170 wakeup(p);
1171 pt->pt_poverruns = pt->pt_overruns;
1172 pt->pt_overruns = 0;
1173 p->p_userret = timerupcall;
1174 p->p_userret_arg = pt;
1175 } else
1176 pt->pt_overruns++;
1177 }
1178
1179 }
1180
1181 /*
1182 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1183 * for usage and rationale.
1184 */
1185 int
1186 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1187 {
1188 struct timeval tv, delta;
1189 int s, rv = 0;
1190
1191 s = splclock();
1192 tv = mono_time;
1193 splx(s);
1194
1195 timersub(&tv, lasttime, &delta);
1196
1197 /*
1198 * check for 0,0 is so that the message will be seen at least once,
1199 * even if interval is huge.
1200 */
1201 if (timercmp(&delta, mininterval, >=) ||
1202 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1203 *lasttime = tv;
1204 rv = 1;
1205 }
1206
1207 return (rv);
1208 }
1209
1210 /*
1211 * ppsratecheck(): packets (or events) per second limitation.
1212 */
1213 int
1214 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1215 {
1216 struct timeval tv, delta;
1217 int s, rv;
1218
1219 s = splclock();
1220 tv = mono_time;
1221 splx(s);
1222
1223 timersub(&tv, lasttime, &delta);
1224
1225 /*
1226 * check for 0,0 is so that the message will be seen at least once.
1227 * if more than one second have passed since the last update of
1228 * lasttime, reset the counter.
1229 *
1230 * we do increment *curpps even in *curpps < maxpps case, as some may
1231 * try to use *curpps for stat purposes as well.
1232 */
1233 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1234 delta.tv_sec >= 1) {
1235 *lasttime = tv;
1236 *curpps = 0;
1237 rv = 1;
1238 } else if (maxpps < 0)
1239 rv = 1;
1240 else if (*curpps < maxpps)
1241 rv = 1;
1242 else
1243 rv = 0;
1244
1245 #if 1 /*DIAGNOSTIC?*/
1246 /* be careful about wrap-around */
1247 if (*curpps + 1 > *curpps)
1248 *curpps = *curpps + 1;
1249 #else
1250 /*
1251 * assume that there's not too many calls to this function.
1252 * not sure if the assumption holds, as it depends on *caller's*
1253 * behavior, not the behavior of this function.
1254 * IMHO it is wrong to make assumption on the caller's behavior,
1255 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1256 */
1257 *curpps = *curpps + 1;
1258 #endif
1259
1260 return (rv);
1261 }
1262