Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.54.2.3
      1 /*	$NetBSD: kern_time.c,v 1.54.2.3 2001/09/21 22:36:26 nathanw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the University of
     54  *	California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     72  */
     73 
     74 #include "fs_nfs.h"
     75 #include "opt_nfs.h"
     76 #include "opt_nfsserver.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/resourcevar.h>
     80 #include <sys/kernel.h>
     81 #include <sys/systm.h>
     82 #include <sys/lwp.h>
     83 #include <sys/proc.h>
     84 #include <sys/vnode.h>
     85 #include <sys/signalvar.h>
     86 #include <sys/syslog.h>
     87 
     88 #include <sys/mount.h>
     89 #include <sys/syscallargs.h>
     90 
     91 #include <uvm/uvm_extern.h>
     92 
     93 #if defined(NFS) || defined(NFSSERVER)
     94 #include <nfs/rpcv2.h>
     95 #include <nfs/nfsproto.h>
     96 #include <nfs/nfs_var.h>
     97 #endif
     98 
     99 #include <machine/cpu.h>
    100 
    101 /*
    102  * Time of day and interval timer support.
    103  *
    104  * These routines provide the kernel entry points to get and set
    105  * the time-of-day and per-process interval timers.  Subroutines
    106  * here provide support for adding and subtracting timeval structures
    107  * and decrementing interval timers, optionally reloading the interval
    108  * timers when they expire.
    109  */
    110 
    111 /* This function is used by clock_settime and settimeofday */
    112 int
    113 settime(tv)
    114 	struct timeval *tv;
    115 {
    116 	struct timeval delta;
    117 	struct cpu_info *ci;
    118 	int s;
    119 
    120 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    121 	s = splclock();
    122 	timersub(tv, &time, &delta);
    123 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    124 		splx(s);
    125 		return (EPERM);
    126 	}
    127 #ifdef notyet
    128 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    129 		splx(s);
    130 		return (EPERM);
    131 	}
    132 #endif
    133 	time = *tv;
    134 	(void) spllowersoftclock();
    135 	timeradd(&boottime, &delta, &boottime);
    136 	/*
    137 	 * XXXSMP
    138 	 * This is wrong.  We should traverse a list of all
    139 	 * CPUs and add the delta to the runtime of those
    140 	 * CPUs which have a process on them.
    141 	 */
    142 	ci = curcpu();
    143 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    144 	    &ci->ci_schedstate.spc_runtime);
    145 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    146 		nqnfs_lease_updatetime(delta.tv_sec);
    147 #	endif
    148 	splx(s);
    149 	resettodr();
    150 	return (0);
    151 }
    152 
    153 /* ARGSUSED */
    154 int
    155 sys_clock_gettime(l, v, retval)
    156 	struct lwp *l;
    157 	void *v;
    158 	register_t *retval;
    159 {
    160 	struct sys_clock_gettime_args /* {
    161 		syscallarg(clockid_t) clock_id;
    162 		syscallarg(struct timespec *) tp;
    163 	} */ *uap = v;
    164 	clockid_t clock_id;
    165 	struct timeval atv;
    166 	struct timespec ats;
    167 
    168 	clock_id = SCARG(uap, clock_id);
    169 	if (clock_id != CLOCK_REALTIME)
    170 		return (EINVAL);
    171 
    172 	microtime(&atv);
    173 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    174 
    175 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    176 }
    177 
    178 /* ARGSUSED */
    179 int
    180 sys_clock_settime(l, v, retval)
    181 	struct lwp *l;
    182 	void *v;
    183 	register_t *retval;
    184 {
    185 	struct sys_clock_settime_args /* {
    186 		syscallarg(clockid_t) clock_id;
    187 		syscallarg(const struct timespec *) tp;
    188 	} */ *uap = v;
    189 	struct proc *p = l->l_proc;
    190 	clockid_t clock_id;
    191 	struct timespec ats;
    192 	int error;
    193 
    194 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    195 		return (error);
    196 
    197 	clock_id = SCARG(uap, clock_id);
    198 
    199 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    200 		return (error);
    201 
    202 	return (clock_settime1(clock_id, &ats));
    203 }
    204 
    205 
    206 int
    207 clock_settime1(clock_id, ats)
    208 	clockid_t clock_id;
    209 	struct timespec *ats;
    210 {
    211 	struct timeval atv;
    212 	int error;
    213 
    214 	if (clock_id != CLOCK_REALTIME)
    215 		return (EINVAL);
    216 
    217 	TIMESPEC_TO_TIMEVAL(&atv, ats);
    218 	if ((error = settime(&atv)) != 0)
    219 		return (error);
    220 
    221 	return 0;
    222 }
    223 
    224 int
    225 sys_clock_getres(l, v, retval)
    226 	struct lwp *l;
    227 	void *v;
    228 	register_t *retval;
    229 {
    230 	struct sys_clock_getres_args /* {
    231 		syscallarg(clockid_t) clock_id;
    232 		syscallarg(struct timespec *) tp;
    233 	} */ *uap = v;
    234 	clockid_t clock_id;
    235 	struct timespec ts;
    236 	int error = 0;
    237 
    238 	clock_id = SCARG(uap, clock_id);
    239 	if (clock_id != CLOCK_REALTIME)
    240 		return (EINVAL);
    241 
    242 	if (SCARG(uap, tp)) {
    243 		ts.tv_sec = 0;
    244 		ts.tv_nsec = 1000000000 / hz;
    245 
    246 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    247 	}
    248 
    249 	return error;
    250 }
    251 
    252 /* ARGSUSED */
    253 int
    254 sys_nanosleep(l, v, retval)
    255 	struct lwp *l;
    256 	void *v;
    257 	register_t *retval;
    258 {
    259 	static int nanowait;
    260 	struct sys_nanosleep_args/* {
    261 		syscallarg(struct timespec *) rqtp;
    262 		syscallarg(struct timespec *) rmtp;
    263 	} */ *uap = v;
    264 	struct timespec rqt;
    265 	struct timespec rmt;
    266 	struct timeval atv, utv;
    267 	int error, s, timo;
    268 
    269 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    270 		       sizeof(struct timespec));
    271 	if (error)
    272 		return (error);
    273 
    274 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    275 	if (itimerfix(&atv))
    276 		return (EINVAL);
    277 
    278 	s = splclock();
    279 	timeradd(&atv,&time,&atv);
    280 	timo = hzto(&atv);
    281 	/*
    282 	 * Avoid inadvertantly sleeping forever
    283 	 */
    284 	if (timo == 0)
    285 		timo = 1;
    286 	splx(s);
    287 
    288 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    289 	if (error == ERESTART)
    290 		error = EINTR;
    291 	if (error == EWOULDBLOCK)
    292 		error = 0;
    293 
    294 	if (SCARG(uap, rmtp)) {
    295 		int error;
    296 
    297 		s = splclock();
    298 		utv = time;
    299 		splx(s);
    300 
    301 		timersub(&atv, &utv, &utv);
    302 		if (utv.tv_sec < 0)
    303 			timerclear(&utv);
    304 
    305 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    306 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    307 			sizeof(rmt));
    308 		if (error)
    309 			return (error);
    310 	}
    311 
    312 	return error;
    313 }
    314 
    315 /* ARGSUSED */
    316 int
    317 sys_gettimeofday(l, v, retval)
    318 	struct lwp *l;
    319 	void *v;
    320 	register_t *retval;
    321 {
    322 	struct sys_gettimeofday_args /* {
    323 		syscallarg(struct timeval *) tp;
    324 		syscallarg(struct timezone *) tzp;
    325 	} */ *uap = v;
    326 	struct timeval atv;
    327 	int error = 0;
    328 	struct timezone tzfake;
    329 
    330 	if (SCARG(uap, tp)) {
    331 		microtime(&atv);
    332 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    333 		if (error)
    334 			return (error);
    335 	}
    336 	if (SCARG(uap, tzp)) {
    337 		/*
    338 		 * NetBSD has no kernel notion of time zone, so we just
    339 		 * fake up a timezone struct and return it if demanded.
    340 		 */
    341 		tzfake.tz_minuteswest = 0;
    342 		tzfake.tz_dsttime = 0;
    343 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    344 	}
    345 	return (error);
    346 }
    347 
    348 /* ARGSUSED */
    349 int
    350 sys_settimeofday(l, v, retval)
    351 	struct lwp *l;
    352 	void *v;
    353 	register_t *retval;
    354 {
    355 	struct sys_settimeofday_args /* {
    356 		syscallarg(const struct timeval *) tv;
    357 		syscallarg(const struct timezone *) tzp;
    358 	} */ *uap = v;
    359 	struct proc *p = l->l_proc;
    360 	struct timeval atv;
    361 	struct timezone atz;
    362 	struct timeval *tv = NULL;
    363 	struct timezone *tzp = NULL;
    364 	int error;
    365 
    366 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    367 		return (error);
    368 
    369 	/* Verify all parameters before changing time. */
    370 	if (SCARG(uap, tv)) {
    371 		if ((error = copyin(SCARG(uap, tv), &atv, sizeof(atv))) != 0)
    372 			return (error);
    373 		tv = &atv;
    374 	}
    375 	/* XXX since we don't use tz, probably no point in doing copyin. */
    376 	if (SCARG(uap, tzp)) {
    377 		if ((error = copyin(SCARG(uap, tzp), &atz, sizeof(atz))) != 0)
    378 			return (error);
    379 		tzp = &atz;
    380 	}
    381 
    382 	return settimeofday1(tv, tzp, p);
    383 }
    384 
    385 int
    386 settimeofday1(tv, tzp, p)
    387 	struct timeval *tv;
    388 	struct timezone *tzp;
    389 	struct proc *p;
    390 {
    391 	int error;
    392 
    393 	if (tv)
    394 		if ((error = settime(tv)) != 0)
    395 			return (error);
    396 	/*
    397 	 * NetBSD has no kernel notion of time zone, and only an
    398 	 * obsolete program would try to set it, so we log a warning.
    399 	 */
    400 	if (tzp)
    401 		log(LOG_WARNING, "pid %d attempted to set the "
    402 		    "(obsolete) kernel time zone\n", p->p_pid);
    403 	return (0);
    404 }
    405 
    406 int	tickdelta;			/* current clock skew, us. per tick */
    407 long	timedelta;			/* unapplied time correction, us. */
    408 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    409 
    410 /* ARGSUSED */
    411 int
    412 sys_adjtime(l, v, retval)
    413 	struct lwp *l;
    414 	void *v;
    415 	register_t *retval;
    416 {
    417 	struct sys_adjtime_args /* {
    418 		syscallarg(const struct timeval *) delta;
    419 		syscallarg(struct timeval *) olddelta;
    420 	} */ *uap = v;
    421 	struct proc *p = l->l_proc;
    422 	struct timeval atv;
    423 	struct timeval *oatv = NULL;
    424 	int error;
    425 
    426 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    427 		return (error);
    428 
    429 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
    430 	if (error)
    431 		return (error);
    432 
    433 	if (SCARG(uap, olddelta) != NULL) {
    434 		if (uvm_useracc((caddr_t)SCARG(uap, olddelta),
    435 		    sizeof(struct timeval), B_WRITE) == FALSE)
    436 			return (EFAULT);
    437 		oatv = SCARG(uap, olddelta);
    438 	}
    439 
    440 	return adjtime1(&atv, oatv, p);
    441 }
    442 
    443 int
    444 adjtime1(delta, olddelta, p)
    445 	struct timeval *delta;
    446 	struct timeval *olddelta;
    447 	struct proc *p;
    448 {
    449 	long ndelta, ntickdelta, odelta;
    450 	int s;
    451 
    452 	/*
    453 	 * Compute the total correction and the rate at which to apply it.
    454 	 * Round the adjustment down to a whole multiple of the per-tick
    455 	 * delta, so that after some number of incremental changes in
    456 	 * hardclock(), tickdelta will become zero, lest the correction
    457 	 * overshoot and start taking us away from the desired final time.
    458 	 */
    459 	ndelta = delta->tv_sec * 1000000 + delta->tv_usec;
    460 	if (ndelta > bigadj || ndelta < -bigadj)
    461 		ntickdelta = 10 * tickadj;
    462 	else
    463 		ntickdelta = tickadj;
    464 	if (ndelta % ntickdelta)
    465 		ndelta = ndelta / ntickdelta * ntickdelta;
    466 
    467 	/*
    468 	 * To make hardclock()'s job easier, make the per-tick delta negative
    469 	 * if we want time to run slower; then hardclock can simply compute
    470 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    471 	 */
    472 	if (ndelta < 0)
    473 		ntickdelta = -ntickdelta;
    474 	s = splclock();
    475 	odelta = timedelta;
    476 	timedelta = ndelta;
    477 	tickdelta = ntickdelta;
    478 	splx(s);
    479 
    480 	if (olddelta) {
    481 		delta->tv_sec = odelta / 1000000;
    482 		delta->tv_usec = odelta % 1000000;
    483 		(void) copyout(delta, olddelta, sizeof(struct timeval));
    484 	}
    485 	return (0);
    486 }
    487 
    488 /*
    489  * Get value of an interval timer.  The process virtual and
    490  * profiling virtual time timers are kept in the p_stats area, since
    491  * they can be swapped out.  These are kept internally in the
    492  * way they are specified externally: in time until they expire.
    493  *
    494  * The real time interval timer is kept in the process table slot
    495  * for the process, and its value (it_value) is kept as an
    496  * absolute time rather than as a delta, so that it is easy to keep
    497  * periodic real-time signals from drifting.
    498  *
    499  * Virtual time timers are processed in the hardclock() routine of
    500  * kern_clock.c.  The real time timer is processed by a timeout
    501  * routine, called from the softclock() routine.  Since a callout
    502  * may be delayed in real time due to interrupt processing in the system,
    503  * it is possible for the real time timeout routine (realitexpire, given below),
    504  * to be delayed in real time past when it is supposed to occur.  It
    505  * does not suffice, therefore, to reload the real timer .it_value from the
    506  * real time timers .it_interval.  Rather, we compute the next time in
    507  * absolute time the timer should go off.
    508  */
    509 /* ARGSUSED */
    510 int
    511 sys_getitimer(l, v, retval)
    512 	struct lwp *l;
    513 	void *v;
    514 	register_t *retval;
    515 {
    516 	struct sys_getitimer_args /* {
    517 		syscallarg(int) which;
    518 		syscallarg(struct itimerval *) itv;
    519 	} */ *uap = v;
    520 	struct proc *p = l->l_proc;
    521 	int which = SCARG(uap, which);
    522 	struct itimerval aitv;
    523 	int s;
    524 
    525 	if ((u_int)which > ITIMER_PROF)
    526 		return (EINVAL);
    527 	s = splclock();
    528 	if (which == ITIMER_REAL) {
    529 		/*
    530 		 * Convert from absolute to relative time in .it_value
    531 		 * part of real time timer.  If time for real time timer
    532 		 * has passed return 0, else return difference between
    533 		 * current time and time for the timer to go off.
    534 		 */
    535 		aitv = p->p_realtimer;
    536 		if (timerisset(&aitv.it_value)) {
    537 			if (timercmp(&aitv.it_value, &time, <))
    538 				timerclear(&aitv.it_value);
    539 			else
    540 				timersub(&aitv.it_value, &time, &aitv.it_value);
    541 		}
    542 	} else
    543 		aitv = p->p_stats->p_timer[which];
    544 	splx(s);
    545 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    546 }
    547 
    548 /* ARGSUSED */
    549 int
    550 sys_setitimer(l, v, retval)
    551 	struct lwp *l;
    552 	void *v;
    553 	register_t *retval;
    554 {
    555 	struct sys_setitimer_args /* {
    556 		syscallarg(int) which;
    557 		syscallarg(const struct itimerval *) itv;
    558 		syscallarg(struct itimerval *) oitv;
    559 	} */ *uap = v;
    560 	struct proc *p = l->l_proc;
    561 	int which = SCARG(uap, which);
    562 	struct sys_getitimer_args getargs;
    563 	struct itimerval aitv;
    564 	const struct itimerval *itvp;
    565 	int s, error;
    566 
    567 	if ((u_int)which > ITIMER_PROF)
    568 		return (EINVAL);
    569 	itvp = SCARG(uap, itv);
    570 	if (itvp &&
    571 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    572 		return (error);
    573 	if (SCARG(uap, oitv) != NULL) {
    574 		SCARG(&getargs, which) = which;
    575 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    576 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
    577 			return (error);
    578 	}
    579 	if (itvp == 0)
    580 		return (0);
    581 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    582 		return (EINVAL);
    583 	s = splclock();
    584 	if (which == ITIMER_REAL) {
    585 		callout_stop(&p->p_realit_ch);
    586 		if (timerisset(&aitv.it_value)) {
    587 			/*
    588 			 * Don't need to check hzto() return value, here.
    589 			 * callout_reset() does it for us.
    590 			 */
    591 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    592 			callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
    593 			    realitexpire, p);
    594 		}
    595 		p->p_realtimer = aitv;
    596 	} else
    597 		p->p_stats->p_timer[which] = aitv;
    598 	splx(s);
    599 	return (0);
    600 }
    601 
    602 /*
    603  * Real interval timer expired:
    604  * send process whose timer expired an alarm signal.
    605  * If time is not set up to reload, then just return.
    606  * Else compute next time timer should go off which is > current time.
    607  * This is where delay in processing this timeout causes multiple
    608  * SIGALRM calls to be compressed into one.
    609  */
    610 void
    611 realitexpire(arg)
    612 	void *arg;
    613 {
    614 	struct proc *p;
    615 	int s;
    616 
    617 	p = (struct proc *)arg;
    618 	psignal(p, SIGALRM);
    619 	if (!timerisset(&p->p_realtimer.it_interval)) {
    620 		timerclear(&p->p_realtimer.it_value);
    621 		return;
    622 	}
    623 	for (;;) {
    624 		s = splclock();
    625 		timeradd(&p->p_realtimer.it_value,
    626 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    627 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    628 			/*
    629 			 * Don't need to check hzto() return value, here.
    630 			 * callout_reset() does it for us.
    631 			 */
    632 			callout_reset(&p->p_realit_ch,
    633 			    hzto(&p->p_realtimer.it_value), realitexpire, p);
    634 			splx(s);
    635 			return;
    636 		}
    637 		splx(s);
    638 	}
    639 }
    640 
    641 /*
    642  * Check that a proposed value to load into the .it_value or
    643  * .it_interval part of an interval timer is acceptable, and
    644  * fix it to have at least minimal value (i.e. if it is less
    645  * than the resolution of the clock, round it up.)
    646  */
    647 int
    648 itimerfix(tv)
    649 	struct timeval *tv;
    650 {
    651 
    652 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    653 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    654 		return (EINVAL);
    655 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    656 		tv->tv_usec = tick;
    657 	return (0);
    658 }
    659 
    660 /*
    661  * Decrement an interval timer by a specified number
    662  * of microseconds, which must be less than a second,
    663  * i.e. < 1000000.  If the timer expires, then reload
    664  * it.  In this case, carry over (usec - old value) to
    665  * reduce the value reloaded into the timer so that
    666  * the timer does not drift.  This routine assumes
    667  * that it is called in a context where the timers
    668  * on which it is operating cannot change in value.
    669  */
    670 int
    671 itimerdecr(itp, usec)
    672 	struct itimerval *itp;
    673 	int usec;
    674 {
    675 
    676 	if (itp->it_value.tv_usec < usec) {
    677 		if (itp->it_value.tv_sec == 0) {
    678 			/* expired, and already in next interval */
    679 			usec -= itp->it_value.tv_usec;
    680 			goto expire;
    681 		}
    682 		itp->it_value.tv_usec += 1000000;
    683 		itp->it_value.tv_sec--;
    684 	}
    685 	itp->it_value.tv_usec -= usec;
    686 	usec = 0;
    687 	if (timerisset(&itp->it_value))
    688 		return (1);
    689 	/* expired, exactly at end of interval */
    690 expire:
    691 	if (timerisset(&itp->it_interval)) {
    692 		itp->it_value = itp->it_interval;
    693 		itp->it_value.tv_usec -= usec;
    694 		if (itp->it_value.tv_usec < 0) {
    695 			itp->it_value.tv_usec += 1000000;
    696 			itp->it_value.tv_sec--;
    697 		}
    698 	} else
    699 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    700 	return (0);
    701 }
    702 
    703 /*
    704  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
    705  * for usage and rationale.
    706  */
    707 int
    708 ratecheck(lasttime, mininterval)
    709 	struct timeval *lasttime;
    710 	const struct timeval *mininterval;
    711 {
    712 	struct timeval tv, delta;
    713 	int s, rv = 0;
    714 
    715 	s = splclock();
    716 	tv = mono_time;
    717 	splx(s);
    718 
    719 	timersub(&tv, lasttime, &delta);
    720 
    721 	/*
    722 	 * check for 0,0 is so that the message will be seen at least once,
    723 	 * even if interval is huge.
    724 	 */
    725 	if (timercmp(&delta, mininterval, >=) ||
    726 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
    727 		*lasttime = tv;
    728 		rv = 1;
    729 	}
    730 
    731 	return (rv);
    732 }
    733 
    734 /*
    735  * ppsratecheck(): packets (or events) per second limitation.
    736  */
    737 int
    738 ppsratecheck(lasttime, curpps, maxpps)
    739 	struct timeval *lasttime;
    740 	int *curpps;
    741 	int maxpps;	/* maximum pps allowed */
    742 {
    743 	struct timeval tv, delta;
    744 	int s, rv;
    745 
    746 	s = splclock();
    747 	tv = mono_time;
    748 	splx(s);
    749 
    750 	timersub(&tv, lasttime, &delta);
    751 
    752 	/*
    753 	 * check for 0,0 is so that the message will be seen at least once.
    754 	 * if more than one second have passed since the last update of
    755 	 * lasttime, reset the counter.
    756 	 *
    757 	 * we do increment *curpps even in *curpps < maxpps case, as some may
    758 	 * try to use *curpps for stat purposes as well.
    759 	 */
    760 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
    761 	    delta.tv_sec >= 1) {
    762 		*lasttime = tv;
    763 		*curpps = 0;
    764 		rv = 1;
    765 	} else if (maxpps < 0)
    766 		rv = 1;
    767 	else if (*curpps < maxpps)
    768 		rv = 1;
    769 	else
    770 		rv = 0;
    771 
    772 #if 1 /*DIAGNOSTIC?*/
    773 	/* be careful about wrap-around */
    774 	if (*curpps + 1 > *curpps)
    775 		*curpps = *curpps + 1;
    776 #else
    777 	/*
    778 	 * assume that there's not too many calls to this function.
    779 	 * not sure if the assumption holds, as it depends on *caller's*
    780 	 * behavior, not the behavior of this function.
    781 	 * IMHO it is wrong to make assumption on the caller's behavior,
    782 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
    783 	 */
    784 	*curpps = *curpps + 1;
    785 #endif
    786 
    787 	return (rv);
    788 }
    789