kern_time.c revision 1.54.2.4 1 /* $NetBSD: kern_time.c,v 1.54.2.4 2001/11/14 19:16:39 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.54.2.4 2001/11/14 19:16:39 nathanw Exp $");
76
77 #include "fs_nfs.h"
78 #include "opt_nfs.h"
79 #include "opt_nfsserver.h"
80
81 #include <sys/param.h>
82 #include <sys/resourcevar.h>
83 #include <sys/kernel.h>
84 #include <sys/systm.h>
85 #include <sys/lwp.h>
86 #include <sys/proc.h>
87 #include <sys/vnode.h>
88 #include <sys/signalvar.h>
89 #include <sys/syslog.h>
90
91 #include <sys/mount.h>
92 #include <sys/syscallargs.h>
93
94 #include <uvm/uvm_extern.h>
95
96 #if defined(NFS) || defined(NFSSERVER)
97 #include <nfs/rpcv2.h>
98 #include <nfs/nfsproto.h>
99 #include <nfs/nfs_var.h>
100 #endif
101
102 #include <machine/cpu.h>
103
104 /*
105 * Time of day and interval timer support.
106 *
107 * These routines provide the kernel entry points to get and set
108 * the time-of-day and per-process interval timers. Subroutines
109 * here provide support for adding and subtracting timeval structures
110 * and decrementing interval timers, optionally reloading the interval
111 * timers when they expire.
112 */
113
114 /* This function is used by clock_settime and settimeofday */
115 int
116 settime(tv)
117 struct timeval *tv;
118 {
119 struct timeval delta;
120 struct cpu_info *ci;
121 int s;
122
123 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
124 s = splclock();
125 timersub(tv, &time, &delta);
126 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
127 splx(s);
128 return (EPERM);
129 }
130 #ifdef notyet
131 if ((delta.tv_sec < 86400) && securelevel > 0) {
132 splx(s);
133 return (EPERM);
134 }
135 #endif
136 time = *tv;
137 (void) spllowersoftclock();
138 timeradd(&boottime, &delta, &boottime);
139 /*
140 * XXXSMP
141 * This is wrong. We should traverse a list of all
142 * CPUs and add the delta to the runtime of those
143 * CPUs which have a process on them.
144 */
145 ci = curcpu();
146 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
147 &ci->ci_schedstate.spc_runtime);
148 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
149 nqnfs_lease_updatetime(delta.tv_sec);
150 # endif
151 splx(s);
152 resettodr();
153 return (0);
154 }
155
156 /* ARGSUSED */
157 int
158 sys_clock_gettime(l, v, retval)
159 struct lwp *l;
160 void *v;
161 register_t *retval;
162 {
163 struct sys_clock_gettime_args /* {
164 syscallarg(clockid_t) clock_id;
165 syscallarg(struct timespec *) tp;
166 } */ *uap = v;
167 clockid_t clock_id;
168 struct timeval atv;
169 struct timespec ats;
170
171 clock_id = SCARG(uap, clock_id);
172 if (clock_id != CLOCK_REALTIME)
173 return (EINVAL);
174
175 microtime(&atv);
176 TIMEVAL_TO_TIMESPEC(&atv,&ats);
177
178 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
179 }
180
181 /* ARGSUSED */
182 int
183 sys_clock_settime(l, v, retval)
184 struct lwp *l;
185 void *v;
186 register_t *retval;
187 {
188 struct sys_clock_settime_args /* {
189 syscallarg(clockid_t) clock_id;
190 syscallarg(const struct timespec *) tp;
191 } */ *uap = v;
192 struct proc *p = l->l_proc;
193 clockid_t clock_id;
194 struct timespec ats;
195 int error;
196
197 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
198 return (error);
199
200 clock_id = SCARG(uap, clock_id);
201
202 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
203 return (error);
204
205 return (clock_settime1(clock_id, &ats));
206 }
207
208
209 int
210 clock_settime1(clock_id, ats)
211 clockid_t clock_id;
212 struct timespec *ats;
213 {
214 struct timeval atv;
215 int error;
216
217 if (clock_id != CLOCK_REALTIME)
218 return (EINVAL);
219
220 TIMESPEC_TO_TIMEVAL(&atv, ats);
221 if ((error = settime(&atv)) != 0)
222 return (error);
223
224 return 0;
225 }
226
227 int
228 sys_clock_getres(l, v, retval)
229 struct lwp *l;
230 void *v;
231 register_t *retval;
232 {
233 struct sys_clock_getres_args /* {
234 syscallarg(clockid_t) clock_id;
235 syscallarg(struct timespec *) tp;
236 } */ *uap = v;
237 clockid_t clock_id;
238 struct timespec ts;
239 int error = 0;
240
241 clock_id = SCARG(uap, clock_id);
242 if (clock_id != CLOCK_REALTIME)
243 return (EINVAL);
244
245 if (SCARG(uap, tp)) {
246 ts.tv_sec = 0;
247 ts.tv_nsec = 1000000000 / hz;
248
249 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
250 }
251
252 return error;
253 }
254
255 /* ARGSUSED */
256 int
257 sys_nanosleep(l, v, retval)
258 struct lwp *l;
259 void *v;
260 register_t *retval;
261 {
262 static int nanowait;
263 struct sys_nanosleep_args/* {
264 syscallarg(struct timespec *) rqtp;
265 syscallarg(struct timespec *) rmtp;
266 } */ *uap = v;
267 struct timespec rqt;
268 struct timespec rmt;
269 struct timeval atv, utv;
270 int error, s, timo;
271
272 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
273 sizeof(struct timespec));
274 if (error)
275 return (error);
276
277 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
278 if (itimerfix(&atv) || atv.tv_sec > 1000000000)
279 return (EINVAL);
280
281 s = splclock();
282 timeradd(&atv,&time,&atv);
283 timo = hzto(&atv);
284 /*
285 * Avoid inadvertantly sleeping forever
286 */
287 if (timo == 0)
288 timo = 1;
289 splx(s);
290
291 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
292 if (error == ERESTART)
293 error = EINTR;
294 if (error == EWOULDBLOCK)
295 error = 0;
296
297 if (SCARG(uap, rmtp)) {
298 int error;
299
300 s = splclock();
301 utv = time;
302 splx(s);
303
304 timersub(&atv, &utv, &utv);
305 if (utv.tv_sec < 0)
306 timerclear(&utv);
307
308 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
309 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
310 sizeof(rmt));
311 if (error)
312 return (error);
313 }
314
315 return error;
316 }
317
318 /* ARGSUSED */
319 int
320 sys_gettimeofday(l, v, retval)
321 struct lwp *l;
322 void *v;
323 register_t *retval;
324 {
325 struct sys_gettimeofday_args /* {
326 syscallarg(struct timeval *) tp;
327 syscallarg(struct timezone *) tzp;
328 } */ *uap = v;
329 struct timeval atv;
330 int error = 0;
331 struct timezone tzfake;
332
333 if (SCARG(uap, tp)) {
334 microtime(&atv);
335 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
336 if (error)
337 return (error);
338 }
339 if (SCARG(uap, tzp)) {
340 /*
341 * NetBSD has no kernel notion of time zone, so we just
342 * fake up a timezone struct and return it if demanded.
343 */
344 tzfake.tz_minuteswest = 0;
345 tzfake.tz_dsttime = 0;
346 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
347 }
348 return (error);
349 }
350
351 /* ARGSUSED */
352 int
353 sys_settimeofday(l, v, retval)
354 struct lwp *l;
355 void *v;
356 register_t *retval;
357 {
358 struct sys_settimeofday_args /* {
359 syscallarg(const struct timeval *) tv;
360 syscallarg(const struct timezone *) tzp;
361 } */ *uap = v;
362 struct proc *p = l->l_proc;
363 struct timeval atv;
364 struct timezone atz;
365 struct timeval *tv = NULL;
366 struct timezone *tzp = NULL;
367 int error;
368
369 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
370 return (error);
371
372 /* Verify all parameters before changing time. */
373 if (SCARG(uap, tv)) {
374 if ((error = copyin(SCARG(uap, tv), &atv, sizeof(atv))) != 0)
375 return (error);
376 tv = &atv;
377 }
378 /* XXX since we don't use tz, probably no point in doing copyin. */
379 if (SCARG(uap, tzp)) {
380 if ((error = copyin(SCARG(uap, tzp), &atz, sizeof(atz))) != 0)
381 return (error);
382 tzp = &atz;
383 }
384
385 return settimeofday1(tv, tzp, p);
386 }
387
388 int
389 settimeofday1(tv, tzp, p)
390 struct timeval *tv;
391 struct timezone *tzp;
392 struct proc *p;
393 {
394 int error;
395
396 if (tv)
397 if ((error = settime(tv)) != 0)
398 return (error);
399 /*
400 * NetBSD has no kernel notion of time zone, and only an
401 * obsolete program would try to set it, so we log a warning.
402 */
403 if (tzp)
404 log(LOG_WARNING, "pid %d attempted to set the "
405 "(obsolete) kernel time zone\n", p->p_pid);
406 return (0);
407 }
408
409 int tickdelta; /* current clock skew, us. per tick */
410 long timedelta; /* unapplied time correction, us. */
411 long bigadj = 1000000; /* use 10x skew above bigadj us. */
412
413 /* ARGSUSED */
414 int
415 sys_adjtime(l, v, retval)
416 struct lwp *l;
417 void *v;
418 register_t *retval;
419 {
420 struct sys_adjtime_args /* {
421 syscallarg(const struct timeval *) delta;
422 syscallarg(struct timeval *) olddelta;
423 } */ *uap = v;
424 struct proc *p = l->l_proc;
425 struct timeval atv;
426 struct timeval *oatv = NULL;
427 int error;
428
429 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
430 return (error);
431
432 error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
433 if (error)
434 return (error);
435
436 if (SCARG(uap, olddelta) != NULL) {
437 if (uvm_useracc((caddr_t)SCARG(uap, olddelta),
438 sizeof(struct timeval), B_WRITE) == FALSE)
439 return (EFAULT);
440 oatv = SCARG(uap, olddelta);
441 }
442
443 return adjtime1(&atv, oatv, p);
444 }
445
446 int
447 adjtime1(delta, olddelta, p)
448 struct timeval *delta;
449 struct timeval *olddelta;
450 struct proc *p;
451 {
452 long ndelta, ntickdelta, odelta;
453 int s;
454
455 /*
456 * Compute the total correction and the rate at which to apply it.
457 * Round the adjustment down to a whole multiple of the per-tick
458 * delta, so that after some number of incremental changes in
459 * hardclock(), tickdelta will become zero, lest the correction
460 * overshoot and start taking us away from the desired final time.
461 */
462 ndelta = delta->tv_sec * 1000000 + delta->tv_usec;
463 if (ndelta > bigadj || ndelta < -bigadj)
464 ntickdelta = 10 * tickadj;
465 else
466 ntickdelta = tickadj;
467 if (ndelta % ntickdelta)
468 ndelta = ndelta / ntickdelta * ntickdelta;
469
470 /*
471 * To make hardclock()'s job easier, make the per-tick delta negative
472 * if we want time to run slower; then hardclock can simply compute
473 * tick + tickdelta, and subtract tickdelta from timedelta.
474 */
475 if (ndelta < 0)
476 ntickdelta = -ntickdelta;
477 s = splclock();
478 odelta = timedelta;
479 timedelta = ndelta;
480 tickdelta = ntickdelta;
481 splx(s);
482
483 if (olddelta) {
484 delta->tv_sec = odelta / 1000000;
485 delta->tv_usec = odelta % 1000000;
486 (void) copyout(delta, olddelta, sizeof(struct timeval));
487 }
488 return (0);
489 }
490
491 /*
492 * Get value of an interval timer. The process virtual and
493 * profiling virtual time timers are kept in the p_stats area, since
494 * they can be swapped out. These are kept internally in the
495 * way they are specified externally: in time until they expire.
496 *
497 * The real time interval timer is kept in the process table slot
498 * for the process, and its value (it_value) is kept as an
499 * absolute time rather than as a delta, so that it is easy to keep
500 * periodic real-time signals from drifting.
501 *
502 * Virtual time timers are processed in the hardclock() routine of
503 * kern_clock.c. The real time timer is processed by a timeout
504 * routine, called from the softclock() routine. Since a callout
505 * may be delayed in real time due to interrupt processing in the system,
506 * it is possible for the real time timeout routine (realitexpire, given below),
507 * to be delayed in real time past when it is supposed to occur. It
508 * does not suffice, therefore, to reload the real timer .it_value from the
509 * real time timers .it_interval. Rather, we compute the next time in
510 * absolute time the timer should go off.
511 */
512 /* ARGSUSED */
513 int
514 sys_getitimer(l, v, retval)
515 struct lwp *l;
516 void *v;
517 register_t *retval;
518 {
519 struct sys_getitimer_args /* {
520 syscallarg(int) which;
521 syscallarg(struct itimerval *) itv;
522 } */ *uap = v;
523 struct proc *p = l->l_proc;
524 int which = SCARG(uap, which);
525 struct itimerval aitv;
526 int s;
527
528 if ((u_int)which > ITIMER_PROF)
529 return (EINVAL);
530 s = splclock();
531 if (which == ITIMER_REAL) {
532 /*
533 * Convert from absolute to relative time in .it_value
534 * part of real time timer. If time for real time timer
535 * has passed return 0, else return difference between
536 * current time and time for the timer to go off.
537 */
538 aitv = p->p_realtimer;
539 if (timerisset(&aitv.it_value)) {
540 if (timercmp(&aitv.it_value, &time, <))
541 timerclear(&aitv.it_value);
542 else
543 timersub(&aitv.it_value, &time, &aitv.it_value);
544 }
545 } else
546 aitv = p->p_stats->p_timer[which];
547 splx(s);
548 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
549 }
550
551 /* ARGSUSED */
552 int
553 sys_setitimer(l, v, retval)
554 struct lwp *l;
555 void *v;
556 register_t *retval;
557 {
558 struct sys_setitimer_args /* {
559 syscallarg(int) which;
560 syscallarg(const struct itimerval *) itv;
561 syscallarg(struct itimerval *) oitv;
562 } */ *uap = v;
563 struct proc *p = l->l_proc;
564 int which = SCARG(uap, which);
565 struct sys_getitimer_args getargs;
566 struct itimerval aitv;
567 const struct itimerval *itvp;
568 int s, error;
569
570 if ((u_int)which > ITIMER_PROF)
571 return (EINVAL);
572 itvp = SCARG(uap, itv);
573 if (itvp &&
574 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
575 return (error);
576 if (SCARG(uap, oitv) != NULL) {
577 SCARG(&getargs, which) = which;
578 SCARG(&getargs, itv) = SCARG(uap, oitv);
579 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
580 return (error);
581 }
582 if (itvp == 0)
583 return (0);
584 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
585 return (EINVAL);
586 s = splclock();
587 if (which == ITIMER_REAL) {
588 callout_stop(&p->p_realit_ch);
589 if (timerisset(&aitv.it_value)) {
590 /*
591 * Don't need to check hzto() return value, here.
592 * callout_reset() does it for us.
593 */
594 timeradd(&aitv.it_value, &time, &aitv.it_value);
595 callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
596 realitexpire, p);
597 }
598 p->p_realtimer = aitv;
599 } else
600 p->p_stats->p_timer[which] = aitv;
601 splx(s);
602 return (0);
603 }
604
605 /*
606 * Real interval timer expired:
607 * send process whose timer expired an alarm signal.
608 * If time is not set up to reload, then just return.
609 * Else compute next time timer should go off which is > current time.
610 * This is where delay in processing this timeout causes multiple
611 * SIGALRM calls to be compressed into one.
612 */
613 void
614 realitexpire(arg)
615 void *arg;
616 {
617 struct proc *p;
618 int s;
619
620 p = (struct proc *)arg;
621 psignal(p, SIGALRM);
622 if (!timerisset(&p->p_realtimer.it_interval)) {
623 timerclear(&p->p_realtimer.it_value);
624 return;
625 }
626 for (;;) {
627 s = splclock();
628 timeradd(&p->p_realtimer.it_value,
629 &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
630 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
631 /*
632 * Don't need to check hzto() return value, here.
633 * callout_reset() does it for us.
634 */
635 callout_reset(&p->p_realit_ch,
636 hzto(&p->p_realtimer.it_value), realitexpire, p);
637 splx(s);
638 return;
639 }
640 splx(s);
641 }
642 }
643
644 /*
645 * Check that a proposed value to load into the .it_value or
646 * .it_interval part of an interval timer is acceptable, and
647 * fix it to have at least minimal value (i.e. if it is less
648 * than the resolution of the clock, round it up.)
649 */
650 int
651 itimerfix(tv)
652 struct timeval *tv;
653 {
654
655 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
656 return (EINVAL);
657 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
658 tv->tv_usec = tick;
659 return (0);
660 }
661
662 /*
663 * Decrement an interval timer by a specified number
664 * of microseconds, which must be less than a second,
665 * i.e. < 1000000. If the timer expires, then reload
666 * it. In this case, carry over (usec - old value) to
667 * reduce the value reloaded into the timer so that
668 * the timer does not drift. This routine assumes
669 * that it is called in a context where the timers
670 * on which it is operating cannot change in value.
671 */
672 int
673 itimerdecr(itp, usec)
674 struct itimerval *itp;
675 int usec;
676 {
677
678 if (itp->it_value.tv_usec < usec) {
679 if (itp->it_value.tv_sec == 0) {
680 /* expired, and already in next interval */
681 usec -= itp->it_value.tv_usec;
682 goto expire;
683 }
684 itp->it_value.tv_usec += 1000000;
685 itp->it_value.tv_sec--;
686 }
687 itp->it_value.tv_usec -= usec;
688 usec = 0;
689 if (timerisset(&itp->it_value))
690 return (1);
691 /* expired, exactly at end of interval */
692 expire:
693 if (timerisset(&itp->it_interval)) {
694 itp->it_value = itp->it_interval;
695 itp->it_value.tv_usec -= usec;
696 if (itp->it_value.tv_usec < 0) {
697 itp->it_value.tv_usec += 1000000;
698 itp->it_value.tv_sec--;
699 }
700 } else
701 itp->it_value.tv_usec = 0; /* sec is already 0 */
702 return (0);
703 }
704
705 /*
706 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
707 * for usage and rationale.
708 */
709 int
710 ratecheck(lasttime, mininterval)
711 struct timeval *lasttime;
712 const struct timeval *mininterval;
713 {
714 struct timeval tv, delta;
715 int s, rv = 0;
716
717 s = splclock();
718 tv = mono_time;
719 splx(s);
720
721 timersub(&tv, lasttime, &delta);
722
723 /*
724 * check for 0,0 is so that the message will be seen at least once,
725 * even if interval is huge.
726 */
727 if (timercmp(&delta, mininterval, >=) ||
728 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
729 *lasttime = tv;
730 rv = 1;
731 }
732
733 return (rv);
734 }
735
736 /*
737 * ppsratecheck(): packets (or events) per second limitation.
738 */
739 int
740 ppsratecheck(lasttime, curpps, maxpps)
741 struct timeval *lasttime;
742 int *curpps;
743 int maxpps; /* maximum pps allowed */
744 {
745 struct timeval tv, delta;
746 int s, rv;
747
748 s = splclock();
749 tv = mono_time;
750 splx(s);
751
752 timersub(&tv, lasttime, &delta);
753
754 /*
755 * check for 0,0 is so that the message will be seen at least once.
756 * if more than one second have passed since the last update of
757 * lasttime, reset the counter.
758 *
759 * we do increment *curpps even in *curpps < maxpps case, as some may
760 * try to use *curpps for stat purposes as well.
761 */
762 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
763 delta.tv_sec >= 1) {
764 *lasttime = tv;
765 *curpps = 0;
766 rv = 1;
767 } else if (maxpps < 0)
768 rv = 1;
769 else if (*curpps < maxpps)
770 rv = 1;
771 else
772 rv = 0;
773
774 #if 1 /*DIAGNOSTIC?*/
775 /* be careful about wrap-around */
776 if (*curpps + 1 > *curpps)
777 *curpps = *curpps + 1;
778 #else
779 /*
780 * assume that there's not too many calls to this function.
781 * not sure if the assumption holds, as it depends on *caller's*
782 * behavior, not the behavior of this function.
783 * IMHO it is wrong to make assumption on the caller's behavior,
784 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
785 */
786 *curpps = *curpps + 1;
787 #endif
788
789 return (rv);
790 }
791