kern_time.c revision 1.54.2.6 1 /* $NetBSD: kern_time.c,v 1.54.2.6 2002/01/08 00:32:35 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.54.2.6 2002/01/08 00:32:35 nathanw Exp $");
76
77 #include "fs_nfs.h"
78 #include "opt_nfs.h"
79 #include "opt_nfsserver.h"
80
81 #include <sys/param.h>
82 #include <sys/resourcevar.h>
83 #include <sys/kernel.h>
84 #include <sys/systm.h>
85 #include <sys/lwp.h>
86 #include <sys/malloc.h>
87 #include <sys/proc.h>
88 #include <sys/sa.h>
89 #include <sys/savar.h>
90 #include <sys/vnode.h>
91 #include <sys/signalvar.h>
92 #include <sys/syslog.h>
93
94 #include <sys/mount.h>
95 #include <sys/syscallargs.h>
96
97 #include <uvm/uvm_extern.h>
98
99 #if defined(NFS) || defined(NFSSERVER)
100 #include <nfs/rpcv2.h>
101 #include <nfs/nfsproto.h>
102 #include <nfs/nfs_var.h>
103 #endif
104
105 #include <machine/cpu.h>
106
107 static void realtimerupcall(struct lwp *, void *);
108
109
110 /* Time of day and interval timer support.
111 *
112 * These routines provide the kernel entry points to get and set
113 * the time-of-day and per-process interval timers. Subroutines
114 * here provide support for adding and subtracting timeval structures
115 * and decrementing interval timers, optionally reloading the interval
116 * timers when they expire.
117 */
118
119 /* This function is used by clock_settime and settimeofday */
120 int
121 settime(struct timeval *tv)
122 {
123 struct timeval delta;
124 struct cpu_info *ci;
125 int s;
126
127 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
128 s = splclock();
129 timersub(tv, &time, &delta);
130 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
131 splx(s);
132 return (EPERM);
133 }
134 #ifdef notyet
135 if ((delta.tv_sec < 86400) && securelevel > 0) {
136 splx(s);
137 return (EPERM);
138 }
139 #endif
140 time = *tv;
141 (void) spllowersoftclock();
142 timeradd(&boottime, &delta, &boottime);
143 /*
144 * XXXSMP
145 * This is wrong. We should traverse a list of all
146 * CPUs and add the delta to the runtime of those
147 * CPUs which have a process on them.
148 */
149 ci = curcpu();
150 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
151 &ci->ci_schedstate.spc_runtime);
152 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
153 nqnfs_lease_updatetime(delta.tv_sec);
154 # endif
155 splx(s);
156 resettodr();
157 return (0);
158 }
159
160 /* ARGSUSED */
161 int
162 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
163 {
164 struct sys_clock_gettime_args /* {
165 syscallarg(clockid_t) clock_id;
166 syscallarg(struct timespec *) tp;
167 } */ *uap = v;
168 clockid_t clock_id;
169 struct timeval atv;
170 struct timespec ats;
171
172 clock_id = SCARG(uap, clock_id);
173 if (clock_id != CLOCK_REALTIME)
174 return (EINVAL);
175
176 microtime(&atv);
177 TIMEVAL_TO_TIMESPEC(&atv,&ats);
178
179 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
180 }
181
182 /* ARGSUSED */
183 int
184 sys_clock_settime(l, v, retval)
185 struct lwp *l;
186 void *v;
187 register_t *retval;
188 {
189 struct sys_clock_settime_args /* {
190 syscallarg(clockid_t) clock_id;
191 syscallarg(const struct timespec *) tp;
192 } */ *uap = v;
193 struct proc *p = l->l_proc;
194 int error;
195
196 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
197 return (error);
198
199 return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
200 }
201
202
203 int
204 clock_settime1(clock_id, tp)
205 clockid_t clock_id;
206 const struct timespec *tp;
207 {
208 struct timespec ats;
209 struct timeval atv;
210 int error;
211
212 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
213 return (error);
214
215 if (clock_id != CLOCK_REALTIME)
216 return (EINVAL);
217
218 TIMESPEC_TO_TIMEVAL(&atv, &ats);
219 if ((error = settime(&atv)) != 0)
220 return (error);
221
222 return 0;
223 }
224
225 int
226 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
227 {
228 struct sys_clock_getres_args /* {
229 syscallarg(clockid_t) clock_id;
230 syscallarg(struct timespec *) tp;
231 } */ *uap = v;
232 clockid_t clock_id;
233 struct timespec ts;
234 int error = 0;
235
236 clock_id = SCARG(uap, clock_id);
237 if (clock_id != CLOCK_REALTIME)
238 return (EINVAL);
239
240 if (SCARG(uap, tp)) {
241 ts.tv_sec = 0;
242 ts.tv_nsec = 1000000000 / hz;
243
244 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
245 }
246
247 return error;
248 }
249
250 /* ARGSUSED */
251 int
252 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
253 {
254 static int nanowait;
255 struct sys_nanosleep_args/* {
256 syscallarg(struct timespec *) rqtp;
257 syscallarg(struct timespec *) rmtp;
258 } */ *uap = v;
259 struct timespec rqt;
260 struct timespec rmt;
261 struct timeval atv, utv;
262 int error, s, timo;
263
264 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
265 sizeof(struct timespec));
266 if (error)
267 return (error);
268
269 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
270 if (itimerfix(&atv) || atv.tv_sec > 1000000000)
271 return (EINVAL);
272
273 s = splclock();
274 timeradd(&atv,&time,&atv);
275 timo = hzto(&atv);
276 /*
277 * Avoid inadvertantly sleeping forever
278 */
279 if (timo == 0)
280 timo = 1;
281 splx(s);
282
283 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
284 if (error == ERESTART)
285 error = EINTR;
286 if (error == EWOULDBLOCK)
287 error = 0;
288
289 if (SCARG(uap, rmtp)) {
290 int error;
291
292 s = splclock();
293 utv = time;
294 splx(s);
295
296 timersub(&atv, &utv, &utv);
297 if (utv.tv_sec < 0)
298 timerclear(&utv);
299
300 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
301 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
302 sizeof(rmt));
303 if (error)
304 return (error);
305 }
306
307 return error;
308 }
309
310 /* ARGSUSED */
311 int
312 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
313 {
314 struct sys_gettimeofday_args /* {
315 syscallarg(struct timeval *) tp;
316 syscallarg(struct timezone *) tzp;
317 } */ *uap = v;
318 struct timeval atv;
319 int error = 0;
320 struct timezone tzfake;
321
322 if (SCARG(uap, tp)) {
323 microtime(&atv);
324 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
325 if (error)
326 return (error);
327 }
328 if (SCARG(uap, tzp)) {
329 /*
330 * NetBSD has no kernel notion of time zone, so we just
331 * fake up a timezone struct and return it if demanded.
332 */
333 tzfake.tz_minuteswest = 0;
334 tzfake.tz_dsttime = 0;
335 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
336 }
337 return (error);
338 }
339
340 /* ARGSUSED */
341 int
342 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
343 {
344 struct sys_settimeofday_args /* {
345 syscallarg(const struct timeval *) tv;
346 syscallarg(const struct timezone *) tzp;
347 } */ *uap = v;
348 struct proc *p = l->l_proc;
349 int error;
350
351 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
352 return (error);
353
354 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
355 }
356
357 int
358 settimeofday1(utv, utzp, p)
359 const struct timeval *utv;
360 const struct timezone *utzp;
361 struct proc *p;
362 {
363 struct timeval atv;
364 struct timezone atz;
365 struct timeval *tv = NULL;
366 struct timezone *tzp = NULL;
367 int error;
368
369 /* Verify all parameters before changing time. */
370 if (utv) {
371 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
372 return (error);
373 tv = &atv;
374 }
375 /* XXX since we don't use tz, probably no point in doing copyin. */
376 if (utzp) {
377 if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
378 return (error);
379 tzp = &atz;
380 }
381
382 if (tv)
383 if ((error = settime(tv)) != 0)
384 return (error);
385 /*
386 * NetBSD has no kernel notion of time zone, and only an
387 * obsolete program would try to set it, so we log a warning.
388 */
389 if (tzp)
390 log(LOG_WARNING, "pid %d attempted to set the "
391 "(obsolete) kernel time zone\n", p->p_pid);
392 return (0);
393 }
394
395 int tickdelta; /* current clock skew, us. per tick */
396 long timedelta; /* unapplied time correction, us. */
397 long bigadj = 1000000; /* use 10x skew above bigadj us. */
398
399 /* ARGSUSED */
400 int
401 sys_adjtime(struct lwp *l, void *v, register_t *retval)
402 {
403 struct sys_adjtime_args /* {
404 syscallarg(const struct timeval *) delta;
405 syscallarg(struct timeval *) olddelta;
406 } */ *uap = v;
407 struct proc *p = l->l_proc;
408 int error;
409
410 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
411 return (error);
412
413 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
414 }
415
416 int
417 adjtime1(delta, olddelta, p)
418 const struct timeval *delta;
419 struct timeval *olddelta;
420 struct proc *p;
421 {
422 struct timeval atv;
423 struct timeval *oatv = NULL;
424 long ndelta, ntickdelta, odelta;
425 int error;
426 int s;
427
428 error = copyin(delta, &atv, sizeof(struct timeval));
429 if (error)
430 return (error);
431
432 if (olddelta != NULL) {
433 if (uvm_useracc((caddr_t)olddelta,
434 sizeof(struct timeval), B_WRITE) == FALSE)
435 return (EFAULT);
436 oatv = olddelta;
437 }
438
439 /*
440 * Compute the total correction and the rate at which to apply it.
441 * Round the adjustment down to a whole multiple of the per-tick
442 * delta, so that after some number of incremental changes in
443 * hardclock(), tickdelta will become zero, lest the correction
444 * overshoot and start taking us away from the desired final time.
445 */
446 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
447 if (ndelta > bigadj || ndelta < -bigadj)
448 ntickdelta = 10 * tickadj;
449 else
450 ntickdelta = tickadj;
451 if (ndelta % ntickdelta)
452 ndelta = ndelta / ntickdelta * ntickdelta;
453
454 /*
455 * To make hardclock()'s job easier, make the per-tick delta negative
456 * if we want time to run slower; then hardclock can simply compute
457 * tick + tickdelta, and subtract tickdelta from timedelta.
458 */
459 if (ndelta < 0)
460 ntickdelta = -ntickdelta;
461 s = splclock();
462 odelta = timedelta;
463 timedelta = ndelta;
464 tickdelta = ntickdelta;
465 splx(s);
466
467 if (olddelta) {
468 atv.tv_sec = odelta / 1000000;
469 atv.tv_usec = odelta % 1000000;
470 (void) copyout(&atv, olddelta, sizeof(struct timeval));
471 }
472 return (0);
473 }
474
475 /*
476 * Interval timer support. Both the BSD getitimer() family and the POSIX
477 * timer_*() family of routines are supported.
478 *
479 * All timers are kept in an array pointed to by p_timers, which is
480 * allocated on demand - many processes don't use timers at all. The
481 * first three elements in this array are reserved for the BSD timers:
482 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
483 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
484 * syscall.
485 *
486 * Realtime timers are kept in the ptimer structure as an absolute
487 * time; virtual time timers are kept as deltas. Virtual time timers
488 * are processed in the hardclock() routine of kern_clock.c. The real
489 * time timer is processed by a callout routine, called from the
490 * softclock() routine. Since a callout may be delayed in real time
491 * due to interrupt processing in the system, it is possible for the
492 * real time timeout routine (realtimeexpire, given below), to be
493 * delayed in real time past when it is supposed to occur. It does
494 * not suffice, therefore, to reload the real timer .it_value from the
495 * real time timers .it_interval. Rather, we compute the next time in
496 * absolute time the timer should go off.
497 */
498
499 /* Allocate a POSIX realtime timer. */
500 int
501 sys_timer_create(struct lwp *l, void *v, register_t *retval)
502 {
503 struct sys_timer_create_args /* {
504 syscallarg(clockid_t) clock_id;
505 syscallarg(struct sigevent *) evp;
506 syscallarg(timer_t *) timerid;
507 } */ *uap = v;
508 struct proc *p = l->l_proc;
509 clockid_t id;
510 struct sigevent *evp;
511 struct ptimer *pt;
512 int timerid, error;
513
514 id = SCARG(uap, clock_id);
515 if (id != CLOCK_REALTIME)
516 return (EINVAL);
517
518 if (p->p_timers == NULL)
519 timers_alloc(p);
520
521 for (timerid = 3; timerid < TIMER_MAX; timerid++)
522 if (p->p_timers[timerid] == NULL)
523 break;
524
525 if (timerid == TIMER_MAX)
526 return EAGAIN;
527
528 pt = pool_get(&ptimer_pool, PR_WAITOK);
529 evp = SCARG(uap, evp);
530 if (evp) {
531 if (((error =
532 copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
533 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
534 (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
535 ((pt->pt_ev.sigev_notify == SIGEV_SA) &&
536 !(p->p_flag & P_SA))) {
537 pool_put(&ptimer_pool, pt);
538 return (error ? error : EINVAL);
539 }
540 } else {
541 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
542 pt->pt_ev.sigev_signo = SIGALRM;
543 pt->pt_ev.sigev_value.sival_int = timerid;
544 }
545
546 callout_init(&pt->pt_ch);
547 pt->pt_type = CLOCK_REALTIME;
548 pt->pt_proc = p;
549 pt->pt_overruns = 0;
550
551 p->p_timers[timerid] = pt;
552
553 return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
554 }
555
556
557 /* Delete a POSIX realtime timer */
558 int
559 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
560 {
561 struct sys_timer_delete_args /* {
562 syscallarg(timer_t) timerid;
563 } */ *uap = v;
564 struct proc *p = l->l_proc;
565 int timerid;
566 struct ptimer *pt;
567
568 timerid = SCARG(uap, timerid);
569
570 if ((p->p_timers == NULL) ||
571 (timerid < 2) || (timerid >= TIMER_MAX) ||
572 ((pt = p->p_timers[timerid]) == NULL))
573 return (EINVAL);
574
575 callout_stop(&pt->pt_ch);
576 p->p_timers[timerid] = NULL;
577 pool_put(&ptimer_pool, pt);
578
579 return (0);
580 }
581
582 /* Set and arm a POSIX realtime timer */
583 int
584 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
585 {
586 struct sys_timer_settime_args /* {
587 syscallarg(timer_t) timerid;
588 syscallarg(int) flags;
589 syscallarg(const struct itimerspec *) value;
590 syscallarg(struct itimerspec *) ovalue;
591 } */ *uap = v;
592 struct proc *p = l->l_proc;
593 int error, s, timerid;
594 struct itimerval val, oval;
595 struct itimerspec value, ovalue;
596 struct ptimer *pt;
597
598 timerid = SCARG(uap, timerid);
599
600 if ((p->p_timers == NULL) ||
601 (timerid < 2) || (timerid >= TIMER_MAX) ||
602 ((pt = p->p_timers[timerid]) == NULL))
603 return (EINVAL);
604
605 if ((error = copyin(SCARG(uap, value), &value,
606 sizeof(struct itimerspec))) != 0)
607 return (error);
608
609 TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
610 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
611 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
612 return (EINVAL);
613
614 oval = pt->pt_time;
615 pt->pt_time = val;
616
617 s = splclock();
618 callout_stop(&pt->pt_ch);
619 if (timerisset(&pt->pt_time.it_value)) {
620 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
621 timeradd(&pt->pt_time.it_value, &time,
622 &pt->pt_time.it_value);
623 /*
624 * Don't need to check hzto() return value, here.
625 * callout_reset() does it for us.
626 */
627 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
628 realtimerexpire, pt);
629 }
630 splx(s);
631
632 if (SCARG(uap, ovalue)) {
633 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
634 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
635 return copyout(&ovalue, SCARG(uap, ovalue),
636 sizeof(struct itimerspec));
637 }
638
639 return (0);
640 }
641
642 /* Return the time remaining until a POSIX timer fires. */
643 int
644 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
645 {
646 struct sys_timer_gettime_args /* {
647 syscallarg(timer_t) timerid;
648 syscallarg(struct itimerspec *) value;
649 } */ *uap = v;
650 struct itimerval aitv;
651 struct itimerspec its;
652 struct proc *p = l->l_proc;
653 int timerid;
654 struct ptimer *pt;
655
656 timerid = SCARG(uap, timerid);
657
658 if ((p->p_timers == NULL) ||
659 (timerid < 2) || (timerid >= TIMER_MAX) ||
660 ((pt = p->p_timers[timerid]) == NULL))
661 return (EINVAL);
662
663 aitv = pt->pt_time;
664
665 /*
666 * Real-time timers are kept in absolute time, but this interface
667 * is supposed to return a relative time.
668 */
669 if (timerisset(&aitv.it_value)) {
670 if (timercmp(&aitv.it_value, &time, <))
671 timerclear(&aitv.it_value);
672 else
673 timersub(&aitv.it_value, &time, &aitv.it_value);
674 }
675
676 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
677 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
678
679 return copyout(&its, SCARG(uap, value), sizeof(its));
680 }
681
682 /*
683 * Return the count of the number of times a periodic timer expired
684 * while a notification was already pending. The counter is reset when
685 * a timer expires and a notification can be posted.
686 */
687 int
688 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
689 {
690 struct sys_timer_getoverrun_args /* {
691 syscallarg(timer_t) timerid;
692 } */ *uap = v;
693 struct proc *p = l->l_proc;
694 int timerid;
695 struct ptimer *pt;
696
697 timerid = SCARG(uap, timerid);
698
699 if ((p->p_timers == NULL) ||
700 (timerid < 2) || (timerid >= TIMER_MAX) ||
701 ((pt = p->p_timers[timerid]) == NULL))
702 return (EINVAL);
703
704 *retval = pt->pt_overruns;
705
706 return (0);
707 }
708
709 /* Glue function that triggers an upcall; called from userret(). */
710 static void
711 realtimerupcall(struct lwp *l, void *arg)
712 {
713 struct ptimer *pt;
714
715 pt = (struct ptimer *)arg;
716 sa_upcall(l, SA_UPCALL_SIGEV, NULL, l, sizeof(struct sigevent),
717 &pt->pt_ev);
718
719 /* The upcall should only be generated once. */
720 l->l_proc->p_userret = NULL;
721 }
722
723
724 /*
725 * Real interval timer expired:
726 * send process whose timer expired an alarm signal.
727 * If time is not set up to reload, then just return.
728 * Else compute next time timer should go off which is > current time.
729 * This is where delay in processing this timeout causes multiple
730 * SIGALRM calls to be compressed into one.
731 */
732 void
733 realtimerexpire(void *arg)
734 {
735 struct ptimer *pt;
736 struct proc *p;
737 int s;
738
739 pt = (struct ptimer *)arg;
740 p = pt->pt_proc;
741 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
742 /*
743 * No RT signal infrastructure exists at this time;
744 * just post the signal number and throw away the
745 * value.
746 */
747 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
748 pt->pt_overruns++;
749 else {
750 pt->pt_overruns = 0;
751 psignal(p, pt->pt_ev.sigev_signo);
752 }
753 } else if (pt->pt_ev.sigev_notify == SIGEV_SA) {
754 /* Cause the process to generate an upcall when it returns. */
755 if (p->p_userret == NULL) {
756 pt->pt_overruns = 0;
757 p->p_userret = realtimerupcall;
758 p->p_userret_arg = pt;
759 } else
760 pt->pt_overruns++;
761 }
762 if (!timerisset(&pt->pt_time.it_interval)) {
763 timerclear(&pt->pt_time.it_value);
764 return;
765 }
766 for (;;) {
767 s = splclock();
768 timeradd(&pt->pt_time.it_value,
769 &pt->pt_time.it_interval, &pt->pt_time.it_value);
770 if (timercmp(&pt->pt_time.it_value, &time, >)) {
771 /*
772 * Don't need to check hzto() return value, here.
773 * callout_reset() does it for us.
774 */
775 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
776 realtimerexpire, pt);
777 splx(s);
778 return;
779 }
780 splx(s);
781 pt->pt_overruns++;
782 }
783 }
784
785 /* BSD routine to get the value of an interval timer. */
786 /* ARGSUSED */
787 int
788 sys_getitimer(struct lwp *l, void *v, register_t *retval)
789 {
790 struct sys_getitimer_args /* {
791 syscallarg(int) which;
792 syscallarg(struct itimerval *) itv;
793 } */ *uap = v;
794 struct proc *p = l->l_proc;
795 struct itimerval aitv;
796 int s, which;
797
798 which = SCARG(uap, which);
799
800 if ((u_int)which > ITIMER_PROF)
801 return (EINVAL);
802
803 if ((p->p_timers == NULL) || (p->p_timers[which] == NULL)) {
804 timerclear(&aitv.it_value);
805 timerclear(&aitv.it_interval);
806 } else {
807 s = splclock();
808 if (which == ITIMER_REAL) {
809 /*
810 * Convert from absolute to relative time in
811 * .it_value part of real time timer. If time
812 * for real time timer has passed return 0,
813 * else return difference between current time
814 * and time for the timer to go off.
815 */
816 aitv = p->p_timers[ITIMER_REAL]->pt_time;
817 if (timerisset(&aitv.it_value)) {
818 if (timercmp(&aitv.it_value, &time, <))
819 timerclear(&aitv.it_value);
820 else
821 timersub(&aitv.it_value, &time, &aitv.it_value);
822 }
823 } else
824 aitv = p->p_timers[which]->pt_time;
825 splx(s);
826 }
827
828 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
829
830 }
831
832 /* BSD routine to set/arm an interval timer. */
833 /* ARGSUSED */
834 int
835 sys_setitimer(struct lwp *l, void *v, register_t *retval)
836 {
837 struct sys_setitimer_args /* {
838 syscallarg(int) which;
839 syscallarg(const struct itimerval *) itv;
840 syscallarg(struct itimerval *) oitv;
841 } */ *uap = v;
842 struct proc *p = l->l_proc;
843 int which = SCARG(uap, which);
844 struct sys_getitimer_args getargs;
845 struct itimerval aitv;
846 const struct itimerval *itvp;
847 struct ptimer *pt;
848 int s, error;
849
850 if ((u_int)which > ITIMER_PROF)
851 return (EINVAL);
852 itvp = SCARG(uap, itv);
853 if (itvp &&
854 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
855 return (error);
856 if (SCARG(uap, oitv) != NULL) {
857 SCARG(&getargs, which) = which;
858 SCARG(&getargs, itv) = SCARG(uap, oitv);
859 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
860 return (error);
861 }
862 if (itvp == 0)
863 return (0);
864 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
865 return (EINVAL);
866
867 /*
868 * Don't bother allocating data structures if the process just
869 * wants to clear the timer.
870 */
871 if (!timerisset(&aitv.it_value) &&
872 ((p->p_timers == NULL) || (p->p_timers[which] == NULL)))
873 return (0);
874
875 if (p->p_timers == NULL)
876 timers_alloc(p);
877 if (p->p_timers[which] == NULL) {
878 pt = pool_get(&ptimer_pool, PR_WAITOK);
879 callout_init(&pt->pt_ch);
880 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
881 pt->pt_overruns = 0;
882 pt->pt_proc = p;
883 pt->pt_type = which;
884 switch (which) {
885 case ITIMER_REAL:
886 pt->pt_ev.sigev_signo = SIGALRM;
887 break;
888 case ITIMER_VIRTUAL:
889 pt->pt_ev.sigev_signo = SIGVTALRM;
890 break;
891 case ITIMER_PROF:
892 pt->pt_ev.sigev_signo = SIGPROF;
893 break;
894 }
895 } else
896 pt = p->p_timers[which];
897
898 pt->pt_time = aitv;
899 p->p_timers[which] = pt;
900 if (which == ITIMER_REAL) {
901 s = splclock();
902 callout_stop(&pt->pt_ch);
903 if (timerisset(&pt->pt_time.it_value)) {
904 timeradd(&pt->pt_time.it_value, &time,
905 &pt->pt_time.it_value);
906 /*
907 * Don't need to check hzto() return value, here.
908 * callout_reset() does it for us.
909 */
910 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
911 realtimerexpire, pt);
912 }
913 splx(s);
914 }
915
916 return (0);
917 }
918
919 /* Utility routines to manage the array of pointers to timers. */
920 void
921 timers_alloc(struct proc *p)
922 {
923 int i;
924 struct ptimer **pts;
925
926 pts = malloc(TIMER_MAX * sizeof(struct timer *), M_SUBPROC, 0);
927 for (i = 0; i < TIMER_MAX; i++)
928 pts[i] = NULL;
929 p->p_timers = pts;
930 }
931
932 void
933 timers_free(struct proc *p)
934 {
935 int i;
936 struct ptimer *pt, **pts;
937
938 if (p->p_timers) {
939 pts = p->p_timers;
940 p->p_timers = NULL;
941 for (i = 0; i < TIMER_MAX; i++)
942 if ((pt = pts[i]) != NULL) {
943 if (pt->pt_type == CLOCK_REALTIME)
944 callout_stop(&pt->pt_ch);
945 pool_put(&ptimer_pool, pt);
946 }
947 free(pts, M_SUBPROC);
948 }
949 }
950
951 /*
952 * Check that a proposed value to load into the .it_value or
953 * .it_interval part of an interval timer is acceptable, and
954 * fix it to have at least minimal value (i.e. if it is less
955 * than the resolution of the clock, round it up.)
956 */
957 int
958 itimerfix(struct timeval *tv)
959 {
960
961 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
962 return (EINVAL);
963 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
964 tv->tv_usec = tick;
965 return (0);
966 }
967
968 /*
969 * Decrement an interval timer by a specified number
970 * of microseconds, which must be less than a second,
971 * i.e. < 1000000. If the timer expires, then reload
972 * it. In this case, carry over (usec - old value) to
973 * reduce the value reloaded into the timer so that
974 * the timer does not drift. This routine assumes
975 * that it is called in a context where the timers
976 * on which it is operating cannot change in value.
977 */
978 int
979 itimerdecr(struct itimerval *itp, int usec)
980 {
981
982 if (itp->it_value.tv_usec < usec) {
983 if (itp->it_value.tv_sec == 0) {
984 /* expired, and already in next interval */
985 usec -= itp->it_value.tv_usec;
986 goto expire;
987 }
988 itp->it_value.tv_usec += 1000000;
989 itp->it_value.tv_sec--;
990 }
991 itp->it_value.tv_usec -= usec;
992 usec = 0;
993 if (timerisset(&itp->it_value))
994 return (1);
995 /* expired, exactly at end of interval */
996 expire:
997 if (timerisset(&itp->it_interval)) {
998 itp->it_value = itp->it_interval;
999 itp->it_value.tv_usec -= usec;
1000 if (itp->it_value.tv_usec < 0) {
1001 itp->it_value.tv_usec += 1000000;
1002 itp->it_value.tv_sec--;
1003 }
1004 } else
1005 itp->it_value.tv_usec = 0; /* sec is already 0 */
1006 return (0);
1007 }
1008
1009 /*
1010 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1011 * for usage and rationale.
1012 */
1013 int
1014 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1015 {
1016 struct timeval tv, delta;
1017 int s, rv = 0;
1018
1019 s = splclock();
1020 tv = mono_time;
1021 splx(s);
1022
1023 timersub(&tv, lasttime, &delta);
1024
1025 /*
1026 * check for 0,0 is so that the message will be seen at least once,
1027 * even if interval is huge.
1028 */
1029 if (timercmp(&delta, mininterval, >=) ||
1030 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1031 *lasttime = tv;
1032 rv = 1;
1033 }
1034
1035 return (rv);
1036 }
1037
1038 /*
1039 * ppsratecheck(): packets (or events) per second limitation.
1040 */
1041 int
1042 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1043 {
1044 struct timeval tv, delta;
1045 int s, rv;
1046
1047 s = splclock();
1048 tv = mono_time;
1049 splx(s);
1050
1051 timersub(&tv, lasttime, &delta);
1052
1053 /*
1054 * check for 0,0 is so that the message will be seen at least once.
1055 * if more than one second have passed since the last update of
1056 * lasttime, reset the counter.
1057 *
1058 * we do increment *curpps even in *curpps < maxpps case, as some may
1059 * try to use *curpps for stat purposes as well.
1060 */
1061 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1062 delta.tv_sec >= 1) {
1063 *lasttime = tv;
1064 *curpps = 0;
1065 rv = 1;
1066 } else if (maxpps < 0)
1067 rv = 1;
1068 else if (*curpps < maxpps)
1069 rv = 1;
1070 else
1071 rv = 0;
1072
1073 #if 1 /*DIAGNOSTIC?*/
1074 /* be careful about wrap-around */
1075 if (*curpps + 1 > *curpps)
1076 *curpps = *curpps + 1;
1077 #else
1078 /*
1079 * assume that there's not too many calls to this function.
1080 * not sure if the assumption holds, as it depends on *caller's*
1081 * behavior, not the behavior of this function.
1082 * IMHO it is wrong to make assumption on the caller's behavior,
1083 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1084 */
1085 *curpps = *curpps + 1;
1086 #endif
1087
1088 return (rv);
1089 }
1090