Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.55
      1 /*	$NetBSD: kern_time.c,v 1.55 2001/06/11 07:07:12 tron Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the University of
     54  *	California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     72  */
     73 
     74 #include "fs_nfs.h"
     75 #include "opt_nfs.h"
     76 #include "opt_nfsserver.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/resourcevar.h>
     80 #include <sys/kernel.h>
     81 #include <sys/systm.h>
     82 #include <sys/proc.h>
     83 #include <sys/vnode.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/syslog.h>
     86 
     87 #include <sys/mount.h>
     88 #include <sys/syscallargs.h>
     89 
     90 #include <uvm/uvm_extern.h>
     91 
     92 #if defined(NFS) || defined(NFSSERVER)
     93 #include <nfs/rpcv2.h>
     94 #include <nfs/nfsproto.h>
     95 #include <nfs/nfs_var.h>
     96 #endif
     97 
     98 #include <machine/cpu.h>
     99 
    100 /*
    101  * Time of day and interval timer support.
    102  *
    103  * These routines provide the kernel entry points to get and set
    104  * the time-of-day and per-process interval timers.  Subroutines
    105  * here provide support for adding and subtracting timeval structures
    106  * and decrementing interval timers, optionally reloading the interval
    107  * timers when they expire.
    108  */
    109 
    110 /* This function is used by clock_settime and settimeofday */
    111 int
    112 settime(tv)
    113 	struct timeval *tv;
    114 {
    115 	struct timeval delta;
    116 	struct cpu_info *ci;
    117 	int s;
    118 
    119 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    120 	s = splclock();
    121 	timersub(tv, &time, &delta);
    122 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    123 		splx(s);
    124 		return (EPERM);
    125 	}
    126 #ifdef notyet
    127 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    128 		splx(s);
    129 		return (EPERM);
    130 	}
    131 #endif
    132 	time = *tv;
    133 	(void) spllowersoftclock();
    134 	timeradd(&boottime, &delta, &boottime);
    135 	/*
    136 	 * XXXSMP
    137 	 * This is wrong.  We should traverse a list of all
    138 	 * CPUs and add the delta to the runtime of those
    139 	 * CPUs which have a process on them.
    140 	 */
    141 	ci = curcpu();
    142 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    143 	    &ci->ci_schedstate.spc_runtime);
    144 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    145 		nqnfs_lease_updatetime(delta.tv_sec);
    146 #	endif
    147 	splx(s);
    148 	resettodr();
    149 	return (0);
    150 }
    151 
    152 /* ARGSUSED */
    153 int
    154 sys_clock_gettime(p, v, retval)
    155 	struct proc *p;
    156 	void *v;
    157 	register_t *retval;
    158 {
    159 	struct sys_clock_gettime_args /* {
    160 		syscallarg(clockid_t) clock_id;
    161 		syscallarg(struct timespec *) tp;
    162 	} */ *uap = v;
    163 	clockid_t clock_id;
    164 	struct timeval atv;
    165 	struct timespec ats;
    166 
    167 	clock_id = SCARG(uap, clock_id);
    168 	if (clock_id != CLOCK_REALTIME)
    169 		return (EINVAL);
    170 
    171 	microtime(&atv);
    172 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    173 
    174 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    175 }
    176 
    177 /* ARGSUSED */
    178 int
    179 sys_clock_settime(p, v, retval)
    180 	struct proc *p;
    181 	void *v;
    182 	register_t *retval;
    183 {
    184 	struct sys_clock_settime_args /* {
    185 		syscallarg(clockid_t) clock_id;
    186 		syscallarg(const struct timespec *) tp;
    187 	} */ *uap = v;
    188 	clockid_t clock_id;
    189 	struct timeval atv;
    190 	struct timespec ats;
    191 	int error;
    192 
    193 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    194 		return (error);
    195 
    196 	clock_id = SCARG(uap, clock_id);
    197 	if (clock_id != CLOCK_REALTIME)
    198 		return (EINVAL);
    199 
    200 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    201 		return (error);
    202 
    203 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
    204 	if ((error = settime(&atv)))
    205 		return (error);
    206 
    207 	return 0;
    208 }
    209 
    210 int
    211 sys_clock_getres(p, v, retval)
    212 	struct proc *p;
    213 	void *v;
    214 	register_t *retval;
    215 {
    216 	struct sys_clock_getres_args /* {
    217 		syscallarg(clockid_t) clock_id;
    218 		syscallarg(struct timespec *) tp;
    219 	} */ *uap = v;
    220 	clockid_t clock_id;
    221 	struct timespec ts;
    222 	int error = 0;
    223 
    224 	clock_id = SCARG(uap, clock_id);
    225 	if (clock_id != CLOCK_REALTIME)
    226 		return (EINVAL);
    227 
    228 	if (SCARG(uap, tp)) {
    229 		ts.tv_sec = 0;
    230 		ts.tv_nsec = 1000000000 / hz;
    231 
    232 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    233 	}
    234 
    235 	return error;
    236 }
    237 
    238 /* ARGSUSED */
    239 int
    240 sys_nanosleep(p, v, retval)
    241 	struct proc *p;
    242 	void *v;
    243 	register_t *retval;
    244 {
    245 	static int nanowait;
    246 	struct sys_nanosleep_args/* {
    247 		syscallarg(struct timespec *) rqtp;
    248 		syscallarg(struct timespec *) rmtp;
    249 	} */ *uap = v;
    250 	struct timespec rqt;
    251 	struct timespec rmt;
    252 	struct timeval atv, utv;
    253 	int error, s, timo;
    254 
    255 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    256 		       sizeof(struct timespec));
    257 	if (error)
    258 		return (error);
    259 
    260 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    261 	if (itimerfix(&atv))
    262 		return (EINVAL);
    263 
    264 	s = splclock();
    265 	timeradd(&atv,&time,&atv);
    266 	timo = hzto(&atv);
    267 	/*
    268 	 * Avoid inadvertantly sleeping forever
    269 	 */
    270 	if (timo == 0)
    271 		timo = 1;
    272 	splx(s);
    273 
    274 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    275 	if (error == ERESTART)
    276 		error = EINTR;
    277 	if (error == EWOULDBLOCK)
    278 		error = 0;
    279 
    280 	if (SCARG(uap, rmtp)) {
    281 		int error;
    282 
    283 		s = splclock();
    284 		utv = time;
    285 		splx(s);
    286 
    287 		timersub(&atv, &utv, &utv);
    288 		if (utv.tv_sec < 0)
    289 			timerclear(&utv);
    290 
    291 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    292 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    293 			sizeof(rmt));
    294 		if (error)
    295 			return (error);
    296 	}
    297 
    298 	return error;
    299 }
    300 
    301 /* ARGSUSED */
    302 int
    303 sys_gettimeofday(p, v, retval)
    304 	struct proc *p;
    305 	void *v;
    306 	register_t *retval;
    307 {
    308 	struct sys_gettimeofday_args /* {
    309 		syscallarg(struct timeval *) tp;
    310 		syscallarg(struct timezone *) tzp;
    311 	} */ *uap = v;
    312 	struct timeval atv;
    313 	int error = 0;
    314 	struct timezone tzfake;
    315 
    316 	if (SCARG(uap, tp)) {
    317 		microtime(&atv);
    318 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    319 		if (error)
    320 			return (error);
    321 	}
    322 	if (SCARG(uap, tzp)) {
    323 		/*
    324 		 * NetBSD has no kernel notion of time zone, so we just
    325 		 * fake up a timezone struct and return it if demanded.
    326 		 */
    327 		tzfake.tz_minuteswest = 0;
    328 		tzfake.tz_dsttime = 0;
    329 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    330 	}
    331 	return (error);
    332 }
    333 
    334 /* ARGSUSED */
    335 int
    336 sys_settimeofday(p, v, retval)
    337 	struct proc *p;
    338 	void *v;
    339 	register_t *retval;
    340 {
    341 	struct sys_settimeofday_args /* {
    342 		syscallarg(const struct timeval *) tv;
    343 		syscallarg(const struct timezone *) tzp;
    344 	} */ *uap = v;
    345 	struct timeval atv;
    346 	struct timezone atz;
    347 	int error;
    348 
    349 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    350 		return (error);
    351 	/* Verify all parameters before changing time. */
    352 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
    353 	    &atv, sizeof(atv))))
    354 		return (error);
    355 	/* XXX since we don't use tz, probably no point in doing copyin. */
    356 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
    357 	    &atz, sizeof(atz))))
    358 		return (error);
    359 	if (SCARG(uap, tv))
    360 		if ((error = settime(&atv)))
    361 			return (error);
    362 	/*
    363 	 * NetBSD has no kernel notion of time zone, and only an
    364 	 * obsolete program would try to set it, so we log a warning.
    365 	 */
    366 	if (SCARG(uap, tzp))
    367 		log(LOG_WARNING, "pid %d attempted to set the "
    368 		    "(obsolete) kernel time zone\n", p->p_pid);
    369 	return (0);
    370 }
    371 
    372 int	tickdelta;			/* current clock skew, us. per tick */
    373 long	timedelta;			/* unapplied time correction, us. */
    374 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    375 
    376 /* ARGSUSED */
    377 int
    378 sys_adjtime(p, v, retval)
    379 	struct proc *p;
    380 	void *v;
    381 	register_t *retval;
    382 {
    383 	struct sys_adjtime_args /* {
    384 		syscallarg(const struct timeval *) delta;
    385 		syscallarg(struct timeval *) olddelta;
    386 	} */ *uap = v;
    387 	struct timeval atv;
    388 	long ndelta, ntickdelta, odelta;
    389 	int s, error;
    390 
    391 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    392 		return (error);
    393 
    394 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
    395 	if (error)
    396 		return (error);
    397 	if (SCARG(uap, olddelta) != NULL &&
    398 	    uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
    399 	     B_WRITE) == FALSE)
    400 		return (EFAULT);
    401 
    402 	/*
    403 	 * Compute the total correction and the rate at which to apply it.
    404 	 * Round the adjustment down to a whole multiple of the per-tick
    405 	 * delta, so that after some number of incremental changes in
    406 	 * hardclock(), tickdelta will become zero, lest the correction
    407 	 * overshoot and start taking us away from the desired final time.
    408 	 */
    409 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    410 	if (ndelta > bigadj || ndelta < -bigadj)
    411 		ntickdelta = 10 * tickadj;
    412 	else
    413 		ntickdelta = tickadj;
    414 	if (ndelta % ntickdelta)
    415 		ndelta = ndelta / ntickdelta * ntickdelta;
    416 
    417 	/*
    418 	 * To make hardclock()'s job easier, make the per-tick delta negative
    419 	 * if we want time to run slower; then hardclock can simply compute
    420 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    421 	 */
    422 	if (ndelta < 0)
    423 		ntickdelta = -ntickdelta;
    424 	s = splclock();
    425 	odelta = timedelta;
    426 	timedelta = ndelta;
    427 	tickdelta = ntickdelta;
    428 	splx(s);
    429 
    430 	if (SCARG(uap, olddelta)) {
    431 		atv.tv_sec = odelta / 1000000;
    432 		atv.tv_usec = odelta % 1000000;
    433 		(void) copyout(&atv, SCARG(uap, olddelta),
    434 		    sizeof(struct timeval));
    435 	}
    436 	return (0);
    437 }
    438 
    439 /*
    440  * Get value of an interval timer.  The process virtual and
    441  * profiling virtual time timers are kept in the p_stats area, since
    442  * they can be swapped out.  These are kept internally in the
    443  * way they are specified externally: in time until they expire.
    444  *
    445  * The real time interval timer is kept in the process table slot
    446  * for the process, and its value (it_value) is kept as an
    447  * absolute time rather than as a delta, so that it is easy to keep
    448  * periodic real-time signals from drifting.
    449  *
    450  * Virtual time timers are processed in the hardclock() routine of
    451  * kern_clock.c.  The real time timer is processed by a timeout
    452  * routine, called from the softclock() routine.  Since a callout
    453  * may be delayed in real time due to interrupt processing in the system,
    454  * it is possible for the real time timeout routine (realitexpire, given below),
    455  * to be delayed in real time past when it is supposed to occur.  It
    456  * does not suffice, therefore, to reload the real timer .it_value from the
    457  * real time timers .it_interval.  Rather, we compute the next time in
    458  * absolute time the timer should go off.
    459  */
    460 /* ARGSUSED */
    461 int
    462 sys_getitimer(p, v, retval)
    463 	struct proc *p;
    464 	void *v;
    465 	register_t *retval;
    466 {
    467 	struct sys_getitimer_args /* {
    468 		syscallarg(int) which;
    469 		syscallarg(struct itimerval *) itv;
    470 	} */ *uap = v;
    471 	int which = SCARG(uap, which);
    472 	struct itimerval aitv;
    473 	int s;
    474 
    475 	if ((u_int)which > ITIMER_PROF)
    476 		return (EINVAL);
    477 	s = splclock();
    478 	if (which == ITIMER_REAL) {
    479 		/*
    480 		 * Convert from absolute to relative time in .it_value
    481 		 * part of real time timer.  If time for real time timer
    482 		 * has passed return 0, else return difference between
    483 		 * current time and time for the timer to go off.
    484 		 */
    485 		aitv = p->p_realtimer;
    486 		if (timerisset(&aitv.it_value)) {
    487 			if (timercmp(&aitv.it_value, &time, <))
    488 				timerclear(&aitv.it_value);
    489 			else
    490 				timersub(&aitv.it_value, &time, &aitv.it_value);
    491 		}
    492 	} else
    493 		aitv = p->p_stats->p_timer[which];
    494 	splx(s);
    495 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    496 }
    497 
    498 /* ARGSUSED */
    499 int
    500 sys_setitimer(p, v, retval)
    501 	struct proc *p;
    502 	void *v;
    503 	register_t *retval;
    504 {
    505 	struct sys_setitimer_args /* {
    506 		syscallarg(int) which;
    507 		syscallarg(const struct itimerval *) itv;
    508 		syscallarg(struct itimerval *) oitv;
    509 	} */ *uap = v;
    510 	int which = SCARG(uap, which);
    511 	struct sys_getitimer_args getargs;
    512 	struct itimerval aitv;
    513 	const struct itimerval *itvp;
    514 	int s, error;
    515 
    516 	if ((u_int)which > ITIMER_PROF)
    517 		return (EINVAL);
    518 	itvp = SCARG(uap, itv);
    519 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
    520 		return (error);
    521 	if (SCARG(uap, oitv) != NULL) {
    522 		SCARG(&getargs, which) = which;
    523 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    524 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    525 			return (error);
    526 	}
    527 	if (itvp == 0)
    528 		return (0);
    529 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    530 		return (EINVAL);
    531 	s = splclock();
    532 	if (which == ITIMER_REAL) {
    533 		callout_stop(&p->p_realit_ch);
    534 		if (timerisset(&aitv.it_value)) {
    535 			/*
    536 			 * Don't need to check hzto() return value, here.
    537 			 * callout_reset() does it for us.
    538 			 */
    539 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    540 			callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
    541 			    realitexpire, p);
    542 		}
    543 		p->p_realtimer = aitv;
    544 	} else
    545 		p->p_stats->p_timer[which] = aitv;
    546 	splx(s);
    547 	return (0);
    548 }
    549 
    550 /*
    551  * Real interval timer expired:
    552  * send process whose timer expired an alarm signal.
    553  * If time is not set up to reload, then just return.
    554  * Else compute next time timer should go off which is > current time.
    555  * This is where delay in processing this timeout causes multiple
    556  * SIGALRM calls to be compressed into one.
    557  */
    558 void
    559 realitexpire(arg)
    560 	void *arg;
    561 {
    562 	struct proc *p;
    563 	int s;
    564 
    565 	p = (struct proc *)arg;
    566 	psignal(p, SIGALRM);
    567 	if (!timerisset(&p->p_realtimer.it_interval)) {
    568 		timerclear(&p->p_realtimer.it_value);
    569 		return;
    570 	}
    571 	for (;;) {
    572 		s = splclock();
    573 		timeradd(&p->p_realtimer.it_value,
    574 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    575 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    576 			/*
    577 			 * Don't need to check hzto() return value, here.
    578 			 * callout_reset() does it for us.
    579 			 */
    580 			callout_reset(&p->p_realit_ch,
    581 			    hzto(&p->p_realtimer.it_value), realitexpire, p);
    582 			splx(s);
    583 			return;
    584 		}
    585 		splx(s);
    586 	}
    587 }
    588 
    589 /*
    590  * Check that a proposed value to load into the .it_value or
    591  * .it_interval part of an interval timer is acceptable, and
    592  * fix it to have at least minimal value (i.e. if it is less
    593  * than the resolution of the clock, round it up.)
    594  */
    595 int
    596 itimerfix(tv)
    597 	struct timeval *tv;
    598 {
    599 
    600 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    601 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    602 		return (EINVAL);
    603 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    604 		tv->tv_usec = tick;
    605 	return (0);
    606 }
    607 
    608 /*
    609  * Decrement an interval timer by a specified number
    610  * of microseconds, which must be less than a second,
    611  * i.e. < 1000000.  If the timer expires, then reload
    612  * it.  In this case, carry over (usec - old value) to
    613  * reduce the value reloaded into the timer so that
    614  * the timer does not drift.  This routine assumes
    615  * that it is called in a context where the timers
    616  * on which it is operating cannot change in value.
    617  */
    618 int
    619 itimerdecr(itp, usec)
    620 	struct itimerval *itp;
    621 	int usec;
    622 {
    623 
    624 	if (itp->it_value.tv_usec < usec) {
    625 		if (itp->it_value.tv_sec == 0) {
    626 			/* expired, and already in next interval */
    627 			usec -= itp->it_value.tv_usec;
    628 			goto expire;
    629 		}
    630 		itp->it_value.tv_usec += 1000000;
    631 		itp->it_value.tv_sec--;
    632 	}
    633 	itp->it_value.tv_usec -= usec;
    634 	usec = 0;
    635 	if (timerisset(&itp->it_value))
    636 		return (1);
    637 	/* expired, exactly at end of interval */
    638 expire:
    639 	if (timerisset(&itp->it_interval)) {
    640 		itp->it_value = itp->it_interval;
    641 		itp->it_value.tv_usec -= usec;
    642 		if (itp->it_value.tv_usec < 0) {
    643 			itp->it_value.tv_usec += 1000000;
    644 			itp->it_value.tv_sec--;
    645 		}
    646 	} else
    647 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    648 	return (0);
    649 }
    650 
    651 /*
    652  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
    653  * for usage and rationale.
    654  */
    655 int
    656 ratecheck(lasttime, mininterval)
    657 	struct timeval *lasttime;
    658 	const struct timeval *mininterval;
    659 {
    660 	struct timeval tv, delta;
    661 	int s, rv = 0;
    662 
    663 	s = splclock();
    664 	tv = mono_time;
    665 	splx(s);
    666 
    667 	timersub(&tv, lasttime, &delta);
    668 
    669 	/*
    670 	 * check for 0,0 is so that the message will be seen at least once,
    671 	 * even if interval is huge.
    672 	 */
    673 	if (timercmp(&delta, mininterval, >=) ||
    674 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
    675 		*lasttime = tv;
    676 		rv = 1;
    677 	}
    678 
    679 	return (rv);
    680 }
    681 
    682 /*
    683  * ppsratecheck(): packets (or events) per second limitation.
    684  */
    685 int
    686 ppsratecheck(lasttime, curpps, maxpps)
    687 	struct timeval *lasttime;
    688 	int *curpps;
    689 	int maxpps;	/* maximum pps allowed */
    690 {
    691 	struct timeval tv, delta;
    692 	int s, rv;
    693 
    694 	s = splclock();
    695 	tv = mono_time;
    696 	splx(s);
    697 
    698 	timersub(&tv, lasttime, &delta);
    699 
    700 	/*
    701 	 * check for 0,0 is so that the message will be seen at least once.
    702 	 * if more than one second have passed since the last update of
    703 	 * lasttime, reset the counter.
    704 	 *
    705 	 * we do increment *curpps even in *curpps < maxpps case, as some may
    706 	 * try to use *curpps for stat purposes as well.
    707 	 */
    708 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
    709 	    delta.tv_sec >= 1) {
    710 		*lasttime = tv;
    711 		*curpps = 0;
    712 		rv = 1;
    713 	} else if (maxpps < 0)
    714 		rv = 1;
    715 	else if (*curpps < maxpps)
    716 		rv = 1;
    717 	else
    718 		rv = 0;
    719 
    720 #if 1 /*DIAGNOSTIC?*/
    721 	/* be careful about wrap-around */
    722 	if (*curpps + 1 > *curpps)
    723 		*curpps = *curpps + 1;
    724 #else
    725 	/*
    726 	 * assume that there's not too many calls to this function.
    727 	 * not sure if the assumption holds, as it depends on *caller's*
    728 	 * behavior, not the behavior of this function.
    729 	 * IMHO it is wrong to make assumption on the caller's behavior,
    730 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
    731 	 */
    732 	*curpps = *curpps + 1;
    733 #endif
    734 
    735 	return (rv);
    736 }
    737