kern_time.c revision 1.55 1 /* $NetBSD: kern_time.c,v 1.55 2001/06/11 07:07:12 tron Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include "fs_nfs.h"
75 #include "opt_nfs.h"
76 #include "opt_nfsserver.h"
77
78 #include <sys/param.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/signalvar.h>
85 #include <sys/syslog.h>
86
87 #include <sys/mount.h>
88 #include <sys/syscallargs.h>
89
90 #include <uvm/uvm_extern.h>
91
92 #if defined(NFS) || defined(NFSSERVER)
93 #include <nfs/rpcv2.h>
94 #include <nfs/nfsproto.h>
95 #include <nfs/nfs_var.h>
96 #endif
97
98 #include <machine/cpu.h>
99
100 /*
101 * Time of day and interval timer support.
102 *
103 * These routines provide the kernel entry points to get and set
104 * the time-of-day and per-process interval timers. Subroutines
105 * here provide support for adding and subtracting timeval structures
106 * and decrementing interval timers, optionally reloading the interval
107 * timers when they expire.
108 */
109
110 /* This function is used by clock_settime and settimeofday */
111 int
112 settime(tv)
113 struct timeval *tv;
114 {
115 struct timeval delta;
116 struct cpu_info *ci;
117 int s;
118
119 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
120 s = splclock();
121 timersub(tv, &time, &delta);
122 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
123 splx(s);
124 return (EPERM);
125 }
126 #ifdef notyet
127 if ((delta.tv_sec < 86400) && securelevel > 0) {
128 splx(s);
129 return (EPERM);
130 }
131 #endif
132 time = *tv;
133 (void) spllowersoftclock();
134 timeradd(&boottime, &delta, &boottime);
135 /*
136 * XXXSMP
137 * This is wrong. We should traverse a list of all
138 * CPUs and add the delta to the runtime of those
139 * CPUs which have a process on them.
140 */
141 ci = curcpu();
142 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
143 &ci->ci_schedstate.spc_runtime);
144 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
145 nqnfs_lease_updatetime(delta.tv_sec);
146 # endif
147 splx(s);
148 resettodr();
149 return (0);
150 }
151
152 /* ARGSUSED */
153 int
154 sys_clock_gettime(p, v, retval)
155 struct proc *p;
156 void *v;
157 register_t *retval;
158 {
159 struct sys_clock_gettime_args /* {
160 syscallarg(clockid_t) clock_id;
161 syscallarg(struct timespec *) tp;
162 } */ *uap = v;
163 clockid_t clock_id;
164 struct timeval atv;
165 struct timespec ats;
166
167 clock_id = SCARG(uap, clock_id);
168 if (clock_id != CLOCK_REALTIME)
169 return (EINVAL);
170
171 microtime(&atv);
172 TIMEVAL_TO_TIMESPEC(&atv,&ats);
173
174 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
175 }
176
177 /* ARGSUSED */
178 int
179 sys_clock_settime(p, v, retval)
180 struct proc *p;
181 void *v;
182 register_t *retval;
183 {
184 struct sys_clock_settime_args /* {
185 syscallarg(clockid_t) clock_id;
186 syscallarg(const struct timespec *) tp;
187 } */ *uap = v;
188 clockid_t clock_id;
189 struct timeval atv;
190 struct timespec ats;
191 int error;
192
193 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
194 return (error);
195
196 clock_id = SCARG(uap, clock_id);
197 if (clock_id != CLOCK_REALTIME)
198 return (EINVAL);
199
200 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
201 return (error);
202
203 TIMESPEC_TO_TIMEVAL(&atv,&ats);
204 if ((error = settime(&atv)))
205 return (error);
206
207 return 0;
208 }
209
210 int
211 sys_clock_getres(p, v, retval)
212 struct proc *p;
213 void *v;
214 register_t *retval;
215 {
216 struct sys_clock_getres_args /* {
217 syscallarg(clockid_t) clock_id;
218 syscallarg(struct timespec *) tp;
219 } */ *uap = v;
220 clockid_t clock_id;
221 struct timespec ts;
222 int error = 0;
223
224 clock_id = SCARG(uap, clock_id);
225 if (clock_id != CLOCK_REALTIME)
226 return (EINVAL);
227
228 if (SCARG(uap, tp)) {
229 ts.tv_sec = 0;
230 ts.tv_nsec = 1000000000 / hz;
231
232 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
233 }
234
235 return error;
236 }
237
238 /* ARGSUSED */
239 int
240 sys_nanosleep(p, v, retval)
241 struct proc *p;
242 void *v;
243 register_t *retval;
244 {
245 static int nanowait;
246 struct sys_nanosleep_args/* {
247 syscallarg(struct timespec *) rqtp;
248 syscallarg(struct timespec *) rmtp;
249 } */ *uap = v;
250 struct timespec rqt;
251 struct timespec rmt;
252 struct timeval atv, utv;
253 int error, s, timo;
254
255 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
256 sizeof(struct timespec));
257 if (error)
258 return (error);
259
260 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
261 if (itimerfix(&atv))
262 return (EINVAL);
263
264 s = splclock();
265 timeradd(&atv,&time,&atv);
266 timo = hzto(&atv);
267 /*
268 * Avoid inadvertantly sleeping forever
269 */
270 if (timo == 0)
271 timo = 1;
272 splx(s);
273
274 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
275 if (error == ERESTART)
276 error = EINTR;
277 if (error == EWOULDBLOCK)
278 error = 0;
279
280 if (SCARG(uap, rmtp)) {
281 int error;
282
283 s = splclock();
284 utv = time;
285 splx(s);
286
287 timersub(&atv, &utv, &utv);
288 if (utv.tv_sec < 0)
289 timerclear(&utv);
290
291 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
292 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
293 sizeof(rmt));
294 if (error)
295 return (error);
296 }
297
298 return error;
299 }
300
301 /* ARGSUSED */
302 int
303 sys_gettimeofday(p, v, retval)
304 struct proc *p;
305 void *v;
306 register_t *retval;
307 {
308 struct sys_gettimeofday_args /* {
309 syscallarg(struct timeval *) tp;
310 syscallarg(struct timezone *) tzp;
311 } */ *uap = v;
312 struct timeval atv;
313 int error = 0;
314 struct timezone tzfake;
315
316 if (SCARG(uap, tp)) {
317 microtime(&atv);
318 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
319 if (error)
320 return (error);
321 }
322 if (SCARG(uap, tzp)) {
323 /*
324 * NetBSD has no kernel notion of time zone, so we just
325 * fake up a timezone struct and return it if demanded.
326 */
327 tzfake.tz_minuteswest = 0;
328 tzfake.tz_dsttime = 0;
329 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
330 }
331 return (error);
332 }
333
334 /* ARGSUSED */
335 int
336 sys_settimeofday(p, v, retval)
337 struct proc *p;
338 void *v;
339 register_t *retval;
340 {
341 struct sys_settimeofday_args /* {
342 syscallarg(const struct timeval *) tv;
343 syscallarg(const struct timezone *) tzp;
344 } */ *uap = v;
345 struct timeval atv;
346 struct timezone atz;
347 int error;
348
349 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
350 return (error);
351 /* Verify all parameters before changing time. */
352 if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
353 &atv, sizeof(atv))))
354 return (error);
355 /* XXX since we don't use tz, probably no point in doing copyin. */
356 if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
357 &atz, sizeof(atz))))
358 return (error);
359 if (SCARG(uap, tv))
360 if ((error = settime(&atv)))
361 return (error);
362 /*
363 * NetBSD has no kernel notion of time zone, and only an
364 * obsolete program would try to set it, so we log a warning.
365 */
366 if (SCARG(uap, tzp))
367 log(LOG_WARNING, "pid %d attempted to set the "
368 "(obsolete) kernel time zone\n", p->p_pid);
369 return (0);
370 }
371
372 int tickdelta; /* current clock skew, us. per tick */
373 long timedelta; /* unapplied time correction, us. */
374 long bigadj = 1000000; /* use 10x skew above bigadj us. */
375
376 /* ARGSUSED */
377 int
378 sys_adjtime(p, v, retval)
379 struct proc *p;
380 void *v;
381 register_t *retval;
382 {
383 struct sys_adjtime_args /* {
384 syscallarg(const struct timeval *) delta;
385 syscallarg(struct timeval *) olddelta;
386 } */ *uap = v;
387 struct timeval atv;
388 long ndelta, ntickdelta, odelta;
389 int s, error;
390
391 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
392 return (error);
393
394 error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
395 if (error)
396 return (error);
397 if (SCARG(uap, olddelta) != NULL &&
398 uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
399 B_WRITE) == FALSE)
400 return (EFAULT);
401
402 /*
403 * Compute the total correction and the rate at which to apply it.
404 * Round the adjustment down to a whole multiple of the per-tick
405 * delta, so that after some number of incremental changes in
406 * hardclock(), tickdelta will become zero, lest the correction
407 * overshoot and start taking us away from the desired final time.
408 */
409 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
410 if (ndelta > bigadj || ndelta < -bigadj)
411 ntickdelta = 10 * tickadj;
412 else
413 ntickdelta = tickadj;
414 if (ndelta % ntickdelta)
415 ndelta = ndelta / ntickdelta * ntickdelta;
416
417 /*
418 * To make hardclock()'s job easier, make the per-tick delta negative
419 * if we want time to run slower; then hardclock can simply compute
420 * tick + tickdelta, and subtract tickdelta from timedelta.
421 */
422 if (ndelta < 0)
423 ntickdelta = -ntickdelta;
424 s = splclock();
425 odelta = timedelta;
426 timedelta = ndelta;
427 tickdelta = ntickdelta;
428 splx(s);
429
430 if (SCARG(uap, olddelta)) {
431 atv.tv_sec = odelta / 1000000;
432 atv.tv_usec = odelta % 1000000;
433 (void) copyout(&atv, SCARG(uap, olddelta),
434 sizeof(struct timeval));
435 }
436 return (0);
437 }
438
439 /*
440 * Get value of an interval timer. The process virtual and
441 * profiling virtual time timers are kept in the p_stats area, since
442 * they can be swapped out. These are kept internally in the
443 * way they are specified externally: in time until they expire.
444 *
445 * The real time interval timer is kept in the process table slot
446 * for the process, and its value (it_value) is kept as an
447 * absolute time rather than as a delta, so that it is easy to keep
448 * periodic real-time signals from drifting.
449 *
450 * Virtual time timers are processed in the hardclock() routine of
451 * kern_clock.c. The real time timer is processed by a timeout
452 * routine, called from the softclock() routine. Since a callout
453 * may be delayed in real time due to interrupt processing in the system,
454 * it is possible for the real time timeout routine (realitexpire, given below),
455 * to be delayed in real time past when it is supposed to occur. It
456 * does not suffice, therefore, to reload the real timer .it_value from the
457 * real time timers .it_interval. Rather, we compute the next time in
458 * absolute time the timer should go off.
459 */
460 /* ARGSUSED */
461 int
462 sys_getitimer(p, v, retval)
463 struct proc *p;
464 void *v;
465 register_t *retval;
466 {
467 struct sys_getitimer_args /* {
468 syscallarg(int) which;
469 syscallarg(struct itimerval *) itv;
470 } */ *uap = v;
471 int which = SCARG(uap, which);
472 struct itimerval aitv;
473 int s;
474
475 if ((u_int)which > ITIMER_PROF)
476 return (EINVAL);
477 s = splclock();
478 if (which == ITIMER_REAL) {
479 /*
480 * Convert from absolute to relative time in .it_value
481 * part of real time timer. If time for real time timer
482 * has passed return 0, else return difference between
483 * current time and time for the timer to go off.
484 */
485 aitv = p->p_realtimer;
486 if (timerisset(&aitv.it_value)) {
487 if (timercmp(&aitv.it_value, &time, <))
488 timerclear(&aitv.it_value);
489 else
490 timersub(&aitv.it_value, &time, &aitv.it_value);
491 }
492 } else
493 aitv = p->p_stats->p_timer[which];
494 splx(s);
495 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
496 }
497
498 /* ARGSUSED */
499 int
500 sys_setitimer(p, v, retval)
501 struct proc *p;
502 void *v;
503 register_t *retval;
504 {
505 struct sys_setitimer_args /* {
506 syscallarg(int) which;
507 syscallarg(const struct itimerval *) itv;
508 syscallarg(struct itimerval *) oitv;
509 } */ *uap = v;
510 int which = SCARG(uap, which);
511 struct sys_getitimer_args getargs;
512 struct itimerval aitv;
513 const struct itimerval *itvp;
514 int s, error;
515
516 if ((u_int)which > ITIMER_PROF)
517 return (EINVAL);
518 itvp = SCARG(uap, itv);
519 if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
520 return (error);
521 if (SCARG(uap, oitv) != NULL) {
522 SCARG(&getargs, which) = which;
523 SCARG(&getargs, itv) = SCARG(uap, oitv);
524 if ((error = sys_getitimer(p, &getargs, retval)) != 0)
525 return (error);
526 }
527 if (itvp == 0)
528 return (0);
529 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
530 return (EINVAL);
531 s = splclock();
532 if (which == ITIMER_REAL) {
533 callout_stop(&p->p_realit_ch);
534 if (timerisset(&aitv.it_value)) {
535 /*
536 * Don't need to check hzto() return value, here.
537 * callout_reset() does it for us.
538 */
539 timeradd(&aitv.it_value, &time, &aitv.it_value);
540 callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
541 realitexpire, p);
542 }
543 p->p_realtimer = aitv;
544 } else
545 p->p_stats->p_timer[which] = aitv;
546 splx(s);
547 return (0);
548 }
549
550 /*
551 * Real interval timer expired:
552 * send process whose timer expired an alarm signal.
553 * If time is not set up to reload, then just return.
554 * Else compute next time timer should go off which is > current time.
555 * This is where delay in processing this timeout causes multiple
556 * SIGALRM calls to be compressed into one.
557 */
558 void
559 realitexpire(arg)
560 void *arg;
561 {
562 struct proc *p;
563 int s;
564
565 p = (struct proc *)arg;
566 psignal(p, SIGALRM);
567 if (!timerisset(&p->p_realtimer.it_interval)) {
568 timerclear(&p->p_realtimer.it_value);
569 return;
570 }
571 for (;;) {
572 s = splclock();
573 timeradd(&p->p_realtimer.it_value,
574 &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
575 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
576 /*
577 * Don't need to check hzto() return value, here.
578 * callout_reset() does it for us.
579 */
580 callout_reset(&p->p_realit_ch,
581 hzto(&p->p_realtimer.it_value), realitexpire, p);
582 splx(s);
583 return;
584 }
585 splx(s);
586 }
587 }
588
589 /*
590 * Check that a proposed value to load into the .it_value or
591 * .it_interval part of an interval timer is acceptable, and
592 * fix it to have at least minimal value (i.e. if it is less
593 * than the resolution of the clock, round it up.)
594 */
595 int
596 itimerfix(tv)
597 struct timeval *tv;
598 {
599
600 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
601 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
602 return (EINVAL);
603 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
604 tv->tv_usec = tick;
605 return (0);
606 }
607
608 /*
609 * Decrement an interval timer by a specified number
610 * of microseconds, which must be less than a second,
611 * i.e. < 1000000. If the timer expires, then reload
612 * it. In this case, carry over (usec - old value) to
613 * reduce the value reloaded into the timer so that
614 * the timer does not drift. This routine assumes
615 * that it is called in a context where the timers
616 * on which it is operating cannot change in value.
617 */
618 int
619 itimerdecr(itp, usec)
620 struct itimerval *itp;
621 int usec;
622 {
623
624 if (itp->it_value.tv_usec < usec) {
625 if (itp->it_value.tv_sec == 0) {
626 /* expired, and already in next interval */
627 usec -= itp->it_value.tv_usec;
628 goto expire;
629 }
630 itp->it_value.tv_usec += 1000000;
631 itp->it_value.tv_sec--;
632 }
633 itp->it_value.tv_usec -= usec;
634 usec = 0;
635 if (timerisset(&itp->it_value))
636 return (1);
637 /* expired, exactly at end of interval */
638 expire:
639 if (timerisset(&itp->it_interval)) {
640 itp->it_value = itp->it_interval;
641 itp->it_value.tv_usec -= usec;
642 if (itp->it_value.tv_usec < 0) {
643 itp->it_value.tv_usec += 1000000;
644 itp->it_value.tv_sec--;
645 }
646 } else
647 itp->it_value.tv_usec = 0; /* sec is already 0 */
648 return (0);
649 }
650
651 /*
652 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
653 * for usage and rationale.
654 */
655 int
656 ratecheck(lasttime, mininterval)
657 struct timeval *lasttime;
658 const struct timeval *mininterval;
659 {
660 struct timeval tv, delta;
661 int s, rv = 0;
662
663 s = splclock();
664 tv = mono_time;
665 splx(s);
666
667 timersub(&tv, lasttime, &delta);
668
669 /*
670 * check for 0,0 is so that the message will be seen at least once,
671 * even if interval is huge.
672 */
673 if (timercmp(&delta, mininterval, >=) ||
674 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
675 *lasttime = tv;
676 rv = 1;
677 }
678
679 return (rv);
680 }
681
682 /*
683 * ppsratecheck(): packets (or events) per second limitation.
684 */
685 int
686 ppsratecheck(lasttime, curpps, maxpps)
687 struct timeval *lasttime;
688 int *curpps;
689 int maxpps; /* maximum pps allowed */
690 {
691 struct timeval tv, delta;
692 int s, rv;
693
694 s = splclock();
695 tv = mono_time;
696 splx(s);
697
698 timersub(&tv, lasttime, &delta);
699
700 /*
701 * check for 0,0 is so that the message will be seen at least once.
702 * if more than one second have passed since the last update of
703 * lasttime, reset the counter.
704 *
705 * we do increment *curpps even in *curpps < maxpps case, as some may
706 * try to use *curpps for stat purposes as well.
707 */
708 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
709 delta.tv_sec >= 1) {
710 *lasttime = tv;
711 *curpps = 0;
712 rv = 1;
713 } else if (maxpps < 0)
714 rv = 1;
715 else if (*curpps < maxpps)
716 rv = 1;
717 else
718 rv = 0;
719
720 #if 1 /*DIAGNOSTIC?*/
721 /* be careful about wrap-around */
722 if (*curpps + 1 > *curpps)
723 *curpps = *curpps + 1;
724 #else
725 /*
726 * assume that there's not too many calls to this function.
727 * not sure if the assumption holds, as it depends on *caller's*
728 * behavior, not the behavior of this function.
729 * IMHO it is wrong to make assumption on the caller's behavior,
730 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
731 */
732 *curpps = *curpps + 1;
733 #endif
734
735 return (rv);
736 }
737