Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.58
      1 /*	$NetBSD: kern_time.c,v 1.58 2001/11/12 15:25:18 lukem Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the University of
     54  *	California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     72  */
     73 
     74 #include <sys/cdefs.h>
     75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.58 2001/11/12 15:25:18 lukem Exp $");
     76 
     77 #include "fs_nfs.h"
     78 #include "opt_nfs.h"
     79 #include "opt_nfsserver.h"
     80 
     81 #include <sys/param.h>
     82 #include <sys/resourcevar.h>
     83 #include <sys/kernel.h>
     84 #include <sys/systm.h>
     85 #include <sys/proc.h>
     86 #include <sys/vnode.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/syslog.h>
     89 
     90 #include <sys/mount.h>
     91 #include <sys/syscallargs.h>
     92 
     93 #include <uvm/uvm_extern.h>
     94 
     95 #if defined(NFS) || defined(NFSSERVER)
     96 #include <nfs/rpcv2.h>
     97 #include <nfs/nfsproto.h>
     98 #include <nfs/nfs_var.h>
     99 #endif
    100 
    101 #include <machine/cpu.h>
    102 
    103 /*
    104  * Time of day and interval timer support.
    105  *
    106  * These routines provide the kernel entry points to get and set
    107  * the time-of-day and per-process interval timers.  Subroutines
    108  * here provide support for adding and subtracting timeval structures
    109  * and decrementing interval timers, optionally reloading the interval
    110  * timers when they expire.
    111  */
    112 
    113 /* This function is used by clock_settime and settimeofday */
    114 int
    115 settime(tv)
    116 	struct timeval *tv;
    117 {
    118 	struct timeval delta;
    119 	struct cpu_info *ci;
    120 	int s;
    121 
    122 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    123 	s = splclock();
    124 	timersub(tv, &time, &delta);
    125 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    126 		splx(s);
    127 		return (EPERM);
    128 	}
    129 #ifdef notyet
    130 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    131 		splx(s);
    132 		return (EPERM);
    133 	}
    134 #endif
    135 	time = *tv;
    136 	(void) spllowersoftclock();
    137 	timeradd(&boottime, &delta, &boottime);
    138 	/*
    139 	 * XXXSMP
    140 	 * This is wrong.  We should traverse a list of all
    141 	 * CPUs and add the delta to the runtime of those
    142 	 * CPUs which have a process on them.
    143 	 */
    144 	ci = curcpu();
    145 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    146 	    &ci->ci_schedstate.spc_runtime);
    147 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    148 		nqnfs_lease_updatetime(delta.tv_sec);
    149 #	endif
    150 	splx(s);
    151 	resettodr();
    152 	return (0);
    153 }
    154 
    155 /* ARGSUSED */
    156 int
    157 sys_clock_gettime(p, v, retval)
    158 	struct proc *p;
    159 	void *v;
    160 	register_t *retval;
    161 {
    162 	struct sys_clock_gettime_args /* {
    163 		syscallarg(clockid_t) clock_id;
    164 		syscallarg(struct timespec *) tp;
    165 	} */ *uap = v;
    166 	clockid_t clock_id;
    167 	struct timeval atv;
    168 	struct timespec ats;
    169 
    170 	clock_id = SCARG(uap, clock_id);
    171 	if (clock_id != CLOCK_REALTIME)
    172 		return (EINVAL);
    173 
    174 	microtime(&atv);
    175 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    176 
    177 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    178 }
    179 
    180 /* ARGSUSED */
    181 int
    182 sys_clock_settime(p, v, retval)
    183 	struct proc *p;
    184 	void *v;
    185 	register_t *retval;
    186 {
    187 	struct sys_clock_settime_args /* {
    188 		syscallarg(clockid_t) clock_id;
    189 		syscallarg(const struct timespec *) tp;
    190 	} */ *uap = v;
    191 	clockid_t clock_id;
    192 	struct timespec ats;
    193 	int error;
    194 
    195 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    196 		return (error);
    197 
    198 	clock_id = SCARG(uap, clock_id);
    199 
    200 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    201 		return (error);
    202 
    203 	return (clock_settime1(clock_id, &ats));
    204 }
    205 
    206 
    207 int
    208 clock_settime1(clock_id, ats)
    209 	clockid_t clock_id;
    210 	struct timespec *ats;
    211 {
    212 	struct timeval atv;
    213 	int error;
    214 
    215 	if (clock_id != CLOCK_REALTIME)
    216 		return (EINVAL);
    217 
    218 	TIMESPEC_TO_TIMEVAL(&atv, ats);
    219 	if ((error = settime(&atv)) != 0)
    220 		return (error);
    221 
    222 	return 0;
    223 }
    224 
    225 int
    226 sys_clock_getres(p, v, retval)
    227 	struct proc *p;
    228 	void *v;
    229 	register_t *retval;
    230 {
    231 	struct sys_clock_getres_args /* {
    232 		syscallarg(clockid_t) clock_id;
    233 		syscallarg(struct timespec *) tp;
    234 	} */ *uap = v;
    235 	clockid_t clock_id;
    236 	struct timespec ts;
    237 	int error = 0;
    238 
    239 	clock_id = SCARG(uap, clock_id);
    240 	if (clock_id != CLOCK_REALTIME)
    241 		return (EINVAL);
    242 
    243 	if (SCARG(uap, tp)) {
    244 		ts.tv_sec = 0;
    245 		ts.tv_nsec = 1000000000 / hz;
    246 
    247 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    248 	}
    249 
    250 	return error;
    251 }
    252 
    253 /* ARGSUSED */
    254 int
    255 sys_nanosleep(p, v, retval)
    256 	struct proc *p;
    257 	void *v;
    258 	register_t *retval;
    259 {
    260 	static int nanowait;
    261 	struct sys_nanosleep_args/* {
    262 		syscallarg(struct timespec *) rqtp;
    263 		syscallarg(struct timespec *) rmtp;
    264 	} */ *uap = v;
    265 	struct timespec rqt;
    266 	struct timespec rmt;
    267 	struct timeval atv, utv;
    268 	int error, s, timo;
    269 
    270 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    271 		       sizeof(struct timespec));
    272 	if (error)
    273 		return (error);
    274 
    275 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    276 	if (itimerfix(&atv))
    277 		return (EINVAL);
    278 
    279 	s = splclock();
    280 	timeradd(&atv,&time,&atv);
    281 	timo = hzto(&atv);
    282 	/*
    283 	 * Avoid inadvertantly sleeping forever
    284 	 */
    285 	if (timo == 0)
    286 		timo = 1;
    287 	splx(s);
    288 
    289 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    290 	if (error == ERESTART)
    291 		error = EINTR;
    292 	if (error == EWOULDBLOCK)
    293 		error = 0;
    294 
    295 	if (SCARG(uap, rmtp)) {
    296 		int error;
    297 
    298 		s = splclock();
    299 		utv = time;
    300 		splx(s);
    301 
    302 		timersub(&atv, &utv, &utv);
    303 		if (utv.tv_sec < 0)
    304 			timerclear(&utv);
    305 
    306 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    307 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    308 			sizeof(rmt));
    309 		if (error)
    310 			return (error);
    311 	}
    312 
    313 	return error;
    314 }
    315 
    316 /* ARGSUSED */
    317 int
    318 sys_gettimeofday(p, v, retval)
    319 	struct proc *p;
    320 	void *v;
    321 	register_t *retval;
    322 {
    323 	struct sys_gettimeofday_args /* {
    324 		syscallarg(struct timeval *) tp;
    325 		syscallarg(struct timezone *) tzp;
    326 	} */ *uap = v;
    327 	struct timeval atv;
    328 	int error = 0;
    329 	struct timezone tzfake;
    330 
    331 	if (SCARG(uap, tp)) {
    332 		microtime(&atv);
    333 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    334 		if (error)
    335 			return (error);
    336 	}
    337 	if (SCARG(uap, tzp)) {
    338 		/*
    339 		 * NetBSD has no kernel notion of time zone, so we just
    340 		 * fake up a timezone struct and return it if demanded.
    341 		 */
    342 		tzfake.tz_minuteswest = 0;
    343 		tzfake.tz_dsttime = 0;
    344 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    345 	}
    346 	return (error);
    347 }
    348 
    349 /* ARGSUSED */
    350 int
    351 sys_settimeofday(p, v, retval)
    352 	struct proc *p;
    353 	void *v;
    354 	register_t *retval;
    355 {
    356 	struct sys_settimeofday_args /* {
    357 		syscallarg(const struct timeval *) tv;
    358 		syscallarg(const struct timezone *) tzp;
    359 	} */ *uap = v;
    360 	struct timeval atv;
    361 	struct timezone atz;
    362 	struct timeval *tv = NULL;
    363 	struct timezone *tzp = NULL;
    364 	int error;
    365 
    366 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    367 		return (error);
    368 
    369 	/* Verify all parameters before changing time. */
    370 	if (SCARG(uap, tv)) {
    371 		if ((error = copyin(SCARG(uap, tv), &atv, sizeof(atv))) != 0)
    372 			return (error);
    373 		tv = &atv;
    374 	}
    375 	/* XXX since we don't use tz, probably no point in doing copyin. */
    376 	if (SCARG(uap, tzp)) {
    377 		if ((error = copyin(SCARG(uap, tzp), &atz, sizeof(atz))) != 0)
    378 			return (error);
    379 		tzp = &atz;
    380 	}
    381 
    382 	return settimeofday1(tv, tzp, p);
    383 }
    384 
    385 int
    386 settimeofday1(tv, tzp, p)
    387 	struct timeval *tv;
    388 	struct timezone *tzp;
    389 	struct proc *p;
    390 {
    391 	int error;
    392 
    393 	if (tv)
    394 		if ((error = settime(tv)) != 0)
    395 			return (error);
    396 	/*
    397 	 * NetBSD has no kernel notion of time zone, and only an
    398 	 * obsolete program would try to set it, so we log a warning.
    399 	 */
    400 	if (tzp)
    401 		log(LOG_WARNING, "pid %d attempted to set the "
    402 		    "(obsolete) kernel time zone\n", p->p_pid);
    403 	return (0);
    404 }
    405 
    406 int	tickdelta;			/* current clock skew, us. per tick */
    407 long	timedelta;			/* unapplied time correction, us. */
    408 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    409 
    410 /* ARGSUSED */
    411 int
    412 sys_adjtime(p, v, retval)
    413 	struct proc *p;
    414 	void *v;
    415 	register_t *retval;
    416 {
    417 	struct sys_adjtime_args /* {
    418 		syscallarg(const struct timeval *) delta;
    419 		syscallarg(struct timeval *) olddelta;
    420 	} */ *uap = v;
    421 	struct timeval atv;
    422 	struct timeval *oatv = NULL;
    423 	int error;
    424 
    425 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    426 		return (error);
    427 
    428 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
    429 	if (error)
    430 		return (error);
    431 
    432 	if (SCARG(uap, olddelta) != NULL) {
    433 		if (uvm_useracc((caddr_t)SCARG(uap, olddelta),
    434 		    sizeof(struct timeval), B_WRITE) == FALSE)
    435 			return (EFAULT);
    436 		oatv = SCARG(uap, olddelta);
    437 	}
    438 
    439 	return adjtime1(&atv, oatv, p);
    440 }
    441 
    442 int
    443 adjtime1(delta, olddelta, p)
    444 	struct timeval *delta;
    445 	struct timeval *olddelta;
    446 	struct proc *p;
    447 {
    448 	long ndelta, ntickdelta, odelta;
    449 	int s;
    450 
    451 	/*
    452 	 * Compute the total correction and the rate at which to apply it.
    453 	 * Round the adjustment down to a whole multiple of the per-tick
    454 	 * delta, so that after some number of incremental changes in
    455 	 * hardclock(), tickdelta will become zero, lest the correction
    456 	 * overshoot and start taking us away from the desired final time.
    457 	 */
    458 	ndelta = delta->tv_sec * 1000000 + delta->tv_usec;
    459 	if (ndelta > bigadj || ndelta < -bigadj)
    460 		ntickdelta = 10 * tickadj;
    461 	else
    462 		ntickdelta = tickadj;
    463 	if (ndelta % ntickdelta)
    464 		ndelta = ndelta / ntickdelta * ntickdelta;
    465 
    466 	/*
    467 	 * To make hardclock()'s job easier, make the per-tick delta negative
    468 	 * if we want time to run slower; then hardclock can simply compute
    469 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    470 	 */
    471 	if (ndelta < 0)
    472 		ntickdelta = -ntickdelta;
    473 	s = splclock();
    474 	odelta = timedelta;
    475 	timedelta = ndelta;
    476 	tickdelta = ntickdelta;
    477 	splx(s);
    478 
    479 	if (olddelta) {
    480 		delta->tv_sec = odelta / 1000000;
    481 		delta->tv_usec = odelta % 1000000;
    482 		(void) copyout(delta, olddelta, sizeof(struct timeval));
    483 	}
    484 	return (0);
    485 }
    486 
    487 /*
    488  * Get value of an interval timer.  The process virtual and
    489  * profiling virtual time timers are kept in the p_stats area, since
    490  * they can be swapped out.  These are kept internally in the
    491  * way they are specified externally: in time until they expire.
    492  *
    493  * The real time interval timer is kept in the process table slot
    494  * for the process, and its value (it_value) is kept as an
    495  * absolute time rather than as a delta, so that it is easy to keep
    496  * periodic real-time signals from drifting.
    497  *
    498  * Virtual time timers are processed in the hardclock() routine of
    499  * kern_clock.c.  The real time timer is processed by a timeout
    500  * routine, called from the softclock() routine.  Since a callout
    501  * may be delayed in real time due to interrupt processing in the system,
    502  * it is possible for the real time timeout routine (realitexpire, given below),
    503  * to be delayed in real time past when it is supposed to occur.  It
    504  * does not suffice, therefore, to reload the real timer .it_value from the
    505  * real time timers .it_interval.  Rather, we compute the next time in
    506  * absolute time the timer should go off.
    507  */
    508 /* ARGSUSED */
    509 int
    510 sys_getitimer(p, v, retval)
    511 	struct proc *p;
    512 	void *v;
    513 	register_t *retval;
    514 {
    515 	struct sys_getitimer_args /* {
    516 		syscallarg(int) which;
    517 		syscallarg(struct itimerval *) itv;
    518 	} */ *uap = v;
    519 	int which = SCARG(uap, which);
    520 	struct itimerval aitv;
    521 	int s;
    522 
    523 	if ((u_int)which > ITIMER_PROF)
    524 		return (EINVAL);
    525 	s = splclock();
    526 	if (which == ITIMER_REAL) {
    527 		/*
    528 		 * Convert from absolute to relative time in .it_value
    529 		 * part of real time timer.  If time for real time timer
    530 		 * has passed return 0, else return difference between
    531 		 * current time and time for the timer to go off.
    532 		 */
    533 		aitv = p->p_realtimer;
    534 		if (timerisset(&aitv.it_value)) {
    535 			if (timercmp(&aitv.it_value, &time, <))
    536 				timerclear(&aitv.it_value);
    537 			else
    538 				timersub(&aitv.it_value, &time, &aitv.it_value);
    539 		}
    540 	} else
    541 		aitv = p->p_stats->p_timer[which];
    542 	splx(s);
    543 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    544 }
    545 
    546 /* ARGSUSED */
    547 int
    548 sys_setitimer(p, v, retval)
    549 	struct proc *p;
    550 	void *v;
    551 	register_t *retval;
    552 {
    553 	struct sys_setitimer_args /* {
    554 		syscallarg(int) which;
    555 		syscallarg(const struct itimerval *) itv;
    556 		syscallarg(struct itimerval *) oitv;
    557 	} */ *uap = v;
    558 	int which = SCARG(uap, which);
    559 	struct sys_getitimer_args getargs;
    560 	struct itimerval aitv;
    561 	const struct itimerval *itvp;
    562 	int s, error;
    563 
    564 	if ((u_int)which > ITIMER_PROF)
    565 		return (EINVAL);
    566 	itvp = SCARG(uap, itv);
    567 	if (itvp &&
    568 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    569 		return (error);
    570 	if (SCARG(uap, oitv) != NULL) {
    571 		SCARG(&getargs, which) = which;
    572 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    573 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    574 			return (error);
    575 	}
    576 	if (itvp == 0)
    577 		return (0);
    578 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    579 		return (EINVAL);
    580 	s = splclock();
    581 	if (which == ITIMER_REAL) {
    582 		callout_stop(&p->p_realit_ch);
    583 		if (timerisset(&aitv.it_value)) {
    584 			/*
    585 			 * Don't need to check hzto() return value, here.
    586 			 * callout_reset() does it for us.
    587 			 */
    588 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    589 			callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
    590 			    realitexpire, p);
    591 		}
    592 		p->p_realtimer = aitv;
    593 	} else
    594 		p->p_stats->p_timer[which] = aitv;
    595 	splx(s);
    596 	return (0);
    597 }
    598 
    599 /*
    600  * Real interval timer expired:
    601  * send process whose timer expired an alarm signal.
    602  * If time is not set up to reload, then just return.
    603  * Else compute next time timer should go off which is > current time.
    604  * This is where delay in processing this timeout causes multiple
    605  * SIGALRM calls to be compressed into one.
    606  */
    607 void
    608 realitexpire(arg)
    609 	void *arg;
    610 {
    611 	struct proc *p;
    612 	int s;
    613 
    614 	p = (struct proc *)arg;
    615 	psignal(p, SIGALRM);
    616 	if (!timerisset(&p->p_realtimer.it_interval)) {
    617 		timerclear(&p->p_realtimer.it_value);
    618 		return;
    619 	}
    620 	for (;;) {
    621 		s = splclock();
    622 		timeradd(&p->p_realtimer.it_value,
    623 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    624 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    625 			/*
    626 			 * Don't need to check hzto() return value, here.
    627 			 * callout_reset() does it for us.
    628 			 */
    629 			callout_reset(&p->p_realit_ch,
    630 			    hzto(&p->p_realtimer.it_value), realitexpire, p);
    631 			splx(s);
    632 			return;
    633 		}
    634 		splx(s);
    635 	}
    636 }
    637 
    638 /*
    639  * Check that a proposed value to load into the .it_value or
    640  * .it_interval part of an interval timer is acceptable, and
    641  * fix it to have at least minimal value (i.e. if it is less
    642  * than the resolution of the clock, round it up.)
    643  */
    644 int
    645 itimerfix(tv)
    646 	struct timeval *tv;
    647 {
    648 
    649 	if (tv->tv_sec < 0 || tv->tv_sec > 1000000000 ||
    650 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    651 		return (EINVAL);
    652 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    653 		tv->tv_usec = tick;
    654 	return (0);
    655 }
    656 
    657 /*
    658  * Decrement an interval timer by a specified number
    659  * of microseconds, which must be less than a second,
    660  * i.e. < 1000000.  If the timer expires, then reload
    661  * it.  In this case, carry over (usec - old value) to
    662  * reduce the value reloaded into the timer so that
    663  * the timer does not drift.  This routine assumes
    664  * that it is called in a context where the timers
    665  * on which it is operating cannot change in value.
    666  */
    667 int
    668 itimerdecr(itp, usec)
    669 	struct itimerval *itp;
    670 	int usec;
    671 {
    672 
    673 	if (itp->it_value.tv_usec < usec) {
    674 		if (itp->it_value.tv_sec == 0) {
    675 			/* expired, and already in next interval */
    676 			usec -= itp->it_value.tv_usec;
    677 			goto expire;
    678 		}
    679 		itp->it_value.tv_usec += 1000000;
    680 		itp->it_value.tv_sec--;
    681 	}
    682 	itp->it_value.tv_usec -= usec;
    683 	usec = 0;
    684 	if (timerisset(&itp->it_value))
    685 		return (1);
    686 	/* expired, exactly at end of interval */
    687 expire:
    688 	if (timerisset(&itp->it_interval)) {
    689 		itp->it_value = itp->it_interval;
    690 		itp->it_value.tv_usec -= usec;
    691 		if (itp->it_value.tv_usec < 0) {
    692 			itp->it_value.tv_usec += 1000000;
    693 			itp->it_value.tv_sec--;
    694 		}
    695 	} else
    696 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    697 	return (0);
    698 }
    699 
    700 /*
    701  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
    702  * for usage and rationale.
    703  */
    704 int
    705 ratecheck(lasttime, mininterval)
    706 	struct timeval *lasttime;
    707 	const struct timeval *mininterval;
    708 {
    709 	struct timeval tv, delta;
    710 	int s, rv = 0;
    711 
    712 	s = splclock();
    713 	tv = mono_time;
    714 	splx(s);
    715 
    716 	timersub(&tv, lasttime, &delta);
    717 
    718 	/*
    719 	 * check for 0,0 is so that the message will be seen at least once,
    720 	 * even if interval is huge.
    721 	 */
    722 	if (timercmp(&delta, mininterval, >=) ||
    723 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
    724 		*lasttime = tv;
    725 		rv = 1;
    726 	}
    727 
    728 	return (rv);
    729 }
    730 
    731 /*
    732  * ppsratecheck(): packets (or events) per second limitation.
    733  */
    734 int
    735 ppsratecheck(lasttime, curpps, maxpps)
    736 	struct timeval *lasttime;
    737 	int *curpps;
    738 	int maxpps;	/* maximum pps allowed */
    739 {
    740 	struct timeval tv, delta;
    741 	int s, rv;
    742 
    743 	s = splclock();
    744 	tv = mono_time;
    745 	splx(s);
    746 
    747 	timersub(&tv, lasttime, &delta);
    748 
    749 	/*
    750 	 * check for 0,0 is so that the message will be seen at least once.
    751 	 * if more than one second have passed since the last update of
    752 	 * lasttime, reset the counter.
    753 	 *
    754 	 * we do increment *curpps even in *curpps < maxpps case, as some may
    755 	 * try to use *curpps for stat purposes as well.
    756 	 */
    757 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
    758 	    delta.tv_sec >= 1) {
    759 		*lasttime = tv;
    760 		*curpps = 0;
    761 		rv = 1;
    762 	} else if (maxpps < 0)
    763 		rv = 1;
    764 	else if (*curpps < maxpps)
    765 		rv = 1;
    766 	else
    767 		rv = 0;
    768 
    769 #if 1 /*DIAGNOSTIC?*/
    770 	/* be careful about wrap-around */
    771 	if (*curpps + 1 > *curpps)
    772 		*curpps = *curpps + 1;
    773 #else
    774 	/*
    775 	 * assume that there's not too many calls to this function.
    776 	 * not sure if the assumption holds, as it depends on *caller's*
    777 	 * behavior, not the behavior of this function.
    778 	 * IMHO it is wrong to make assumption on the caller's behavior,
    779 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
    780 	 */
    781 	*curpps = *curpps + 1;
    782 #endif
    783 
    784 	return (rv);
    785 }
    786