kern_time.c revision 1.58 1 /* $NetBSD: kern_time.c,v 1.58 2001/11/12 15:25:18 lukem Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.58 2001/11/12 15:25:18 lukem Exp $");
76
77 #include "fs_nfs.h"
78 #include "opt_nfs.h"
79 #include "opt_nfsserver.h"
80
81 #include <sys/param.h>
82 #include <sys/resourcevar.h>
83 #include <sys/kernel.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/vnode.h>
87 #include <sys/signalvar.h>
88 #include <sys/syslog.h>
89
90 #include <sys/mount.h>
91 #include <sys/syscallargs.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #if defined(NFS) || defined(NFSSERVER)
96 #include <nfs/rpcv2.h>
97 #include <nfs/nfsproto.h>
98 #include <nfs/nfs_var.h>
99 #endif
100
101 #include <machine/cpu.h>
102
103 /*
104 * Time of day and interval timer support.
105 *
106 * These routines provide the kernel entry points to get and set
107 * the time-of-day and per-process interval timers. Subroutines
108 * here provide support for adding and subtracting timeval structures
109 * and decrementing interval timers, optionally reloading the interval
110 * timers when they expire.
111 */
112
113 /* This function is used by clock_settime and settimeofday */
114 int
115 settime(tv)
116 struct timeval *tv;
117 {
118 struct timeval delta;
119 struct cpu_info *ci;
120 int s;
121
122 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123 s = splclock();
124 timersub(tv, &time, &delta);
125 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126 splx(s);
127 return (EPERM);
128 }
129 #ifdef notyet
130 if ((delta.tv_sec < 86400) && securelevel > 0) {
131 splx(s);
132 return (EPERM);
133 }
134 #endif
135 time = *tv;
136 (void) spllowersoftclock();
137 timeradd(&boottime, &delta, &boottime);
138 /*
139 * XXXSMP
140 * This is wrong. We should traverse a list of all
141 * CPUs and add the delta to the runtime of those
142 * CPUs which have a process on them.
143 */
144 ci = curcpu();
145 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146 &ci->ci_schedstate.spc_runtime);
147 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148 nqnfs_lease_updatetime(delta.tv_sec);
149 # endif
150 splx(s);
151 resettodr();
152 return (0);
153 }
154
155 /* ARGSUSED */
156 int
157 sys_clock_gettime(p, v, retval)
158 struct proc *p;
159 void *v;
160 register_t *retval;
161 {
162 struct sys_clock_gettime_args /* {
163 syscallarg(clockid_t) clock_id;
164 syscallarg(struct timespec *) tp;
165 } */ *uap = v;
166 clockid_t clock_id;
167 struct timeval atv;
168 struct timespec ats;
169
170 clock_id = SCARG(uap, clock_id);
171 if (clock_id != CLOCK_REALTIME)
172 return (EINVAL);
173
174 microtime(&atv);
175 TIMEVAL_TO_TIMESPEC(&atv,&ats);
176
177 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
178 }
179
180 /* ARGSUSED */
181 int
182 sys_clock_settime(p, v, retval)
183 struct proc *p;
184 void *v;
185 register_t *retval;
186 {
187 struct sys_clock_settime_args /* {
188 syscallarg(clockid_t) clock_id;
189 syscallarg(const struct timespec *) tp;
190 } */ *uap = v;
191 clockid_t clock_id;
192 struct timespec ats;
193 int error;
194
195 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
196 return (error);
197
198 clock_id = SCARG(uap, clock_id);
199
200 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
201 return (error);
202
203 return (clock_settime1(clock_id, &ats));
204 }
205
206
207 int
208 clock_settime1(clock_id, ats)
209 clockid_t clock_id;
210 struct timespec *ats;
211 {
212 struct timeval atv;
213 int error;
214
215 if (clock_id != CLOCK_REALTIME)
216 return (EINVAL);
217
218 TIMESPEC_TO_TIMEVAL(&atv, ats);
219 if ((error = settime(&atv)) != 0)
220 return (error);
221
222 return 0;
223 }
224
225 int
226 sys_clock_getres(p, v, retval)
227 struct proc *p;
228 void *v;
229 register_t *retval;
230 {
231 struct sys_clock_getres_args /* {
232 syscallarg(clockid_t) clock_id;
233 syscallarg(struct timespec *) tp;
234 } */ *uap = v;
235 clockid_t clock_id;
236 struct timespec ts;
237 int error = 0;
238
239 clock_id = SCARG(uap, clock_id);
240 if (clock_id != CLOCK_REALTIME)
241 return (EINVAL);
242
243 if (SCARG(uap, tp)) {
244 ts.tv_sec = 0;
245 ts.tv_nsec = 1000000000 / hz;
246
247 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
248 }
249
250 return error;
251 }
252
253 /* ARGSUSED */
254 int
255 sys_nanosleep(p, v, retval)
256 struct proc *p;
257 void *v;
258 register_t *retval;
259 {
260 static int nanowait;
261 struct sys_nanosleep_args/* {
262 syscallarg(struct timespec *) rqtp;
263 syscallarg(struct timespec *) rmtp;
264 } */ *uap = v;
265 struct timespec rqt;
266 struct timespec rmt;
267 struct timeval atv, utv;
268 int error, s, timo;
269
270 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
271 sizeof(struct timespec));
272 if (error)
273 return (error);
274
275 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
276 if (itimerfix(&atv))
277 return (EINVAL);
278
279 s = splclock();
280 timeradd(&atv,&time,&atv);
281 timo = hzto(&atv);
282 /*
283 * Avoid inadvertantly sleeping forever
284 */
285 if (timo == 0)
286 timo = 1;
287 splx(s);
288
289 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
290 if (error == ERESTART)
291 error = EINTR;
292 if (error == EWOULDBLOCK)
293 error = 0;
294
295 if (SCARG(uap, rmtp)) {
296 int error;
297
298 s = splclock();
299 utv = time;
300 splx(s);
301
302 timersub(&atv, &utv, &utv);
303 if (utv.tv_sec < 0)
304 timerclear(&utv);
305
306 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
307 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
308 sizeof(rmt));
309 if (error)
310 return (error);
311 }
312
313 return error;
314 }
315
316 /* ARGSUSED */
317 int
318 sys_gettimeofday(p, v, retval)
319 struct proc *p;
320 void *v;
321 register_t *retval;
322 {
323 struct sys_gettimeofday_args /* {
324 syscallarg(struct timeval *) tp;
325 syscallarg(struct timezone *) tzp;
326 } */ *uap = v;
327 struct timeval atv;
328 int error = 0;
329 struct timezone tzfake;
330
331 if (SCARG(uap, tp)) {
332 microtime(&atv);
333 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
334 if (error)
335 return (error);
336 }
337 if (SCARG(uap, tzp)) {
338 /*
339 * NetBSD has no kernel notion of time zone, so we just
340 * fake up a timezone struct and return it if demanded.
341 */
342 tzfake.tz_minuteswest = 0;
343 tzfake.tz_dsttime = 0;
344 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
345 }
346 return (error);
347 }
348
349 /* ARGSUSED */
350 int
351 sys_settimeofday(p, v, retval)
352 struct proc *p;
353 void *v;
354 register_t *retval;
355 {
356 struct sys_settimeofday_args /* {
357 syscallarg(const struct timeval *) tv;
358 syscallarg(const struct timezone *) tzp;
359 } */ *uap = v;
360 struct timeval atv;
361 struct timezone atz;
362 struct timeval *tv = NULL;
363 struct timezone *tzp = NULL;
364 int error;
365
366 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
367 return (error);
368
369 /* Verify all parameters before changing time. */
370 if (SCARG(uap, tv)) {
371 if ((error = copyin(SCARG(uap, tv), &atv, sizeof(atv))) != 0)
372 return (error);
373 tv = &atv;
374 }
375 /* XXX since we don't use tz, probably no point in doing copyin. */
376 if (SCARG(uap, tzp)) {
377 if ((error = copyin(SCARG(uap, tzp), &atz, sizeof(atz))) != 0)
378 return (error);
379 tzp = &atz;
380 }
381
382 return settimeofday1(tv, tzp, p);
383 }
384
385 int
386 settimeofday1(tv, tzp, p)
387 struct timeval *tv;
388 struct timezone *tzp;
389 struct proc *p;
390 {
391 int error;
392
393 if (tv)
394 if ((error = settime(tv)) != 0)
395 return (error);
396 /*
397 * NetBSD has no kernel notion of time zone, and only an
398 * obsolete program would try to set it, so we log a warning.
399 */
400 if (tzp)
401 log(LOG_WARNING, "pid %d attempted to set the "
402 "(obsolete) kernel time zone\n", p->p_pid);
403 return (0);
404 }
405
406 int tickdelta; /* current clock skew, us. per tick */
407 long timedelta; /* unapplied time correction, us. */
408 long bigadj = 1000000; /* use 10x skew above bigadj us. */
409
410 /* ARGSUSED */
411 int
412 sys_adjtime(p, v, retval)
413 struct proc *p;
414 void *v;
415 register_t *retval;
416 {
417 struct sys_adjtime_args /* {
418 syscallarg(const struct timeval *) delta;
419 syscallarg(struct timeval *) olddelta;
420 } */ *uap = v;
421 struct timeval atv;
422 struct timeval *oatv = NULL;
423 int error;
424
425 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
426 return (error);
427
428 error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
429 if (error)
430 return (error);
431
432 if (SCARG(uap, olddelta) != NULL) {
433 if (uvm_useracc((caddr_t)SCARG(uap, olddelta),
434 sizeof(struct timeval), B_WRITE) == FALSE)
435 return (EFAULT);
436 oatv = SCARG(uap, olddelta);
437 }
438
439 return adjtime1(&atv, oatv, p);
440 }
441
442 int
443 adjtime1(delta, olddelta, p)
444 struct timeval *delta;
445 struct timeval *olddelta;
446 struct proc *p;
447 {
448 long ndelta, ntickdelta, odelta;
449 int s;
450
451 /*
452 * Compute the total correction and the rate at which to apply it.
453 * Round the adjustment down to a whole multiple of the per-tick
454 * delta, so that after some number of incremental changes in
455 * hardclock(), tickdelta will become zero, lest the correction
456 * overshoot and start taking us away from the desired final time.
457 */
458 ndelta = delta->tv_sec * 1000000 + delta->tv_usec;
459 if (ndelta > bigadj || ndelta < -bigadj)
460 ntickdelta = 10 * tickadj;
461 else
462 ntickdelta = tickadj;
463 if (ndelta % ntickdelta)
464 ndelta = ndelta / ntickdelta * ntickdelta;
465
466 /*
467 * To make hardclock()'s job easier, make the per-tick delta negative
468 * if we want time to run slower; then hardclock can simply compute
469 * tick + tickdelta, and subtract tickdelta from timedelta.
470 */
471 if (ndelta < 0)
472 ntickdelta = -ntickdelta;
473 s = splclock();
474 odelta = timedelta;
475 timedelta = ndelta;
476 tickdelta = ntickdelta;
477 splx(s);
478
479 if (olddelta) {
480 delta->tv_sec = odelta / 1000000;
481 delta->tv_usec = odelta % 1000000;
482 (void) copyout(delta, olddelta, sizeof(struct timeval));
483 }
484 return (0);
485 }
486
487 /*
488 * Get value of an interval timer. The process virtual and
489 * profiling virtual time timers are kept in the p_stats area, since
490 * they can be swapped out. These are kept internally in the
491 * way they are specified externally: in time until they expire.
492 *
493 * The real time interval timer is kept in the process table slot
494 * for the process, and its value (it_value) is kept as an
495 * absolute time rather than as a delta, so that it is easy to keep
496 * periodic real-time signals from drifting.
497 *
498 * Virtual time timers are processed in the hardclock() routine of
499 * kern_clock.c. The real time timer is processed by a timeout
500 * routine, called from the softclock() routine. Since a callout
501 * may be delayed in real time due to interrupt processing in the system,
502 * it is possible for the real time timeout routine (realitexpire, given below),
503 * to be delayed in real time past when it is supposed to occur. It
504 * does not suffice, therefore, to reload the real timer .it_value from the
505 * real time timers .it_interval. Rather, we compute the next time in
506 * absolute time the timer should go off.
507 */
508 /* ARGSUSED */
509 int
510 sys_getitimer(p, v, retval)
511 struct proc *p;
512 void *v;
513 register_t *retval;
514 {
515 struct sys_getitimer_args /* {
516 syscallarg(int) which;
517 syscallarg(struct itimerval *) itv;
518 } */ *uap = v;
519 int which = SCARG(uap, which);
520 struct itimerval aitv;
521 int s;
522
523 if ((u_int)which > ITIMER_PROF)
524 return (EINVAL);
525 s = splclock();
526 if (which == ITIMER_REAL) {
527 /*
528 * Convert from absolute to relative time in .it_value
529 * part of real time timer. If time for real time timer
530 * has passed return 0, else return difference between
531 * current time and time for the timer to go off.
532 */
533 aitv = p->p_realtimer;
534 if (timerisset(&aitv.it_value)) {
535 if (timercmp(&aitv.it_value, &time, <))
536 timerclear(&aitv.it_value);
537 else
538 timersub(&aitv.it_value, &time, &aitv.it_value);
539 }
540 } else
541 aitv = p->p_stats->p_timer[which];
542 splx(s);
543 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
544 }
545
546 /* ARGSUSED */
547 int
548 sys_setitimer(p, v, retval)
549 struct proc *p;
550 void *v;
551 register_t *retval;
552 {
553 struct sys_setitimer_args /* {
554 syscallarg(int) which;
555 syscallarg(const struct itimerval *) itv;
556 syscallarg(struct itimerval *) oitv;
557 } */ *uap = v;
558 int which = SCARG(uap, which);
559 struct sys_getitimer_args getargs;
560 struct itimerval aitv;
561 const struct itimerval *itvp;
562 int s, error;
563
564 if ((u_int)which > ITIMER_PROF)
565 return (EINVAL);
566 itvp = SCARG(uap, itv);
567 if (itvp &&
568 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
569 return (error);
570 if (SCARG(uap, oitv) != NULL) {
571 SCARG(&getargs, which) = which;
572 SCARG(&getargs, itv) = SCARG(uap, oitv);
573 if ((error = sys_getitimer(p, &getargs, retval)) != 0)
574 return (error);
575 }
576 if (itvp == 0)
577 return (0);
578 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
579 return (EINVAL);
580 s = splclock();
581 if (which == ITIMER_REAL) {
582 callout_stop(&p->p_realit_ch);
583 if (timerisset(&aitv.it_value)) {
584 /*
585 * Don't need to check hzto() return value, here.
586 * callout_reset() does it for us.
587 */
588 timeradd(&aitv.it_value, &time, &aitv.it_value);
589 callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
590 realitexpire, p);
591 }
592 p->p_realtimer = aitv;
593 } else
594 p->p_stats->p_timer[which] = aitv;
595 splx(s);
596 return (0);
597 }
598
599 /*
600 * Real interval timer expired:
601 * send process whose timer expired an alarm signal.
602 * If time is not set up to reload, then just return.
603 * Else compute next time timer should go off which is > current time.
604 * This is where delay in processing this timeout causes multiple
605 * SIGALRM calls to be compressed into one.
606 */
607 void
608 realitexpire(arg)
609 void *arg;
610 {
611 struct proc *p;
612 int s;
613
614 p = (struct proc *)arg;
615 psignal(p, SIGALRM);
616 if (!timerisset(&p->p_realtimer.it_interval)) {
617 timerclear(&p->p_realtimer.it_value);
618 return;
619 }
620 for (;;) {
621 s = splclock();
622 timeradd(&p->p_realtimer.it_value,
623 &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
624 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
625 /*
626 * Don't need to check hzto() return value, here.
627 * callout_reset() does it for us.
628 */
629 callout_reset(&p->p_realit_ch,
630 hzto(&p->p_realtimer.it_value), realitexpire, p);
631 splx(s);
632 return;
633 }
634 splx(s);
635 }
636 }
637
638 /*
639 * Check that a proposed value to load into the .it_value or
640 * .it_interval part of an interval timer is acceptable, and
641 * fix it to have at least minimal value (i.e. if it is less
642 * than the resolution of the clock, round it up.)
643 */
644 int
645 itimerfix(tv)
646 struct timeval *tv;
647 {
648
649 if (tv->tv_sec < 0 || tv->tv_sec > 1000000000 ||
650 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
651 return (EINVAL);
652 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
653 tv->tv_usec = tick;
654 return (0);
655 }
656
657 /*
658 * Decrement an interval timer by a specified number
659 * of microseconds, which must be less than a second,
660 * i.e. < 1000000. If the timer expires, then reload
661 * it. In this case, carry over (usec - old value) to
662 * reduce the value reloaded into the timer so that
663 * the timer does not drift. This routine assumes
664 * that it is called in a context where the timers
665 * on which it is operating cannot change in value.
666 */
667 int
668 itimerdecr(itp, usec)
669 struct itimerval *itp;
670 int usec;
671 {
672
673 if (itp->it_value.tv_usec < usec) {
674 if (itp->it_value.tv_sec == 0) {
675 /* expired, and already in next interval */
676 usec -= itp->it_value.tv_usec;
677 goto expire;
678 }
679 itp->it_value.tv_usec += 1000000;
680 itp->it_value.tv_sec--;
681 }
682 itp->it_value.tv_usec -= usec;
683 usec = 0;
684 if (timerisset(&itp->it_value))
685 return (1);
686 /* expired, exactly at end of interval */
687 expire:
688 if (timerisset(&itp->it_interval)) {
689 itp->it_value = itp->it_interval;
690 itp->it_value.tv_usec -= usec;
691 if (itp->it_value.tv_usec < 0) {
692 itp->it_value.tv_usec += 1000000;
693 itp->it_value.tv_sec--;
694 }
695 } else
696 itp->it_value.tv_usec = 0; /* sec is already 0 */
697 return (0);
698 }
699
700 /*
701 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
702 * for usage and rationale.
703 */
704 int
705 ratecheck(lasttime, mininterval)
706 struct timeval *lasttime;
707 const struct timeval *mininterval;
708 {
709 struct timeval tv, delta;
710 int s, rv = 0;
711
712 s = splclock();
713 tv = mono_time;
714 splx(s);
715
716 timersub(&tv, lasttime, &delta);
717
718 /*
719 * check for 0,0 is so that the message will be seen at least once,
720 * even if interval is huge.
721 */
722 if (timercmp(&delta, mininterval, >=) ||
723 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
724 *lasttime = tv;
725 rv = 1;
726 }
727
728 return (rv);
729 }
730
731 /*
732 * ppsratecheck(): packets (or events) per second limitation.
733 */
734 int
735 ppsratecheck(lasttime, curpps, maxpps)
736 struct timeval *lasttime;
737 int *curpps;
738 int maxpps; /* maximum pps allowed */
739 {
740 struct timeval tv, delta;
741 int s, rv;
742
743 s = splclock();
744 tv = mono_time;
745 splx(s);
746
747 timersub(&tv, lasttime, &delta);
748
749 /*
750 * check for 0,0 is so that the message will be seen at least once.
751 * if more than one second have passed since the last update of
752 * lasttime, reset the counter.
753 *
754 * we do increment *curpps even in *curpps < maxpps case, as some may
755 * try to use *curpps for stat purposes as well.
756 */
757 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
758 delta.tv_sec >= 1) {
759 *lasttime = tv;
760 *curpps = 0;
761 rv = 1;
762 } else if (maxpps < 0)
763 rv = 1;
764 else if (*curpps < maxpps)
765 rv = 1;
766 else
767 rv = 0;
768
769 #if 1 /*DIAGNOSTIC?*/
770 /* be careful about wrap-around */
771 if (*curpps + 1 > *curpps)
772 *curpps = *curpps + 1;
773 #else
774 /*
775 * assume that there's not too many calls to this function.
776 * not sure if the assumption holds, as it depends on *caller's*
777 * behavior, not the behavior of this function.
778 * IMHO it is wrong to make assumption on the caller's behavior,
779 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
780 */
781 *curpps = *curpps + 1;
782 #endif
783
784 return (rv);
785 }
786