kern_time.c revision 1.61 1 /* $NetBSD: kern_time.c,v 1.61 2002/01/31 00:13:08 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.61 2002/01/31 00:13:08 simonb Exp $");
76
77 #include "fs_nfs.h"
78 #include "opt_nfs.h"
79 #include "opt_nfsserver.h"
80
81 #include <sys/param.h>
82 #include <sys/resourcevar.h>
83 #include <sys/kernel.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/vnode.h>
87 #include <sys/signalvar.h>
88 #include <sys/syslog.h>
89
90 #include <sys/mount.h>
91 #include <sys/syscallargs.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #if defined(NFS) || defined(NFSSERVER)
96 #include <nfs/rpcv2.h>
97 #include <nfs/nfsproto.h>
98 #include <nfs/nfs_var.h>
99 #endif
100
101 #include <machine/cpu.h>
102
103 /*
104 * Time of day and interval timer support.
105 *
106 * These routines provide the kernel entry points to get and set
107 * the time-of-day and per-process interval timers. Subroutines
108 * here provide support for adding and subtracting timeval structures
109 * and decrementing interval timers, optionally reloading the interval
110 * timers when they expire.
111 */
112
113 /* This function is used by clock_settime and settimeofday */
114 int
115 settime(tv)
116 struct timeval *tv;
117 {
118 struct timeval delta;
119 struct cpu_info *ci;
120 int s;
121
122 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123 s = splclock();
124 timersub(tv, &time, &delta);
125 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126 splx(s);
127 return (EPERM);
128 }
129 #ifdef notyet
130 if ((delta.tv_sec < 86400) && securelevel > 0) {
131 splx(s);
132 return (EPERM);
133 }
134 #endif
135 time = *tv;
136 (void) spllowersoftclock();
137 timeradd(&boottime, &delta, &boottime);
138 /*
139 * XXXSMP
140 * This is wrong. We should traverse a list of all
141 * CPUs and add the delta to the runtime of those
142 * CPUs which have a process on them.
143 */
144 ci = curcpu();
145 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146 &ci->ci_schedstate.spc_runtime);
147 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148 nqnfs_lease_updatetime(delta.tv_sec);
149 # endif
150 splx(s);
151 resettodr();
152 return (0);
153 }
154
155 /* ARGSUSED */
156 int
157 sys_clock_gettime(p, v, retval)
158 struct proc *p;
159 void *v;
160 register_t *retval;
161 {
162 struct sys_clock_gettime_args /* {
163 syscallarg(clockid_t) clock_id;
164 syscallarg(struct timespec *) tp;
165 } */ *uap = v;
166 clockid_t clock_id;
167 struct timeval atv;
168 struct timespec ats;
169 int s;
170
171 clock_id = SCARG(uap, clock_id);
172 switch (clock_id) {
173 case CLOCK_REALTIME:
174 microtime(&atv);
175 TIMEVAL_TO_TIMESPEC(&atv,&ats);
176 break;
177 case CLOCK_MONOTONIC:
178 /* XXX "hz" granularity */
179 s = splclock();
180 atv = mono_time;
181 splx(s);
182 TIMEVAL_TO_TIMESPEC(&atv,&ats);
183 break;
184 default:
185 return (EINVAL);
186 }
187
188 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
189 }
190
191 /* ARGSUSED */
192 int
193 sys_clock_settime(p, v, retval)
194 struct proc *p;
195 void *v;
196 register_t *retval;
197 {
198 struct sys_clock_settime_args /* {
199 syscallarg(clockid_t) clock_id;
200 syscallarg(const struct timespec *) tp;
201 } */ *uap = v;
202 int error;
203
204 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
205 return (error);
206
207 return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
208 }
209
210
211 int
212 clock_settime1(clock_id, tp)
213 clockid_t clock_id;
214 const struct timespec *tp;
215 {
216 struct timespec ats;
217 struct timeval atv;
218 int error;
219
220 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
221 return (error);
222
223 switch (clock_id) {
224 case CLOCK_REALTIME:
225 TIMESPEC_TO_TIMEVAL(&atv, &ats);
226 if ((error = settime(&atv)) != 0)
227 return (error);
228 break;
229 case CLOCK_MONOTONIC:
230 return (EINVAL); /* read-only clock */
231 default:
232 return (EINVAL);
233 }
234
235 return 0;
236 }
237
238 int
239 sys_clock_getres(p, v, retval)
240 struct proc *p;
241 void *v;
242 register_t *retval;
243 {
244 struct sys_clock_getres_args /* {
245 syscallarg(clockid_t) clock_id;
246 syscallarg(struct timespec *) tp;
247 } */ *uap = v;
248 clockid_t clock_id;
249 struct timespec ts;
250 int error = 0;
251
252 clock_id = SCARG(uap, clock_id);
253 switch (clock_id) {
254 case CLOCK_REALTIME:
255 case CLOCK_MONOTONIC:
256 ts.tv_sec = 0;
257 ts.tv_nsec = 1000000000 / hz;
258 break;
259 default:
260 return (EINVAL);
261 }
262
263 if (SCARG(uap, tp))
264 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
265
266 return error;
267 }
268
269 /* ARGSUSED */
270 int
271 sys_nanosleep(p, v, retval)
272 struct proc *p;
273 void *v;
274 register_t *retval;
275 {
276 static int nanowait;
277 struct sys_nanosleep_args/* {
278 syscallarg(struct timespec *) rqtp;
279 syscallarg(struct timespec *) rmtp;
280 } */ *uap = v;
281 struct timespec rqt;
282 struct timespec rmt;
283 struct timeval atv, utv;
284 int error, s, timo;
285
286 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
287 sizeof(struct timespec));
288 if (error)
289 return (error);
290
291 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
292 if (itimerfix(&atv) || atv.tv_sec > 1000000000)
293 return (EINVAL);
294
295 s = splclock();
296 timeradd(&atv,&time,&atv);
297 timo = hzto(&atv);
298 /*
299 * Avoid inadvertantly sleeping forever
300 */
301 if (timo == 0)
302 timo = 1;
303 splx(s);
304
305 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
306 if (error == ERESTART)
307 error = EINTR;
308 if (error == EWOULDBLOCK)
309 error = 0;
310
311 if (SCARG(uap, rmtp)) {
312 int error;
313
314 s = splclock();
315 utv = time;
316 splx(s);
317
318 timersub(&atv, &utv, &utv);
319 if (utv.tv_sec < 0)
320 timerclear(&utv);
321
322 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
323 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
324 sizeof(rmt));
325 if (error)
326 return (error);
327 }
328
329 return error;
330 }
331
332 /* ARGSUSED */
333 int
334 sys_gettimeofday(p, v, retval)
335 struct proc *p;
336 void *v;
337 register_t *retval;
338 {
339 struct sys_gettimeofday_args /* {
340 syscallarg(struct timeval *) tp;
341 syscallarg(struct timezone *) tzp;
342 } */ *uap = v;
343 struct timeval atv;
344 int error = 0;
345 struct timezone tzfake;
346
347 if (SCARG(uap, tp)) {
348 microtime(&atv);
349 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
350 if (error)
351 return (error);
352 }
353 if (SCARG(uap, tzp)) {
354 /*
355 * NetBSD has no kernel notion of time zone, so we just
356 * fake up a timezone struct and return it if demanded.
357 */
358 tzfake.tz_minuteswest = 0;
359 tzfake.tz_dsttime = 0;
360 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
361 }
362 return (error);
363 }
364
365 /* ARGSUSED */
366 int
367 sys_settimeofday(p, v, retval)
368 struct proc *p;
369 void *v;
370 register_t *retval;
371 {
372 struct sys_settimeofday_args /* {
373 syscallarg(const struct timeval *) tv;
374 syscallarg(const struct timezone *) tzp;
375 } */ *uap = v;
376 int error;
377
378 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
379 return (error);
380
381 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
382 }
383
384 int
385 settimeofday1(utv, utzp, p)
386 const struct timeval *utv;
387 const struct timezone *utzp;
388 struct proc *p;
389 {
390 struct timeval atv;
391 struct timezone atz;
392 struct timeval *tv = NULL;
393 struct timezone *tzp = NULL;
394 int error;
395
396 /* Verify all parameters before changing time. */
397 if (utv) {
398 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
399 return (error);
400 tv = &atv;
401 }
402 /* XXX since we don't use tz, probably no point in doing copyin. */
403 if (utzp) {
404 if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
405 return (error);
406 tzp = &atz;
407 }
408
409 if (tv)
410 if ((error = settime(tv)) != 0)
411 return (error);
412 /*
413 * NetBSD has no kernel notion of time zone, and only an
414 * obsolete program would try to set it, so we log a warning.
415 */
416 if (tzp)
417 log(LOG_WARNING, "pid %d attempted to set the "
418 "(obsolete) kernel time zone\n", p->p_pid);
419 return (0);
420 }
421
422 int tickdelta; /* current clock skew, us. per tick */
423 long timedelta; /* unapplied time correction, us. */
424 long bigadj = 1000000; /* use 10x skew above bigadj us. */
425
426 /* ARGSUSED */
427 int
428 sys_adjtime(p, v, retval)
429 struct proc *p;
430 void *v;
431 register_t *retval;
432 {
433 struct sys_adjtime_args /* {
434 syscallarg(const struct timeval *) delta;
435 syscallarg(struct timeval *) olddelta;
436 } */ *uap = v;
437 int error;
438
439 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
440 return (error);
441
442 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
443 }
444
445 int
446 adjtime1(delta, olddelta, p)
447 const struct timeval *delta;
448 struct timeval *olddelta;
449 struct proc *p;
450 {
451 struct timeval atv;
452 struct timeval *oatv = NULL;
453 long ndelta, ntickdelta, odelta;
454 int error;
455 int s;
456
457 error = copyin(delta, &atv, sizeof(struct timeval));
458 if (error)
459 return (error);
460
461 if (olddelta != NULL) {
462 if (uvm_useracc((caddr_t)olddelta,
463 sizeof(struct timeval), B_WRITE) == FALSE)
464 return (EFAULT);
465 oatv = olddelta;
466 }
467
468 /*
469 * Compute the total correction and the rate at which to apply it.
470 * Round the adjustment down to a whole multiple of the per-tick
471 * delta, so that after some number of incremental changes in
472 * hardclock(), tickdelta will become zero, lest the correction
473 * overshoot and start taking us away from the desired final time.
474 */
475 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
476 if (ndelta > bigadj || ndelta < -bigadj)
477 ntickdelta = 10 * tickadj;
478 else
479 ntickdelta = tickadj;
480 if (ndelta % ntickdelta)
481 ndelta = ndelta / ntickdelta * ntickdelta;
482
483 /*
484 * To make hardclock()'s job easier, make the per-tick delta negative
485 * if we want time to run slower; then hardclock can simply compute
486 * tick + tickdelta, and subtract tickdelta from timedelta.
487 */
488 if (ndelta < 0)
489 ntickdelta = -ntickdelta;
490 s = splclock();
491 odelta = timedelta;
492 timedelta = ndelta;
493 tickdelta = ntickdelta;
494 splx(s);
495
496 if (olddelta) {
497 atv.tv_sec = odelta / 1000000;
498 atv.tv_usec = odelta % 1000000;
499 (void) copyout(&atv, olddelta, sizeof(struct timeval));
500 }
501 return (0);
502 }
503
504 /*
505 * Get value of an interval timer. The process virtual and
506 * profiling virtual time timers are kept in the p_stats area, since
507 * they can be swapped out. These are kept internally in the
508 * way they are specified externally: in time until they expire.
509 *
510 * The real time interval timer is kept in the process table slot
511 * for the process, and its value (it_value) is kept as an
512 * absolute time rather than as a delta, so that it is easy to keep
513 * periodic real-time signals from drifting.
514 *
515 * Virtual time timers are processed in the hardclock() routine of
516 * kern_clock.c. The real time timer is processed by a timeout
517 * routine, called from the softclock() routine. Since a callout
518 * may be delayed in real time due to interrupt processing in the system,
519 * it is possible for the real time timeout routine (realitexpire, given below),
520 * to be delayed in real time past when it is supposed to occur. It
521 * does not suffice, therefore, to reload the real timer .it_value from the
522 * real time timers .it_interval. Rather, we compute the next time in
523 * absolute time the timer should go off.
524 */
525 /* ARGSUSED */
526 int
527 sys_getitimer(p, v, retval)
528 struct proc *p;
529 void *v;
530 register_t *retval;
531 {
532 struct sys_getitimer_args /* {
533 syscallarg(int) which;
534 syscallarg(struct itimerval *) itv;
535 } */ *uap = v;
536 int which = SCARG(uap, which);
537 struct itimerval aitv;
538 int s;
539
540 if ((u_int)which > ITIMER_PROF)
541 return (EINVAL);
542 s = splclock();
543 if (which == ITIMER_REAL) {
544 /*
545 * Convert from absolute to relative time in .it_value
546 * part of real time timer. If time for real time timer
547 * has passed return 0, else return difference between
548 * current time and time for the timer to go off.
549 */
550 aitv = p->p_realtimer;
551 if (timerisset(&aitv.it_value)) {
552 if (timercmp(&aitv.it_value, &time, <))
553 timerclear(&aitv.it_value);
554 else
555 timersub(&aitv.it_value, &time, &aitv.it_value);
556 }
557 } else
558 aitv = p->p_stats->p_timer[which];
559 splx(s);
560 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
561 }
562
563 /* ARGSUSED */
564 int
565 sys_setitimer(p, v, retval)
566 struct proc *p;
567 void *v;
568 register_t *retval;
569 {
570 struct sys_setitimer_args /* {
571 syscallarg(int) which;
572 syscallarg(const struct itimerval *) itv;
573 syscallarg(struct itimerval *) oitv;
574 } */ *uap = v;
575 int which = SCARG(uap, which);
576 struct sys_getitimer_args getargs;
577 struct itimerval aitv;
578 const struct itimerval *itvp;
579 int s, error;
580
581 if ((u_int)which > ITIMER_PROF)
582 return (EINVAL);
583 itvp = SCARG(uap, itv);
584 if (itvp &&
585 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
586 return (error);
587 if (SCARG(uap, oitv) != NULL) {
588 SCARG(&getargs, which) = which;
589 SCARG(&getargs, itv) = SCARG(uap, oitv);
590 if ((error = sys_getitimer(p, &getargs, retval)) != 0)
591 return (error);
592 }
593 if (itvp == 0)
594 return (0);
595 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
596 return (EINVAL);
597 s = splclock();
598 if (which == ITIMER_REAL) {
599 callout_stop(&p->p_realit_ch);
600 if (timerisset(&aitv.it_value)) {
601 /*
602 * Don't need to check hzto() return value, here.
603 * callout_reset() does it for us.
604 */
605 timeradd(&aitv.it_value, &time, &aitv.it_value);
606 callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
607 realitexpire, p);
608 }
609 p->p_realtimer = aitv;
610 } else
611 p->p_stats->p_timer[which] = aitv;
612 splx(s);
613 return (0);
614 }
615
616 /*
617 * Real interval timer expired:
618 * send process whose timer expired an alarm signal.
619 * If time is not set up to reload, then just return.
620 * Else compute next time timer should go off which is > current time.
621 * This is where delay in processing this timeout causes multiple
622 * SIGALRM calls to be compressed into one.
623 */
624 void
625 realitexpire(arg)
626 void *arg;
627 {
628 struct proc *p;
629 int s;
630
631 p = (struct proc *)arg;
632 psignal(p, SIGALRM);
633 if (!timerisset(&p->p_realtimer.it_interval)) {
634 timerclear(&p->p_realtimer.it_value);
635 return;
636 }
637 for (;;) {
638 s = splclock();
639 timeradd(&p->p_realtimer.it_value,
640 &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
641 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
642 /*
643 * Don't need to check hzto() return value, here.
644 * callout_reset() does it for us.
645 */
646 callout_reset(&p->p_realit_ch,
647 hzto(&p->p_realtimer.it_value), realitexpire, p);
648 splx(s);
649 return;
650 }
651 splx(s);
652 }
653 }
654
655 /*
656 * Check that a proposed value to load into the .it_value or
657 * .it_interval part of an interval timer is acceptable, and
658 * fix it to have at least minimal value (i.e. if it is less
659 * than the resolution of the clock, round it up.)
660 */
661 int
662 itimerfix(tv)
663 struct timeval *tv;
664 {
665
666 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
667 return (EINVAL);
668 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
669 tv->tv_usec = tick;
670 return (0);
671 }
672
673 /*
674 * Decrement an interval timer by a specified number
675 * of microseconds, which must be less than a second,
676 * i.e. < 1000000. If the timer expires, then reload
677 * it. In this case, carry over (usec - old value) to
678 * reduce the value reloaded into the timer so that
679 * the timer does not drift. This routine assumes
680 * that it is called in a context where the timers
681 * on which it is operating cannot change in value.
682 */
683 int
684 itimerdecr(itp, usec)
685 struct itimerval *itp;
686 int usec;
687 {
688
689 if (itp->it_value.tv_usec < usec) {
690 if (itp->it_value.tv_sec == 0) {
691 /* expired, and already in next interval */
692 usec -= itp->it_value.tv_usec;
693 goto expire;
694 }
695 itp->it_value.tv_usec += 1000000;
696 itp->it_value.tv_sec--;
697 }
698 itp->it_value.tv_usec -= usec;
699 usec = 0;
700 if (timerisset(&itp->it_value))
701 return (1);
702 /* expired, exactly at end of interval */
703 expire:
704 if (timerisset(&itp->it_interval)) {
705 itp->it_value = itp->it_interval;
706 itp->it_value.tv_usec -= usec;
707 if (itp->it_value.tv_usec < 0) {
708 itp->it_value.tv_usec += 1000000;
709 itp->it_value.tv_sec--;
710 }
711 } else
712 itp->it_value.tv_usec = 0; /* sec is already 0 */
713 return (0);
714 }
715
716 /*
717 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
718 * for usage and rationale.
719 */
720 int
721 ratecheck(lasttime, mininterval)
722 struct timeval *lasttime;
723 const struct timeval *mininterval;
724 {
725 struct timeval tv, delta;
726 int s, rv = 0;
727
728 s = splclock();
729 tv = mono_time;
730 splx(s);
731
732 timersub(&tv, lasttime, &delta);
733
734 /*
735 * check for 0,0 is so that the message will be seen at least once,
736 * even if interval is huge.
737 */
738 if (timercmp(&delta, mininterval, >=) ||
739 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
740 *lasttime = tv;
741 rv = 1;
742 }
743
744 return (rv);
745 }
746
747 /*
748 * ppsratecheck(): packets (or events) per second limitation.
749 */
750 int
751 ppsratecheck(lasttime, curpps, maxpps)
752 struct timeval *lasttime;
753 int *curpps;
754 int maxpps; /* maximum pps allowed */
755 {
756 struct timeval tv, delta;
757 int s, rv;
758
759 s = splclock();
760 tv = mono_time;
761 splx(s);
762
763 timersub(&tv, lasttime, &delta);
764
765 /*
766 * check for 0,0 is so that the message will be seen at least once.
767 * if more than one second have passed since the last update of
768 * lasttime, reset the counter.
769 *
770 * we do increment *curpps even in *curpps < maxpps case, as some may
771 * try to use *curpps for stat purposes as well.
772 */
773 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
774 delta.tv_sec >= 1) {
775 *lasttime = tv;
776 *curpps = 0;
777 rv = 1;
778 } else if (maxpps < 0)
779 rv = 1;
780 else if (*curpps < maxpps)
781 rv = 1;
782 else
783 rv = 0;
784
785 #if 1 /*DIAGNOSTIC?*/
786 /* be careful about wrap-around */
787 if (*curpps + 1 > *curpps)
788 *curpps = *curpps + 1;
789 #else
790 /*
791 * assume that there's not too many calls to this function.
792 * not sure if the assumption holds, as it depends on *caller's*
793 * behavior, not the behavior of this function.
794 * IMHO it is wrong to make assumption on the caller's behavior,
795 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
796 */
797 *curpps = *curpps + 1;
798 #endif
799
800 return (rv);
801 }
802