Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.61
      1 /*	$NetBSD: kern_time.c,v 1.61 2002/01/31 00:13:08 simonb Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the University of
     54  *	California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     72  */
     73 
     74 #include <sys/cdefs.h>
     75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.61 2002/01/31 00:13:08 simonb Exp $");
     76 
     77 #include "fs_nfs.h"
     78 #include "opt_nfs.h"
     79 #include "opt_nfsserver.h"
     80 
     81 #include <sys/param.h>
     82 #include <sys/resourcevar.h>
     83 #include <sys/kernel.h>
     84 #include <sys/systm.h>
     85 #include <sys/proc.h>
     86 #include <sys/vnode.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/syslog.h>
     89 
     90 #include <sys/mount.h>
     91 #include <sys/syscallargs.h>
     92 
     93 #include <uvm/uvm_extern.h>
     94 
     95 #if defined(NFS) || defined(NFSSERVER)
     96 #include <nfs/rpcv2.h>
     97 #include <nfs/nfsproto.h>
     98 #include <nfs/nfs_var.h>
     99 #endif
    100 
    101 #include <machine/cpu.h>
    102 
    103 /*
    104  * Time of day and interval timer support.
    105  *
    106  * These routines provide the kernel entry points to get and set
    107  * the time-of-day and per-process interval timers.  Subroutines
    108  * here provide support for adding and subtracting timeval structures
    109  * and decrementing interval timers, optionally reloading the interval
    110  * timers when they expire.
    111  */
    112 
    113 /* This function is used by clock_settime and settimeofday */
    114 int
    115 settime(tv)
    116 	struct timeval *tv;
    117 {
    118 	struct timeval delta;
    119 	struct cpu_info *ci;
    120 	int s;
    121 
    122 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    123 	s = splclock();
    124 	timersub(tv, &time, &delta);
    125 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    126 		splx(s);
    127 		return (EPERM);
    128 	}
    129 #ifdef notyet
    130 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    131 		splx(s);
    132 		return (EPERM);
    133 	}
    134 #endif
    135 	time = *tv;
    136 	(void) spllowersoftclock();
    137 	timeradd(&boottime, &delta, &boottime);
    138 	/*
    139 	 * XXXSMP
    140 	 * This is wrong.  We should traverse a list of all
    141 	 * CPUs and add the delta to the runtime of those
    142 	 * CPUs which have a process on them.
    143 	 */
    144 	ci = curcpu();
    145 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    146 	    &ci->ci_schedstate.spc_runtime);
    147 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    148 		nqnfs_lease_updatetime(delta.tv_sec);
    149 #	endif
    150 	splx(s);
    151 	resettodr();
    152 	return (0);
    153 }
    154 
    155 /* ARGSUSED */
    156 int
    157 sys_clock_gettime(p, v, retval)
    158 	struct proc *p;
    159 	void *v;
    160 	register_t *retval;
    161 {
    162 	struct sys_clock_gettime_args /* {
    163 		syscallarg(clockid_t) clock_id;
    164 		syscallarg(struct timespec *) tp;
    165 	} */ *uap = v;
    166 	clockid_t clock_id;
    167 	struct timeval atv;
    168 	struct timespec ats;
    169 	int s;
    170 
    171 	clock_id = SCARG(uap, clock_id);
    172 	switch (clock_id) {
    173 	case CLOCK_REALTIME:
    174 		microtime(&atv);
    175 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    176 		break;
    177 	case CLOCK_MONOTONIC:
    178 		/* XXX "hz" granularity */
    179 		s = splclock();
    180 		atv = mono_time;
    181 		splx(s);
    182 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    183 		break;
    184 	default:
    185 		return (EINVAL);
    186 	}
    187 
    188 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    189 }
    190 
    191 /* ARGSUSED */
    192 int
    193 sys_clock_settime(p, v, retval)
    194 	struct proc *p;
    195 	void *v;
    196 	register_t *retval;
    197 {
    198 	struct sys_clock_settime_args /* {
    199 		syscallarg(clockid_t) clock_id;
    200 		syscallarg(const struct timespec *) tp;
    201 	} */ *uap = v;
    202 	int error;
    203 
    204 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    205 		return (error);
    206 
    207 	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
    208 }
    209 
    210 
    211 int
    212 clock_settime1(clock_id, tp)
    213 	clockid_t clock_id;
    214 	const struct timespec *tp;
    215 {
    216 	struct timespec ats;
    217 	struct timeval atv;
    218 	int error;
    219 
    220 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    221 		return (error);
    222 
    223 	switch (clock_id) {
    224 	case CLOCK_REALTIME:
    225 		TIMESPEC_TO_TIMEVAL(&atv, &ats);
    226 		if ((error = settime(&atv)) != 0)
    227 			return (error);
    228 		break;
    229 	case CLOCK_MONOTONIC:
    230 		return (EINVAL);	/* read-only clock */
    231 	default:
    232 		return (EINVAL);
    233 	}
    234 
    235 	return 0;
    236 }
    237 
    238 int
    239 sys_clock_getres(p, v, retval)
    240 	struct proc *p;
    241 	void *v;
    242 	register_t *retval;
    243 {
    244 	struct sys_clock_getres_args /* {
    245 		syscallarg(clockid_t) clock_id;
    246 		syscallarg(struct timespec *) tp;
    247 	} */ *uap = v;
    248 	clockid_t clock_id;
    249 	struct timespec ts;
    250 	int error = 0;
    251 
    252 	clock_id = SCARG(uap, clock_id);
    253 	switch (clock_id) {
    254 	case CLOCK_REALTIME:
    255 	case CLOCK_MONOTONIC:
    256 		ts.tv_sec = 0;
    257 		ts.tv_nsec = 1000000000 / hz;
    258 		break;
    259 	default:
    260 		return (EINVAL);
    261 	}
    262 
    263 	if (SCARG(uap, tp))
    264 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    265 
    266 	return error;
    267 }
    268 
    269 /* ARGSUSED */
    270 int
    271 sys_nanosleep(p, v, retval)
    272 	struct proc *p;
    273 	void *v;
    274 	register_t *retval;
    275 {
    276 	static int nanowait;
    277 	struct sys_nanosleep_args/* {
    278 		syscallarg(struct timespec *) rqtp;
    279 		syscallarg(struct timespec *) rmtp;
    280 	} */ *uap = v;
    281 	struct timespec rqt;
    282 	struct timespec rmt;
    283 	struct timeval atv, utv;
    284 	int error, s, timo;
    285 
    286 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    287 		       sizeof(struct timespec));
    288 	if (error)
    289 		return (error);
    290 
    291 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    292 	if (itimerfix(&atv) || atv.tv_sec > 1000000000)
    293 		return (EINVAL);
    294 
    295 	s = splclock();
    296 	timeradd(&atv,&time,&atv);
    297 	timo = hzto(&atv);
    298 	/*
    299 	 * Avoid inadvertantly sleeping forever
    300 	 */
    301 	if (timo == 0)
    302 		timo = 1;
    303 	splx(s);
    304 
    305 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    306 	if (error == ERESTART)
    307 		error = EINTR;
    308 	if (error == EWOULDBLOCK)
    309 		error = 0;
    310 
    311 	if (SCARG(uap, rmtp)) {
    312 		int error;
    313 
    314 		s = splclock();
    315 		utv = time;
    316 		splx(s);
    317 
    318 		timersub(&atv, &utv, &utv);
    319 		if (utv.tv_sec < 0)
    320 			timerclear(&utv);
    321 
    322 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    323 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    324 			sizeof(rmt));
    325 		if (error)
    326 			return (error);
    327 	}
    328 
    329 	return error;
    330 }
    331 
    332 /* ARGSUSED */
    333 int
    334 sys_gettimeofday(p, v, retval)
    335 	struct proc *p;
    336 	void *v;
    337 	register_t *retval;
    338 {
    339 	struct sys_gettimeofday_args /* {
    340 		syscallarg(struct timeval *) tp;
    341 		syscallarg(struct timezone *) tzp;
    342 	} */ *uap = v;
    343 	struct timeval atv;
    344 	int error = 0;
    345 	struct timezone tzfake;
    346 
    347 	if (SCARG(uap, tp)) {
    348 		microtime(&atv);
    349 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    350 		if (error)
    351 			return (error);
    352 	}
    353 	if (SCARG(uap, tzp)) {
    354 		/*
    355 		 * NetBSD has no kernel notion of time zone, so we just
    356 		 * fake up a timezone struct and return it if demanded.
    357 		 */
    358 		tzfake.tz_minuteswest = 0;
    359 		tzfake.tz_dsttime = 0;
    360 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    361 	}
    362 	return (error);
    363 }
    364 
    365 /* ARGSUSED */
    366 int
    367 sys_settimeofday(p, v, retval)
    368 	struct proc *p;
    369 	void *v;
    370 	register_t *retval;
    371 {
    372 	struct sys_settimeofday_args /* {
    373 		syscallarg(const struct timeval *) tv;
    374 		syscallarg(const struct timezone *) tzp;
    375 	} */ *uap = v;
    376 	int error;
    377 
    378 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    379 		return (error);
    380 
    381 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
    382 }
    383 
    384 int
    385 settimeofday1(utv, utzp, p)
    386 	const struct timeval *utv;
    387 	const struct timezone *utzp;
    388 	struct proc *p;
    389 {
    390 	struct timeval atv;
    391 	struct timezone atz;
    392 	struct timeval *tv = NULL;
    393 	struct timezone *tzp = NULL;
    394 	int error;
    395 
    396 	/* Verify all parameters before changing time. */
    397 	if (utv) {
    398 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    399 			return (error);
    400 		tv = &atv;
    401 	}
    402 	/* XXX since we don't use tz, probably no point in doing copyin. */
    403 	if (utzp) {
    404 		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
    405 			return (error);
    406 		tzp = &atz;
    407 	}
    408 
    409 	if (tv)
    410 		if ((error = settime(tv)) != 0)
    411 			return (error);
    412 	/*
    413 	 * NetBSD has no kernel notion of time zone, and only an
    414 	 * obsolete program would try to set it, so we log a warning.
    415 	 */
    416 	if (tzp)
    417 		log(LOG_WARNING, "pid %d attempted to set the "
    418 		    "(obsolete) kernel time zone\n", p->p_pid);
    419 	return (0);
    420 }
    421 
    422 int	tickdelta;			/* current clock skew, us. per tick */
    423 long	timedelta;			/* unapplied time correction, us. */
    424 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    425 
    426 /* ARGSUSED */
    427 int
    428 sys_adjtime(p, v, retval)
    429 	struct proc *p;
    430 	void *v;
    431 	register_t *retval;
    432 {
    433 	struct sys_adjtime_args /* {
    434 		syscallarg(const struct timeval *) delta;
    435 		syscallarg(struct timeval *) olddelta;
    436 	} */ *uap = v;
    437 	int error;
    438 
    439 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    440 		return (error);
    441 
    442 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
    443 }
    444 
    445 int
    446 adjtime1(delta, olddelta, p)
    447 	const struct timeval *delta;
    448 	struct timeval *olddelta;
    449 	struct proc *p;
    450 {
    451 	struct timeval atv;
    452 	struct timeval *oatv = NULL;
    453 	long ndelta, ntickdelta, odelta;
    454 	int error;
    455 	int s;
    456 
    457 	error = copyin(delta, &atv, sizeof(struct timeval));
    458 	if (error)
    459 		return (error);
    460 
    461 	if (olddelta != NULL) {
    462 		if (uvm_useracc((caddr_t)olddelta,
    463 		    sizeof(struct timeval), B_WRITE) == FALSE)
    464 			return (EFAULT);
    465 		oatv = olddelta;
    466 	}
    467 
    468 	/*
    469 	 * Compute the total correction and the rate at which to apply it.
    470 	 * Round the adjustment down to a whole multiple of the per-tick
    471 	 * delta, so that after some number of incremental changes in
    472 	 * hardclock(), tickdelta will become zero, lest the correction
    473 	 * overshoot and start taking us away from the desired final time.
    474 	 */
    475 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    476 	if (ndelta > bigadj || ndelta < -bigadj)
    477 		ntickdelta = 10 * tickadj;
    478 	else
    479 		ntickdelta = tickadj;
    480 	if (ndelta % ntickdelta)
    481 		ndelta = ndelta / ntickdelta * ntickdelta;
    482 
    483 	/*
    484 	 * To make hardclock()'s job easier, make the per-tick delta negative
    485 	 * if we want time to run slower; then hardclock can simply compute
    486 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    487 	 */
    488 	if (ndelta < 0)
    489 		ntickdelta = -ntickdelta;
    490 	s = splclock();
    491 	odelta = timedelta;
    492 	timedelta = ndelta;
    493 	tickdelta = ntickdelta;
    494 	splx(s);
    495 
    496 	if (olddelta) {
    497 		atv.tv_sec = odelta / 1000000;
    498 		atv.tv_usec = odelta % 1000000;
    499 		(void) copyout(&atv, olddelta, sizeof(struct timeval));
    500 	}
    501 	return (0);
    502 }
    503 
    504 /*
    505  * Get value of an interval timer.  The process virtual and
    506  * profiling virtual time timers are kept in the p_stats area, since
    507  * they can be swapped out.  These are kept internally in the
    508  * way they are specified externally: in time until they expire.
    509  *
    510  * The real time interval timer is kept in the process table slot
    511  * for the process, and its value (it_value) is kept as an
    512  * absolute time rather than as a delta, so that it is easy to keep
    513  * periodic real-time signals from drifting.
    514  *
    515  * Virtual time timers are processed in the hardclock() routine of
    516  * kern_clock.c.  The real time timer is processed by a timeout
    517  * routine, called from the softclock() routine.  Since a callout
    518  * may be delayed in real time due to interrupt processing in the system,
    519  * it is possible for the real time timeout routine (realitexpire, given below),
    520  * to be delayed in real time past when it is supposed to occur.  It
    521  * does not suffice, therefore, to reload the real timer .it_value from the
    522  * real time timers .it_interval.  Rather, we compute the next time in
    523  * absolute time the timer should go off.
    524  */
    525 /* ARGSUSED */
    526 int
    527 sys_getitimer(p, v, retval)
    528 	struct proc *p;
    529 	void *v;
    530 	register_t *retval;
    531 {
    532 	struct sys_getitimer_args /* {
    533 		syscallarg(int) which;
    534 		syscallarg(struct itimerval *) itv;
    535 	} */ *uap = v;
    536 	int which = SCARG(uap, which);
    537 	struct itimerval aitv;
    538 	int s;
    539 
    540 	if ((u_int)which > ITIMER_PROF)
    541 		return (EINVAL);
    542 	s = splclock();
    543 	if (which == ITIMER_REAL) {
    544 		/*
    545 		 * Convert from absolute to relative time in .it_value
    546 		 * part of real time timer.  If time for real time timer
    547 		 * has passed return 0, else return difference between
    548 		 * current time and time for the timer to go off.
    549 		 */
    550 		aitv = p->p_realtimer;
    551 		if (timerisset(&aitv.it_value)) {
    552 			if (timercmp(&aitv.it_value, &time, <))
    553 				timerclear(&aitv.it_value);
    554 			else
    555 				timersub(&aitv.it_value, &time, &aitv.it_value);
    556 		}
    557 	} else
    558 		aitv = p->p_stats->p_timer[which];
    559 	splx(s);
    560 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    561 }
    562 
    563 /* ARGSUSED */
    564 int
    565 sys_setitimer(p, v, retval)
    566 	struct proc *p;
    567 	void *v;
    568 	register_t *retval;
    569 {
    570 	struct sys_setitimer_args /* {
    571 		syscallarg(int) which;
    572 		syscallarg(const struct itimerval *) itv;
    573 		syscallarg(struct itimerval *) oitv;
    574 	} */ *uap = v;
    575 	int which = SCARG(uap, which);
    576 	struct sys_getitimer_args getargs;
    577 	struct itimerval aitv;
    578 	const struct itimerval *itvp;
    579 	int s, error;
    580 
    581 	if ((u_int)which > ITIMER_PROF)
    582 		return (EINVAL);
    583 	itvp = SCARG(uap, itv);
    584 	if (itvp &&
    585 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    586 		return (error);
    587 	if (SCARG(uap, oitv) != NULL) {
    588 		SCARG(&getargs, which) = which;
    589 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    590 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    591 			return (error);
    592 	}
    593 	if (itvp == 0)
    594 		return (0);
    595 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    596 		return (EINVAL);
    597 	s = splclock();
    598 	if (which == ITIMER_REAL) {
    599 		callout_stop(&p->p_realit_ch);
    600 		if (timerisset(&aitv.it_value)) {
    601 			/*
    602 			 * Don't need to check hzto() return value, here.
    603 			 * callout_reset() does it for us.
    604 			 */
    605 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    606 			callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
    607 			    realitexpire, p);
    608 		}
    609 		p->p_realtimer = aitv;
    610 	} else
    611 		p->p_stats->p_timer[which] = aitv;
    612 	splx(s);
    613 	return (0);
    614 }
    615 
    616 /*
    617  * Real interval timer expired:
    618  * send process whose timer expired an alarm signal.
    619  * If time is not set up to reload, then just return.
    620  * Else compute next time timer should go off which is > current time.
    621  * This is where delay in processing this timeout causes multiple
    622  * SIGALRM calls to be compressed into one.
    623  */
    624 void
    625 realitexpire(arg)
    626 	void *arg;
    627 {
    628 	struct proc *p;
    629 	int s;
    630 
    631 	p = (struct proc *)arg;
    632 	psignal(p, SIGALRM);
    633 	if (!timerisset(&p->p_realtimer.it_interval)) {
    634 		timerclear(&p->p_realtimer.it_value);
    635 		return;
    636 	}
    637 	for (;;) {
    638 		s = splclock();
    639 		timeradd(&p->p_realtimer.it_value,
    640 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    641 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    642 			/*
    643 			 * Don't need to check hzto() return value, here.
    644 			 * callout_reset() does it for us.
    645 			 */
    646 			callout_reset(&p->p_realit_ch,
    647 			    hzto(&p->p_realtimer.it_value), realitexpire, p);
    648 			splx(s);
    649 			return;
    650 		}
    651 		splx(s);
    652 	}
    653 }
    654 
    655 /*
    656  * Check that a proposed value to load into the .it_value or
    657  * .it_interval part of an interval timer is acceptable, and
    658  * fix it to have at least minimal value (i.e. if it is less
    659  * than the resolution of the clock, round it up.)
    660  */
    661 int
    662 itimerfix(tv)
    663 	struct timeval *tv;
    664 {
    665 
    666 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    667 		return (EINVAL);
    668 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    669 		tv->tv_usec = tick;
    670 	return (0);
    671 }
    672 
    673 /*
    674  * Decrement an interval timer by a specified number
    675  * of microseconds, which must be less than a second,
    676  * i.e. < 1000000.  If the timer expires, then reload
    677  * it.  In this case, carry over (usec - old value) to
    678  * reduce the value reloaded into the timer so that
    679  * the timer does not drift.  This routine assumes
    680  * that it is called in a context where the timers
    681  * on which it is operating cannot change in value.
    682  */
    683 int
    684 itimerdecr(itp, usec)
    685 	struct itimerval *itp;
    686 	int usec;
    687 {
    688 
    689 	if (itp->it_value.tv_usec < usec) {
    690 		if (itp->it_value.tv_sec == 0) {
    691 			/* expired, and already in next interval */
    692 			usec -= itp->it_value.tv_usec;
    693 			goto expire;
    694 		}
    695 		itp->it_value.tv_usec += 1000000;
    696 		itp->it_value.tv_sec--;
    697 	}
    698 	itp->it_value.tv_usec -= usec;
    699 	usec = 0;
    700 	if (timerisset(&itp->it_value))
    701 		return (1);
    702 	/* expired, exactly at end of interval */
    703 expire:
    704 	if (timerisset(&itp->it_interval)) {
    705 		itp->it_value = itp->it_interval;
    706 		itp->it_value.tv_usec -= usec;
    707 		if (itp->it_value.tv_usec < 0) {
    708 			itp->it_value.tv_usec += 1000000;
    709 			itp->it_value.tv_sec--;
    710 		}
    711 	} else
    712 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    713 	return (0);
    714 }
    715 
    716 /*
    717  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
    718  * for usage and rationale.
    719  */
    720 int
    721 ratecheck(lasttime, mininterval)
    722 	struct timeval *lasttime;
    723 	const struct timeval *mininterval;
    724 {
    725 	struct timeval tv, delta;
    726 	int s, rv = 0;
    727 
    728 	s = splclock();
    729 	tv = mono_time;
    730 	splx(s);
    731 
    732 	timersub(&tv, lasttime, &delta);
    733 
    734 	/*
    735 	 * check for 0,0 is so that the message will be seen at least once,
    736 	 * even if interval is huge.
    737 	 */
    738 	if (timercmp(&delta, mininterval, >=) ||
    739 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
    740 		*lasttime = tv;
    741 		rv = 1;
    742 	}
    743 
    744 	return (rv);
    745 }
    746 
    747 /*
    748  * ppsratecheck(): packets (or events) per second limitation.
    749  */
    750 int
    751 ppsratecheck(lasttime, curpps, maxpps)
    752 	struct timeval *lasttime;
    753 	int *curpps;
    754 	int maxpps;	/* maximum pps allowed */
    755 {
    756 	struct timeval tv, delta;
    757 	int s, rv;
    758 
    759 	s = splclock();
    760 	tv = mono_time;
    761 	splx(s);
    762 
    763 	timersub(&tv, lasttime, &delta);
    764 
    765 	/*
    766 	 * check for 0,0 is so that the message will be seen at least once.
    767 	 * if more than one second have passed since the last update of
    768 	 * lasttime, reset the counter.
    769 	 *
    770 	 * we do increment *curpps even in *curpps < maxpps case, as some may
    771 	 * try to use *curpps for stat purposes as well.
    772 	 */
    773 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
    774 	    delta.tv_sec >= 1) {
    775 		*lasttime = tv;
    776 		*curpps = 0;
    777 		rv = 1;
    778 	} else if (maxpps < 0)
    779 		rv = 1;
    780 	else if (*curpps < maxpps)
    781 		rv = 1;
    782 	else
    783 		rv = 0;
    784 
    785 #if 1 /*DIAGNOSTIC?*/
    786 	/* be careful about wrap-around */
    787 	if (*curpps + 1 > *curpps)
    788 		*curpps = *curpps + 1;
    789 #else
    790 	/*
    791 	 * assume that there's not too many calls to this function.
    792 	 * not sure if the assumption holds, as it depends on *caller's*
    793 	 * behavior, not the behavior of this function.
    794 	 * IMHO it is wrong to make assumption on the caller's behavior,
    795 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
    796 	 */
    797 	*curpps = *curpps + 1;
    798 #endif
    799 
    800 	return (rv);
    801 }
    802