kern_time.c revision 1.63 1 /* $NetBSD: kern_time.c,v 1.63 2003/01/18 10:06:32 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.63 2003/01/18 10:06:32 thorpej Exp $");
76
77 #include "fs_nfs.h"
78 #include "opt_nfs.h"
79 #include "opt_nfsserver.h"
80
81 #include <sys/param.h>
82 #include <sys/resourcevar.h>
83 #include <sys/kernel.h>
84 #include <sys/systm.h>
85 #include <sys/malloc.h>
86 #include <sys/proc.h>
87 #include <sys/sa.h>
88 #include <sys/savar.h>
89 #include <sys/vnode.h>
90 #include <sys/signalvar.h>
91 #include <sys/syslog.h>
92
93 #include <sys/mount.h>
94 #include <sys/syscallargs.h>
95
96 #include <uvm/uvm_extern.h>
97
98 #if defined(NFS) || defined(NFSSERVER)
99 #include <nfs/rpcv2.h>
100 #include <nfs/nfsproto.h>
101 #include <nfs/nfs_var.h>
102 #endif
103
104 #include <machine/cpu.h>
105
106 static void timerupcall(struct lwp *, void *);
107
108
109 /* Time of day and interval timer support.
110 *
111 * These routines provide the kernel entry points to get and set
112 * the time-of-day and per-process interval timers. Subroutines
113 * here provide support for adding and subtracting timeval structures
114 * and decrementing interval timers, optionally reloading the interval
115 * timers when they expire.
116 */
117
118 /* This function is used by clock_settime and settimeofday */
119 int
120 settime(struct timeval *tv)
121 {
122 struct timeval delta;
123 struct cpu_info *ci;
124 int s;
125
126 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
127 s = splclock();
128 timersub(tv, &time, &delta);
129 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
130 splx(s);
131 return (EPERM);
132 }
133 #ifdef notyet
134 if ((delta.tv_sec < 86400) && securelevel > 0) {
135 splx(s);
136 return (EPERM);
137 }
138 #endif
139 time = *tv;
140 (void) spllowersoftclock();
141 timeradd(&boottime, &delta, &boottime);
142 /*
143 * XXXSMP
144 * This is wrong. We should traverse a list of all
145 * CPUs and add the delta to the runtime of those
146 * CPUs which have a process on them.
147 */
148 ci = curcpu();
149 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
150 &ci->ci_schedstate.spc_runtime);
151 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
152 nqnfs_lease_updatetime(delta.tv_sec);
153 # endif
154 splx(s);
155 resettodr();
156 return (0);
157 }
158
159 /* ARGSUSED */
160 int
161 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
162 {
163 struct sys_clock_gettime_args /* {
164 syscallarg(clockid_t) clock_id;
165 syscallarg(struct timespec *) tp;
166 } */ *uap = v;
167 clockid_t clock_id;
168 struct timeval atv;
169 struct timespec ats;
170 int s;
171
172 clock_id = SCARG(uap, clock_id);
173 switch (clock_id) {
174 case CLOCK_REALTIME:
175 microtime(&atv);
176 TIMEVAL_TO_TIMESPEC(&atv,&ats);
177 break;
178 case CLOCK_MONOTONIC:
179 /* XXX "hz" granularity */
180 s = splclock();
181 atv = mono_time;
182 splx(s);
183 TIMEVAL_TO_TIMESPEC(&atv,&ats);
184 break;
185 default:
186 return (EINVAL);
187 }
188
189 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
190 }
191
192 /* ARGSUSED */
193 int
194 sys_clock_settime(l, v, retval)
195 struct lwp *l;
196 void *v;
197 register_t *retval;
198 {
199 struct sys_clock_settime_args /* {
200 syscallarg(clockid_t) clock_id;
201 syscallarg(const struct timespec *) tp;
202 } */ *uap = v;
203 struct proc *p = l->l_proc;
204 int error;
205
206 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
207 return (error);
208
209 return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
210 }
211
212
213 int
214 clock_settime1(clock_id, tp)
215 clockid_t clock_id;
216 const struct timespec *tp;
217 {
218 struct timespec ats;
219 struct timeval atv;
220 int error;
221
222 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
223 return (error);
224
225 switch (clock_id) {
226 case CLOCK_REALTIME:
227 TIMESPEC_TO_TIMEVAL(&atv, &ats);
228 if ((error = settime(&atv)) != 0)
229 return (error);
230 break;
231 case CLOCK_MONOTONIC:
232 return (EINVAL); /* read-only clock */
233 default:
234 return (EINVAL);
235 }
236
237 return 0;
238 }
239
240 int
241 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
242 {
243 struct sys_clock_getres_args /* {
244 syscallarg(clockid_t) clock_id;
245 syscallarg(struct timespec *) tp;
246 } */ *uap = v;
247 clockid_t clock_id;
248 struct timespec ts;
249 int error = 0;
250
251 clock_id = SCARG(uap, clock_id);
252 switch (clock_id) {
253 case CLOCK_REALTIME:
254 case CLOCK_MONOTONIC:
255 ts.tv_sec = 0;
256 ts.tv_nsec = 1000000000 / hz;
257 break;
258 default:
259 return (EINVAL);
260 }
261
262 if (SCARG(uap, tp))
263 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
264
265 return error;
266 }
267
268 /* ARGSUSED */
269 int
270 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
271 {
272 static int nanowait;
273 struct sys_nanosleep_args/* {
274 syscallarg(struct timespec *) rqtp;
275 syscallarg(struct timespec *) rmtp;
276 } */ *uap = v;
277 struct timespec rqt;
278 struct timespec rmt;
279 struct timeval atv, utv;
280 int error, s, timo;
281
282 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
283 sizeof(struct timespec));
284 if (error)
285 return (error);
286
287 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
288 if (itimerfix(&atv) || atv.tv_sec > 1000000000)
289 return (EINVAL);
290
291 s = splclock();
292 timeradd(&atv,&time,&atv);
293 timo = hzto(&atv);
294 /*
295 * Avoid inadvertantly sleeping forever
296 */
297 if (timo == 0)
298 timo = 1;
299 splx(s);
300
301 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
302 if (error == ERESTART)
303 error = EINTR;
304 if (error == EWOULDBLOCK)
305 error = 0;
306
307 if (SCARG(uap, rmtp)) {
308 int error;
309
310 s = splclock();
311 utv = time;
312 splx(s);
313
314 timersub(&atv, &utv, &utv);
315 if (utv.tv_sec < 0)
316 timerclear(&utv);
317
318 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
319 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
320 sizeof(rmt));
321 if (error)
322 return (error);
323 }
324
325 return error;
326 }
327
328 /* ARGSUSED */
329 int
330 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
331 {
332 struct sys_gettimeofday_args /* {
333 syscallarg(struct timeval *) tp;
334 syscallarg(struct timezone *) tzp;
335 } */ *uap = v;
336 struct timeval atv;
337 int error = 0;
338 struct timezone tzfake;
339
340 if (SCARG(uap, tp)) {
341 microtime(&atv);
342 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
343 if (error)
344 return (error);
345 }
346 if (SCARG(uap, tzp)) {
347 /*
348 * NetBSD has no kernel notion of time zone, so we just
349 * fake up a timezone struct and return it if demanded.
350 */
351 tzfake.tz_minuteswest = 0;
352 tzfake.tz_dsttime = 0;
353 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
354 }
355 return (error);
356 }
357
358 /* ARGSUSED */
359 int
360 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
361 {
362 struct sys_settimeofday_args /* {
363 syscallarg(const struct timeval *) tv;
364 syscallarg(const struct timezone *) tzp;
365 } */ *uap = v;
366 struct proc *p = l->l_proc;
367 int error;
368
369 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
370 return (error);
371
372 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
373 }
374
375 int
376 settimeofday1(utv, utzp, p)
377 const struct timeval *utv;
378 const struct timezone *utzp;
379 struct proc *p;
380 {
381 struct timeval atv;
382 struct timezone atz;
383 struct timeval *tv = NULL;
384 struct timezone *tzp = NULL;
385 int error;
386
387 /* Verify all parameters before changing time. */
388 if (utv) {
389 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
390 return (error);
391 tv = &atv;
392 }
393 /* XXX since we don't use tz, probably no point in doing copyin. */
394 if (utzp) {
395 if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
396 return (error);
397 tzp = &atz;
398 }
399
400 if (tv)
401 if ((error = settime(tv)) != 0)
402 return (error);
403 /*
404 * NetBSD has no kernel notion of time zone, and only an
405 * obsolete program would try to set it, so we log a warning.
406 */
407 if (tzp)
408 log(LOG_WARNING, "pid %d attempted to set the "
409 "(obsolete) kernel time zone\n", p->p_pid);
410 return (0);
411 }
412
413 int tickdelta; /* current clock skew, us. per tick */
414 long timedelta; /* unapplied time correction, us. */
415 long bigadj = 1000000; /* use 10x skew above bigadj us. */
416
417 /* ARGSUSED */
418 int
419 sys_adjtime(struct lwp *l, void *v, register_t *retval)
420 {
421 struct sys_adjtime_args /* {
422 syscallarg(const struct timeval *) delta;
423 syscallarg(struct timeval *) olddelta;
424 } */ *uap = v;
425 struct proc *p = l->l_proc;
426 int error;
427
428 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
429 return (error);
430
431 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
432 }
433
434 int
435 adjtime1(delta, olddelta, p)
436 const struct timeval *delta;
437 struct timeval *olddelta;
438 struct proc *p;
439 {
440 struct timeval atv;
441 long ndelta, ntickdelta, odelta;
442 int error;
443 int s;
444
445 error = copyin(delta, &atv, sizeof(struct timeval));
446 if (error)
447 return (error);
448
449 if (olddelta != NULL) {
450 if (uvm_useracc((caddr_t)olddelta,
451 sizeof(struct timeval), B_WRITE) == FALSE)
452 return (EFAULT);
453 }
454
455 /*
456 * Compute the total correction and the rate at which to apply it.
457 * Round the adjustment down to a whole multiple of the per-tick
458 * delta, so that after some number of incremental changes in
459 * hardclock(), tickdelta will become zero, lest the correction
460 * overshoot and start taking us away from the desired final time.
461 */
462 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
463 if (ndelta > bigadj || ndelta < -bigadj)
464 ntickdelta = 10 * tickadj;
465 else
466 ntickdelta = tickadj;
467 if (ndelta % ntickdelta)
468 ndelta = ndelta / ntickdelta * ntickdelta;
469
470 /*
471 * To make hardclock()'s job easier, make the per-tick delta negative
472 * if we want time to run slower; then hardclock can simply compute
473 * tick + tickdelta, and subtract tickdelta from timedelta.
474 */
475 if (ndelta < 0)
476 ntickdelta = -ntickdelta;
477 s = splclock();
478 odelta = timedelta;
479 timedelta = ndelta;
480 tickdelta = ntickdelta;
481 splx(s);
482
483 if (olddelta) {
484 atv.tv_sec = odelta / 1000000;
485 atv.tv_usec = odelta % 1000000;
486 (void) copyout(&atv, olddelta, sizeof(struct timeval));
487 }
488 return (0);
489 }
490
491 /*
492 * Interval timer support. Both the BSD getitimer() family and the POSIX
493 * timer_*() family of routines are supported.
494 *
495 * All timers are kept in an array pointed to by p_timers, which is
496 * allocated on demand - many processes don't use timers at all. The
497 * first three elements in this array are reserved for the BSD timers:
498 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
499 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
500 * syscall.
501 *
502 * Realtime timers are kept in the ptimer structure as an absolute
503 * time; virtual time timers are kept as a linked list of deltas.
504 * Virtual time timers are processed in the hardclock() routine of
505 * kern_clock.c. The real time timer is processed by a callout
506 * routine, called from the softclock() routine. Since a callout may
507 * be delayed in real time due to interrupt processing in the system,
508 * it is possible for the real time timeout routine (realtimeexpire,
509 * given below), to be delayed in real time past when it is supposed
510 * to occur. It does not suffice, therefore, to reload the real timer
511 * .it_value from the real time timers .it_interval. Rather, we
512 * compute the next time in absolute time the timer should go off. */
513
514 /* Allocate a POSIX realtime timer. */
515 int
516 sys_timer_create(struct lwp *l, void *v, register_t *retval)
517 {
518 struct sys_timer_create_args /* {
519 syscallarg(clockid_t) clock_id;
520 syscallarg(struct sigevent *) evp;
521 syscallarg(timer_t *) timerid;
522 } */ *uap = v;
523 struct proc *p = l->l_proc;
524 clockid_t id;
525 struct sigevent *evp;
526 struct ptimer *pt;
527 int timerid, error;
528
529 id = SCARG(uap, clock_id);
530 if (id < CLOCK_REALTIME ||
531 id > CLOCK_PROF)
532 return (EINVAL);
533
534 if (p->p_timers == NULL)
535 timers_alloc(p);
536
537 /* Find a free timer slot, skipping those reserved for setitimer(). */
538 for (timerid = 3; timerid < TIMER_MAX; timerid++)
539 if (p->p_timers->pts_timers[timerid] == NULL)
540 break;
541
542 if (timerid == TIMER_MAX)
543 return EAGAIN;
544
545 pt = pool_get(&ptimer_pool, PR_WAITOK);
546 evp = SCARG(uap, evp);
547 if (evp) {
548 if (((error =
549 copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
550 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
551 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
552 pool_put(&ptimer_pool, pt);
553 return (error ? error : EINVAL);
554 }
555 } else {
556 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
557 switch (id) {
558 case CLOCK_REALTIME:
559 pt->pt_ev.sigev_signo = SIGALRM;
560 break;
561 case CLOCK_VIRTUAL:
562 pt->pt_ev.sigev_signo = SIGVTALRM;
563 break;
564 case CLOCK_PROF:
565 pt->pt_ev.sigev_signo = SIGPROF;
566 break;
567 }
568 pt->pt_ev.sigev_value.sival_int = timerid;
569 }
570 pt->pt_info.si_signo = pt->pt_ev.sigev_signo;
571 pt->pt_info.si_errno = 0;
572 pt->pt_info.si_code = 0;
573 pt->pt_info.si_pid = p->p_pid;
574 pt->pt_info.si_uid = p->p_cred->p_ruid;
575 pt->pt_info.si_sigval = pt->pt_ev.sigev_value;
576
577 pt->pt_type = id;
578 pt->pt_proc = p;
579 pt->pt_overruns = 0;
580 pt->pt_poverruns = 0;
581 timerclear(&pt->pt_time.it_value);
582 if (id == CLOCK_REALTIME)
583 callout_init(&pt->pt_ch);
584 else
585 pt->pt_active = 0;
586
587 p->p_timers->pts_timers[timerid] = pt;
588
589 return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
590 }
591
592
593 /* Delete a POSIX realtime timer */
594 int
595 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
596 {
597 struct sys_timer_delete_args /* {
598 syscallarg(timer_t) timerid;
599 } */ *uap = v;
600 struct proc *p = l->l_proc;
601 int timerid;
602 struct ptimer *pt, *ptn;
603 int s;
604
605 timerid = SCARG(uap, timerid);
606
607 if ((p->p_timers == NULL) ||
608 (timerid < 2) || (timerid >= TIMER_MAX) ||
609 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
610 return (EINVAL);
611
612 if (pt->pt_type == CLOCK_REALTIME)
613 callout_stop(&pt->pt_ch);
614 else if (pt->pt_active) {
615 s = splclock();
616 ptn = LIST_NEXT(pt, pt_list);
617 LIST_REMOVE(pt, pt_list);
618 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
619 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
620 &ptn->pt_time.it_value);
621 splx(s);
622 }
623
624 p->p_timers->pts_timers[timerid] = NULL;
625 pool_put(&ptimer_pool, pt);
626
627 return (0);
628 }
629
630 /*
631 * Set up the given timer. The value in pt->pt_time.it_value is taken to be
632 * relative to now.
633 * Must be called at splclock().
634 */
635 void
636 timer_settime(struct ptimer *pt)
637 {
638 struct ptimer *ptn, *pptn;
639 struct ptlist *ptl;
640
641 if (pt->pt_type == CLOCK_REALTIME) {
642 callout_stop(&pt->pt_ch);
643 if (timerisset(&pt->pt_time.it_value)) {
644 timeradd(&pt->pt_time.it_value, &time,
645 &pt->pt_time.it_value);
646 /*
647 * Don't need to check hzto() return value, here.
648 * callout_reset() does it for us.
649 */
650 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
651 realtimerexpire, pt);
652 }
653 } else {
654 if (pt->pt_active) {
655 ptn = LIST_NEXT(pt, pt_list);
656 LIST_REMOVE(pt, pt_list);
657 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
658 timeradd(&pt->pt_time.it_value,
659 &ptn->pt_time.it_value,
660 &ptn->pt_time.it_value);
661 }
662 if (timerisset(&pt->pt_time.it_value)) {
663 if (pt->pt_type == CLOCK_VIRTUAL)
664 ptl = &pt->pt_proc->p_timers->pts_virtual;
665 else
666 ptl = &pt->pt_proc->p_timers->pts_prof;
667
668 for (ptn = LIST_FIRST(ptl), pptn = NULL;
669 ptn && timercmp(&pt->pt_time.it_value,
670 &ptn->pt_time.it_value, >);
671 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
672 timersub(&pt->pt_time.it_value,
673 &ptn->pt_time.it_value,
674 &pt->pt_time.it_value);
675
676 if (pptn)
677 LIST_INSERT_AFTER(pptn, pt, pt_list);
678 else
679 LIST_INSERT_HEAD(ptl, pt, pt_list);
680
681 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
682 timersub(&ptn->pt_time.it_value,
683 &pt->pt_time.it_value,
684 &ptn->pt_time.it_value);
685
686 pt->pt_active = 1;
687 } else
688 pt->pt_active = 0;
689 }
690 }
691
692 void
693 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
694 {
695 struct ptimer *ptn;
696
697 *aitv = pt->pt_time;
698 if (pt->pt_type == CLOCK_REALTIME) {
699 /*
700 * Convert from absolute to relative time in .it_value
701 * part of real time timer. If time for real time
702 * timer has passed return 0, else return difference
703 * between current time and time for the timer to go
704 * off.
705 */
706 if (timerisset(&aitv->it_value)) {
707 if (timercmp(&aitv->it_value, &time, <))
708 timerclear(&aitv->it_value);
709 else
710 timersub(&aitv->it_value, &time,
711 &aitv->it_value);
712 }
713 } else if (pt->pt_active) {
714 if (pt->pt_type == CLOCK_VIRTUAL)
715 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
716 else
717 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
718 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
719 timeradd(&aitv->it_value,
720 &ptn->pt_time.it_value, &aitv->it_value);
721 KASSERT(ptn != NULL); /* pt should be findable on the list */
722 } else
723 timerclear(&aitv->it_value);
724 }
725
726
727
728 /* Set and arm a POSIX realtime timer */
729 int
730 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
731 {
732 struct sys_timer_settime_args /* {
733 syscallarg(timer_t) timerid;
734 syscallarg(int) flags;
735 syscallarg(const struct itimerspec *) value;
736 syscallarg(struct itimerspec *) ovalue;
737 } */ *uap = v;
738 struct proc *p = l->l_proc;
739 int error, s, timerid;
740 struct itimerval val, oval;
741 struct itimerspec value, ovalue;
742 struct ptimer *pt;
743
744 timerid = SCARG(uap, timerid);
745
746 if ((p->p_timers == NULL) ||
747 (timerid < 2) || (timerid >= TIMER_MAX) ||
748 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
749 return (EINVAL);
750
751 if ((error = copyin(SCARG(uap, value), &value,
752 sizeof(struct itimerspec))) != 0)
753 return (error);
754
755 TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
756 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
757 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
758 return (EINVAL);
759
760 oval = pt->pt_time;
761 pt->pt_time = val;
762
763 s = splclock();
764 /* If we've been passed an absolute time, convert it to relative. */
765 if (timerisset(&pt->pt_time.it_value) &&
766 (SCARG(uap, flags) & TIMER_ABSTIME))
767 timersub(&pt->pt_time.it_value, &time,
768 &pt->pt_time.it_value);
769 timer_settime(pt);
770 splx(s);
771
772 if (SCARG(uap, ovalue)) {
773 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
774 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
775 return copyout(&ovalue, SCARG(uap, ovalue),
776 sizeof(struct itimerspec));
777 }
778
779 return (0);
780 }
781
782 /* Return the time remaining until a POSIX timer fires. */
783 int
784 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
785 {
786 struct sys_timer_gettime_args /* {
787 syscallarg(timer_t) timerid;
788 syscallarg(struct itimerspec *) value;
789 } */ *uap = v;
790 struct itimerval aitv;
791 struct itimerspec its;
792 struct proc *p = l->l_proc;
793 int s, timerid;
794 struct ptimer *pt;
795
796 timerid = SCARG(uap, timerid);
797
798 if ((p->p_timers == NULL) ||
799 (timerid < 2) || (timerid >= TIMER_MAX) ||
800 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
801 return (EINVAL);
802
803 s = splclock();
804 timer_gettime(pt, &aitv);
805 splx(s);
806
807 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
808 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
809
810 return copyout(&its, SCARG(uap, value), sizeof(its));
811 }
812
813 /*
814 * Return the count of the number of times a periodic timer expired
815 * while a notification was already pending. The counter is reset when
816 * a timer expires and a notification can be posted.
817 */
818 int
819 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
820 {
821 struct sys_timer_getoverrun_args /* {
822 syscallarg(timer_t) timerid;
823 } */ *uap = v;
824 struct proc *p = l->l_proc;
825 int timerid;
826 struct ptimer *pt;
827
828 timerid = SCARG(uap, timerid);
829
830 if ((p->p_timers == NULL) ||
831 (timerid < 2) || (timerid >= TIMER_MAX) ||
832 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
833 return (EINVAL);
834
835 *retval = pt->pt_poverruns;
836
837 return (0);
838 }
839
840 /* Glue function that triggers an upcall; called from userret(). */
841 static void
842 timerupcall(struct lwp *l, void *arg)
843 {
844 struct ptimer *pt = (struct ptimer *)arg;
845
846 KERNEL_PROC_LOCK(l);
847
848 /* The upcall should be generated exactly once. */
849 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
850 sizeof(siginfo_t), &pt->pt_info) == 0)
851 l->l_proc->p_userret = NULL;
852
853 KERNEL_PROC_UNLOCK(l);
854 }
855
856
857 /*
858 * Real interval timer expired:
859 * send process whose timer expired an alarm signal.
860 * If time is not set up to reload, then just return.
861 * Else compute next time timer should go off which is > current time.
862 * This is where delay in processing this timeout causes multiple
863 * SIGALRM calls to be compressed into one.
864 */
865 void
866 realtimerexpire(void *arg)
867 {
868 struct ptimer *pt;
869 int s;
870
871 pt = (struct ptimer *)arg;
872
873 itimerfire(pt);
874
875 if (!timerisset(&pt->pt_time.it_interval)) {
876 timerclear(&pt->pt_time.it_value);
877 return;
878 }
879 for (;;) {
880 s = splclock();
881 timeradd(&pt->pt_time.it_value,
882 &pt->pt_time.it_interval, &pt->pt_time.it_value);
883 if (timercmp(&pt->pt_time.it_value, &time, >)) {
884 /*
885 * Don't need to check hzto() return value, here.
886 * callout_reset() does it for us.
887 */
888 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
889 realtimerexpire, pt);
890 splx(s);
891 return;
892 }
893 splx(s);
894 pt->pt_overruns++;
895 }
896 }
897
898 /* BSD routine to get the value of an interval timer. */
899 /* ARGSUSED */
900 int
901 sys_getitimer(struct lwp *l, void *v, register_t *retval)
902 {
903 struct sys_getitimer_args /* {
904 syscallarg(int) which;
905 syscallarg(struct itimerval *) itv;
906 } */ *uap = v;
907 struct proc *p = l->l_proc;
908 struct itimerval aitv;
909 int s, which;
910
911 which = SCARG(uap, which);
912
913 if ((u_int)which > ITIMER_PROF)
914 return (EINVAL);
915
916 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
917 timerclear(&aitv.it_value);
918 timerclear(&aitv.it_interval);
919 } else {
920 s = splclock();
921 timer_gettime(p->p_timers->pts_timers[which], &aitv);
922 splx(s);
923 }
924
925 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
926
927 }
928
929 /* BSD routine to set/arm an interval timer. */
930 /* ARGSUSED */
931 int
932 sys_setitimer(struct lwp *l, void *v, register_t *retval)
933 {
934 struct sys_setitimer_args /* {
935 syscallarg(int) which;
936 syscallarg(const struct itimerval *) itv;
937 syscallarg(struct itimerval *) oitv;
938 } */ *uap = v;
939 struct proc *p = l->l_proc;
940 int which = SCARG(uap, which);
941 struct sys_getitimer_args getargs;
942 struct itimerval aitv;
943 const struct itimerval *itvp;
944 struct ptimer *pt;
945 int s, error;
946
947 if ((u_int)which > ITIMER_PROF)
948 return (EINVAL);
949 itvp = SCARG(uap, itv);
950 if (itvp &&
951 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
952 return (error);
953 if (SCARG(uap, oitv) != NULL) {
954 SCARG(&getargs, which) = which;
955 SCARG(&getargs, itv) = SCARG(uap, oitv);
956 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
957 return (error);
958 }
959 if (itvp == 0)
960 return (0);
961 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
962 return (EINVAL);
963
964 /*
965 * Don't bother allocating data structures if the process just
966 * wants to clear the timer.
967 */
968 if (!timerisset(&aitv.it_value) &&
969 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
970 return (0);
971
972 if (p->p_timers == NULL)
973 timers_alloc(p);
974 if (p->p_timers->pts_timers[which] == NULL) {
975 pt = pool_get(&ptimer_pool, PR_WAITOK);
976 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
977 pt->pt_overruns = 0;
978 pt->pt_proc = p;
979 pt->pt_type = which;
980 switch (which) {
981 case ITIMER_REAL:
982 callout_init(&pt->pt_ch);
983 pt->pt_ev.sigev_signo = SIGALRM;
984 break;
985 case ITIMER_VIRTUAL:
986 pt->pt_active = 0;
987 pt->pt_ev.sigev_signo = SIGVTALRM;
988 break;
989 case ITIMER_PROF:
990 pt->pt_active = 0;
991 pt->pt_ev.sigev_signo = SIGPROF;
992 break;
993 }
994 } else
995 pt = p->p_timers->pts_timers[which];
996
997 pt->pt_time = aitv;
998 p->p_timers->pts_timers[which] = pt;
999
1000 s = splclock();
1001 timer_settime(pt);
1002 splx(s);
1003
1004 return (0);
1005 }
1006
1007 /* Utility routines to manage the array of pointers to timers. */
1008 void
1009 timers_alloc(struct proc *p)
1010 {
1011 int i;
1012 struct ptimers *pts;
1013
1014 pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1015 LIST_INIT(&pts->pts_virtual);
1016 LIST_INIT(&pts->pts_prof);
1017 for (i = 0; i < TIMER_MAX; i++)
1018 pts->pts_timers[i] = NULL;
1019 p->p_timers = pts;
1020 }
1021
1022 /*
1023 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1024 * then clean up all timers and free all the data structures. If
1025 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1026 * by timer_create(), not the BSD setitimer() timers, and only free the
1027 * structure if none of those remain.
1028 */
1029 void
1030 timers_free(struct proc *p, int which)
1031 {
1032 int i, s;
1033 struct ptimers *pts;
1034 struct ptimer *pt, *ptn;
1035 struct timeval tv;
1036
1037 if (p->p_timers) {
1038 pts = p->p_timers;
1039 if (which == TIMERS_ALL)
1040 i = 0;
1041 else {
1042 s = splclock();
1043 timerclear(&tv);
1044 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1045 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1046 ptn = LIST_NEXT(ptn, pt_list))
1047 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1048 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1049 if (ptn) {
1050 timeradd(&tv, &ptn->pt_time.it_value,
1051 &ptn->pt_time.it_value);
1052 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1053 ptn, pt_list);
1054 }
1055
1056 timerclear(&tv);
1057 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1058 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1059 ptn = LIST_NEXT(ptn, pt_list))
1060 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1061 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1062 if (ptn) {
1063 timeradd(&tv, &ptn->pt_time.it_value,
1064 &ptn->pt_time.it_value);
1065 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1066 pt_list);
1067 }
1068 splx(s);
1069 i = 3;
1070 }
1071 for ( ; i < TIMER_MAX; i++)
1072 if ((pt = pts->pts_timers[i]) != NULL) {
1073 if (pt->pt_type == CLOCK_REALTIME)
1074 callout_stop(&pt->pt_ch);
1075 pts->pts_timers[i] = NULL;
1076 pool_put(&ptimer_pool, pt);
1077 }
1078 if ((pts->pts_timers[0] == NULL) &&
1079 (pts->pts_timers[1] == NULL) &&
1080 (pts->pts_timers[2] == NULL)) {
1081 p->p_timers = NULL;
1082 free(pts, M_SUBPROC);
1083 }
1084 }
1085 }
1086
1087 /*
1088 * Check that a proposed value to load into the .it_value or
1089 * .it_interval part of an interval timer is acceptable, and
1090 * fix it to have at least minimal value (i.e. if it is less
1091 * than the resolution of the clock, round it up.)
1092 */
1093 int
1094 itimerfix(struct timeval *tv)
1095 {
1096
1097 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1098 return (EINVAL);
1099 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1100 tv->tv_usec = tick;
1101 return (0);
1102 }
1103
1104 /*
1105 * Decrement an interval timer by a specified number
1106 * of microseconds, which must be less than a second,
1107 * i.e. < 1000000. If the timer expires, then reload
1108 * it. In this case, carry over (usec - old value) to
1109 * reduce the value reloaded into the timer so that
1110 * the timer does not drift. This routine assumes
1111 * that it is called in a context where the timers
1112 * on which it is operating cannot change in value.
1113 */
1114 int
1115 itimerdecr(struct ptimer *pt, int usec)
1116 {
1117 struct itimerval *itp;
1118
1119 itp = &pt->pt_time;
1120 if (itp->it_value.tv_usec < usec) {
1121 if (itp->it_value.tv_sec == 0) {
1122 /* expired, and already in next interval */
1123 usec -= itp->it_value.tv_usec;
1124 goto expire;
1125 }
1126 itp->it_value.tv_usec += 1000000;
1127 itp->it_value.tv_sec--;
1128 }
1129 itp->it_value.tv_usec -= usec;
1130 usec = 0;
1131 if (timerisset(&itp->it_value))
1132 return (1);
1133 /* expired, exactly at end of interval */
1134 expire:
1135 if (timerisset(&itp->it_interval)) {
1136 itp->it_value = itp->it_interval;
1137 itp->it_value.tv_usec -= usec;
1138 if (itp->it_value.tv_usec < 0) {
1139 itp->it_value.tv_usec += 1000000;
1140 itp->it_value.tv_sec--;
1141 }
1142 timer_settime(pt);
1143 } else
1144 itp->it_value.tv_usec = 0; /* sec is already 0 */
1145 return (0);
1146 }
1147
1148 void
1149 itimerfire(struct ptimer *pt)
1150 {
1151 struct proc *p = pt->pt_proc;
1152
1153 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1154 /*
1155 * No RT signal infrastructure exists at this time;
1156 * just post the signal number and throw away the
1157 * value.
1158 */
1159 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1160 pt->pt_overruns++;
1161 else {
1162 pt->pt_poverruns = pt->pt_overruns;
1163 pt->pt_overruns = 0;
1164 psignal(p, pt->pt_ev.sigev_signo);
1165 }
1166 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1167 /* Cause the process to generate an upcall when it returns. */
1168 struct sadata *sa = p->p_sa;
1169
1170 if (p->p_userret == NULL) {
1171 if (sa->sa_idle)
1172 wakeup(p);
1173 pt->pt_poverruns = pt->pt_overruns;
1174 pt->pt_overruns = 0;
1175 p->p_userret = timerupcall;
1176 p->p_userret_arg = pt;
1177 } else
1178 pt->pt_overruns++;
1179 }
1180
1181 }
1182
1183 /*
1184 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1185 * for usage and rationale.
1186 */
1187 int
1188 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1189 {
1190 struct timeval tv, delta;
1191 int s, rv = 0;
1192
1193 s = splclock();
1194 tv = mono_time;
1195 splx(s);
1196
1197 timersub(&tv, lasttime, &delta);
1198
1199 /*
1200 * check for 0,0 is so that the message will be seen at least once,
1201 * even if interval is huge.
1202 */
1203 if (timercmp(&delta, mininterval, >=) ||
1204 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1205 *lasttime = tv;
1206 rv = 1;
1207 }
1208
1209 return (rv);
1210 }
1211
1212 /*
1213 * ppsratecheck(): packets (or events) per second limitation.
1214 */
1215 int
1216 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1217 {
1218 struct timeval tv, delta;
1219 int s, rv;
1220
1221 s = splclock();
1222 tv = mono_time;
1223 splx(s);
1224
1225 timersub(&tv, lasttime, &delta);
1226
1227 /*
1228 * check for 0,0 is so that the message will be seen at least once.
1229 * if more than one second have passed since the last update of
1230 * lasttime, reset the counter.
1231 *
1232 * we do increment *curpps even in *curpps < maxpps case, as some may
1233 * try to use *curpps for stat purposes as well.
1234 */
1235 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1236 delta.tv_sec >= 1) {
1237 *lasttime = tv;
1238 *curpps = 0;
1239 rv = 1;
1240 } else if (maxpps < 0)
1241 rv = 1;
1242 else if (*curpps < maxpps)
1243 rv = 1;
1244 else
1245 rv = 0;
1246
1247 #if 1 /*DIAGNOSTIC?*/
1248 /* be careful about wrap-around */
1249 if (*curpps + 1 > *curpps)
1250 *curpps = *curpps + 1;
1251 #else
1252 /*
1253 * assume that there's not too many calls to this function.
1254 * not sure if the assumption holds, as it depends on *caller's*
1255 * behavior, not the behavior of this function.
1256 * IMHO it is wrong to make assumption on the caller's behavior,
1257 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1258 */
1259 *curpps = *curpps + 1;
1260 #endif
1261
1262 return (rv);
1263 }
1264