Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.64
      1 /*	$NetBSD: kern_time.c,v 1.64 2003/02/03 23:39:41 nathanw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the University of
     54  *	California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     72  */
     73 
     74 #include <sys/cdefs.h>
     75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.64 2003/02/03 23:39:41 nathanw Exp $");
     76 
     77 #include "fs_nfs.h"
     78 #include "opt_nfs.h"
     79 #include "opt_nfsserver.h"
     80 
     81 #include <sys/param.h>
     82 #include <sys/resourcevar.h>
     83 #include <sys/kernel.h>
     84 #include <sys/systm.h>
     85 #include <sys/malloc.h>
     86 #include <sys/proc.h>
     87 #include <sys/sa.h>
     88 #include <sys/savar.h>
     89 #include <sys/vnode.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/syslog.h>
     92 
     93 #include <sys/mount.h>
     94 #include <sys/syscallargs.h>
     95 
     96 #include <uvm/uvm_extern.h>
     97 
     98 #if defined(NFS) || defined(NFSSERVER)
     99 #include <nfs/rpcv2.h>
    100 #include <nfs/nfsproto.h>
    101 #include <nfs/nfs_var.h>
    102 #endif
    103 
    104 #include <machine/cpu.h>
    105 
    106 static void timerupcall(struct lwp *, void *);
    107 
    108 
    109 /* Time of day and interval timer support.
    110  *
    111  * These routines provide the kernel entry points to get and set
    112  * the time-of-day and per-process interval timers.  Subroutines
    113  * here provide support for adding and subtracting timeval structures
    114  * and decrementing interval timers, optionally reloading the interval
    115  * timers when they expire.
    116  */
    117 
    118 /* This function is used by clock_settime and settimeofday */
    119 int
    120 settime(struct timeval *tv)
    121 {
    122 	struct timeval delta;
    123 	struct cpu_info *ci;
    124 	int s;
    125 
    126 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    127 	s = splclock();
    128 	timersub(tv, &time, &delta);
    129 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    130 		splx(s);
    131 		return (EPERM);
    132 	}
    133 #ifdef notyet
    134 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    135 		splx(s);
    136 		return (EPERM);
    137 	}
    138 #endif
    139 	time = *tv;
    140 	(void) spllowersoftclock();
    141 	timeradd(&boottime, &delta, &boottime);
    142 	/*
    143 	 * XXXSMP
    144 	 * This is wrong.  We should traverse a list of all
    145 	 * CPUs and add the delta to the runtime of those
    146 	 * CPUs which have a process on them.
    147 	 */
    148 	ci = curcpu();
    149 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    150 	    &ci->ci_schedstate.spc_runtime);
    151 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    152 		nqnfs_lease_updatetime(delta.tv_sec);
    153 #	endif
    154 	splx(s);
    155 	resettodr();
    156 	return (0);
    157 }
    158 
    159 /* ARGSUSED */
    160 int
    161 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    162 {
    163 	struct sys_clock_gettime_args /* {
    164 		syscallarg(clockid_t) clock_id;
    165 		syscallarg(struct timespec *) tp;
    166 	} */ *uap = v;
    167 	clockid_t clock_id;
    168 	struct timeval atv;
    169 	struct timespec ats;
    170 	int s;
    171 
    172 	clock_id = SCARG(uap, clock_id);
    173 	switch (clock_id) {
    174 	case CLOCK_REALTIME:
    175 		microtime(&atv);
    176 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    177 		break;
    178 	case CLOCK_MONOTONIC:
    179 		/* XXX "hz" granularity */
    180 		s = splclock();
    181 		atv = mono_time;
    182 		splx(s);
    183 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    184 		break;
    185 	default:
    186 		return (EINVAL);
    187 	}
    188 
    189 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    190 }
    191 
    192 /* ARGSUSED */
    193 int
    194 sys_clock_settime(l, v, retval)
    195 	struct lwp *l;
    196 	void *v;
    197 	register_t *retval;
    198 {
    199 	struct sys_clock_settime_args /* {
    200 		syscallarg(clockid_t) clock_id;
    201 		syscallarg(const struct timespec *) tp;
    202 	} */ *uap = v;
    203 	struct proc *p = l->l_proc;
    204 	int error;
    205 
    206 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    207 		return (error);
    208 
    209 	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
    210 }
    211 
    212 
    213 int
    214 clock_settime1(clock_id, tp)
    215 	clockid_t clock_id;
    216 	const struct timespec *tp;
    217 {
    218 	struct timespec ats;
    219 	struct timeval atv;
    220 	int error;
    221 
    222 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    223 		return (error);
    224 
    225 	switch (clock_id) {
    226 	case CLOCK_REALTIME:
    227 		TIMESPEC_TO_TIMEVAL(&atv, &ats);
    228 		if ((error = settime(&atv)) != 0)
    229 			return (error);
    230 		break;
    231 	case CLOCK_MONOTONIC:
    232 		return (EINVAL);	/* read-only clock */
    233 	default:
    234 		return (EINVAL);
    235 	}
    236 
    237 	return 0;
    238 }
    239 
    240 int
    241 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    242 {
    243 	struct sys_clock_getres_args /* {
    244 		syscallarg(clockid_t) clock_id;
    245 		syscallarg(struct timespec *) tp;
    246 	} */ *uap = v;
    247 	clockid_t clock_id;
    248 	struct timespec ts;
    249 	int error = 0;
    250 
    251 	clock_id = SCARG(uap, clock_id);
    252 	switch (clock_id) {
    253 	case CLOCK_REALTIME:
    254 	case CLOCK_MONOTONIC:
    255 		ts.tv_sec = 0;
    256 		ts.tv_nsec = 1000000000 / hz;
    257 		break;
    258 	default:
    259 		return (EINVAL);
    260 	}
    261 
    262 	if (SCARG(uap, tp))
    263 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    264 
    265 	return error;
    266 }
    267 
    268 /* ARGSUSED */
    269 int
    270 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    271 {
    272 	static int nanowait;
    273 	struct sys_nanosleep_args/* {
    274 		syscallarg(struct timespec *) rqtp;
    275 		syscallarg(struct timespec *) rmtp;
    276 	} */ *uap = v;
    277 	struct timespec rqt;
    278 	struct timespec rmt;
    279 	struct timeval atv, utv;
    280 	int error, s, timo;
    281 
    282 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    283 		       sizeof(struct timespec));
    284 	if (error)
    285 		return (error);
    286 
    287 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    288 	if (itimerfix(&atv) || atv.tv_sec > 1000000000)
    289 		return (EINVAL);
    290 
    291 	s = splclock();
    292 	timeradd(&atv,&time,&atv);
    293 	timo = hzto(&atv);
    294 	/*
    295 	 * Avoid inadvertantly sleeping forever
    296 	 */
    297 	if (timo == 0)
    298 		timo = 1;
    299 	splx(s);
    300 
    301 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    302 	if (error == ERESTART)
    303 		error = EINTR;
    304 	if (error == EWOULDBLOCK)
    305 		error = 0;
    306 
    307 	if (SCARG(uap, rmtp)) {
    308 		int error;
    309 
    310 		s = splclock();
    311 		utv = time;
    312 		splx(s);
    313 
    314 		timersub(&atv, &utv, &utv);
    315 		if (utv.tv_sec < 0)
    316 			timerclear(&utv);
    317 
    318 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    319 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    320 			sizeof(rmt));
    321 		if (error)
    322 			return (error);
    323 	}
    324 
    325 	return error;
    326 }
    327 
    328 /* ARGSUSED */
    329 int
    330 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    331 {
    332 	struct sys_gettimeofday_args /* {
    333 		syscallarg(struct timeval *) tp;
    334 		syscallarg(struct timezone *) tzp;
    335 	} */ *uap = v;
    336 	struct timeval atv;
    337 	int error = 0;
    338 	struct timezone tzfake;
    339 
    340 	if (SCARG(uap, tp)) {
    341 		microtime(&atv);
    342 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    343 		if (error)
    344 			return (error);
    345 	}
    346 	if (SCARG(uap, tzp)) {
    347 		/*
    348 		 * NetBSD has no kernel notion of time zone, so we just
    349 		 * fake up a timezone struct and return it if demanded.
    350 		 */
    351 		tzfake.tz_minuteswest = 0;
    352 		tzfake.tz_dsttime = 0;
    353 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    354 	}
    355 	return (error);
    356 }
    357 
    358 /* ARGSUSED */
    359 int
    360 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    361 {
    362 	struct sys_settimeofday_args /* {
    363 		syscallarg(const struct timeval *) tv;
    364 		syscallarg(const struct timezone *) tzp;
    365 	} */ *uap = v;
    366 	struct proc *p = l->l_proc;
    367 	int error;
    368 
    369 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    370 		return (error);
    371 
    372 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
    373 }
    374 
    375 int
    376 settimeofday1(utv, utzp, p)
    377 	const struct timeval *utv;
    378 	const struct timezone *utzp;
    379 	struct proc *p;
    380 {
    381 	struct timeval atv;
    382 	struct timezone atz;
    383 	struct timeval *tv = NULL;
    384 	struct timezone *tzp = NULL;
    385 	int error;
    386 
    387 	/* Verify all parameters before changing time. */
    388 	if (utv) {
    389 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    390 			return (error);
    391 		tv = &atv;
    392 	}
    393 	/* XXX since we don't use tz, probably no point in doing copyin. */
    394 	if (utzp) {
    395 		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
    396 			return (error);
    397 		tzp = &atz;
    398 	}
    399 
    400 	if (tv)
    401 		if ((error = settime(tv)) != 0)
    402 			return (error);
    403 	/*
    404 	 * NetBSD has no kernel notion of time zone, and only an
    405 	 * obsolete program would try to set it, so we log a warning.
    406 	 */
    407 	if (tzp)
    408 		log(LOG_WARNING, "pid %d attempted to set the "
    409 		    "(obsolete) kernel time zone\n", p->p_pid);
    410 	return (0);
    411 }
    412 
    413 int	tickdelta;			/* current clock skew, us. per tick */
    414 long	timedelta;			/* unapplied time correction, us. */
    415 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    416 
    417 /* ARGSUSED */
    418 int
    419 sys_adjtime(struct lwp *l, void *v, register_t *retval)
    420 {
    421 	struct sys_adjtime_args /* {
    422 		syscallarg(const struct timeval *) delta;
    423 		syscallarg(struct timeval *) olddelta;
    424 	} */ *uap = v;
    425 	struct proc *p = l->l_proc;
    426 	int error;
    427 
    428 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    429 		return (error);
    430 
    431 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
    432 }
    433 
    434 int
    435 adjtime1(delta, olddelta, p)
    436 	const struct timeval *delta;
    437 	struct timeval *olddelta;
    438 	struct proc *p;
    439 {
    440 	struct timeval atv;
    441 	long ndelta, ntickdelta, odelta;
    442 	int error;
    443 	int s;
    444 
    445 	error = copyin(delta, &atv, sizeof(struct timeval));
    446 	if (error)
    447 		return (error);
    448 
    449 	if (olddelta != NULL) {
    450 		if (uvm_useracc((caddr_t)olddelta,
    451 		    sizeof(struct timeval), B_WRITE) == FALSE)
    452 			return (EFAULT);
    453 	}
    454 
    455 	/*
    456 	 * Compute the total correction and the rate at which to apply it.
    457 	 * Round the adjustment down to a whole multiple of the per-tick
    458 	 * delta, so that after some number of incremental changes in
    459 	 * hardclock(), tickdelta will become zero, lest the correction
    460 	 * overshoot and start taking us away from the desired final time.
    461 	 */
    462 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    463 	if (ndelta > bigadj || ndelta < -bigadj)
    464 		ntickdelta = 10 * tickadj;
    465 	else
    466 		ntickdelta = tickadj;
    467 	if (ndelta % ntickdelta)
    468 		ndelta = ndelta / ntickdelta * ntickdelta;
    469 
    470 	/*
    471 	 * To make hardclock()'s job easier, make the per-tick delta negative
    472 	 * if we want time to run slower; then hardclock can simply compute
    473 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    474 	 */
    475 	if (ndelta < 0)
    476 		ntickdelta = -ntickdelta;
    477 	s = splclock();
    478 	odelta = timedelta;
    479 	timedelta = ndelta;
    480 	tickdelta = ntickdelta;
    481 	splx(s);
    482 
    483 	if (olddelta) {
    484 		atv.tv_sec = odelta / 1000000;
    485 		atv.tv_usec = odelta % 1000000;
    486 		(void) copyout(&atv, olddelta, sizeof(struct timeval));
    487 	}
    488 	return (0);
    489 }
    490 
    491 /*
    492  * Interval timer support. Both the BSD getitimer() family and the POSIX
    493  * timer_*() family of routines are supported.
    494  *
    495  * All timers are kept in an array pointed to by p_timers, which is
    496  * allocated on demand - many processes don't use timers at all. The
    497  * first three elements in this array are reserved for the BSD timers:
    498  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    499  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    500  * syscall.
    501  *
    502  * Realtime timers are kept in the ptimer structure as an absolute
    503  * time; virtual time timers are kept as a linked list of deltas.
    504  * Virtual time timers are processed in the hardclock() routine of
    505  * kern_clock.c.  The real time timer is processed by a callout
    506  * routine, called from the softclock() routine.  Since a callout may
    507  * be delayed in real time due to interrupt processing in the system,
    508  * it is possible for the real time timeout routine (realtimeexpire,
    509  * given below), to be delayed in real time past when it is supposed
    510  * to occur.  It does not suffice, therefore, to reload the real timer
    511  * .it_value from the real time timers .it_interval.  Rather, we
    512  * compute the next time in absolute time the timer should go off.  */
    513 
    514 /* Allocate a POSIX realtime timer. */
    515 int
    516 sys_timer_create(struct lwp *l, void *v, register_t *retval)
    517 {
    518 	struct sys_timer_create_args /* {
    519 		syscallarg(clockid_t) clock_id;
    520 		syscallarg(struct sigevent *) evp;
    521 		syscallarg(timer_t *) timerid;
    522 	} */ *uap = v;
    523 	struct proc *p = l->l_proc;
    524 	clockid_t id;
    525 	struct sigevent *evp;
    526 	struct ptimer *pt;
    527 	int timerid, error;
    528 
    529 	id = SCARG(uap, clock_id);
    530 	if (id < CLOCK_REALTIME ||
    531 	    id > CLOCK_PROF)
    532 		return (EINVAL);
    533 
    534 	if (p->p_timers == NULL)
    535 		timers_alloc(p);
    536 
    537 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    538 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    539 		if (p->p_timers->pts_timers[timerid] == NULL)
    540 			break;
    541 
    542 	if (timerid == TIMER_MAX)
    543 		return EAGAIN;
    544 
    545 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    546 	evp = SCARG(uap, evp);
    547 	if (evp) {
    548 		if (((error =
    549 		    copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
    550 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    551 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    552 			pool_put(&ptimer_pool, pt);
    553 			return (error ? error : EINVAL);
    554 		}
    555 	} else {
    556 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    557 		switch (id) {
    558 		case CLOCK_REALTIME:
    559 			pt->pt_ev.sigev_signo = SIGALRM;
    560 			break;
    561 		case CLOCK_VIRTUAL:
    562 			pt->pt_ev.sigev_signo = SIGVTALRM;
    563 			break;
    564 		case CLOCK_PROF:
    565 			pt->pt_ev.sigev_signo = SIGPROF;
    566 			break;
    567 		}
    568 		pt->pt_ev.sigev_value.sival_int = timerid;
    569 	}
    570 	pt->pt_info.si_signo = pt->pt_ev.sigev_signo;
    571 	pt->pt_info.si_errno = 0;
    572 	pt->pt_info.si_code = 0;
    573 	pt->pt_info.si_pid = p->p_pid;
    574 	pt->pt_info.si_uid = p->p_cred->p_ruid;
    575 	pt->pt_info.si_sigval = pt->pt_ev.sigev_value;
    576 
    577 	pt->pt_type = id;
    578 	pt->pt_proc = p;
    579 	pt->pt_overruns = 0;
    580 	pt->pt_poverruns = 0;
    581 	pt->pt_entry = timerid;
    582 	timerclear(&pt->pt_time.it_value);
    583 	if (id == CLOCK_REALTIME)
    584 		callout_init(&pt->pt_ch);
    585 	else
    586 		pt->pt_active = 0;
    587 
    588 	p->p_timers->pts_timers[timerid] = pt;
    589 
    590 	return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
    591 }
    592 
    593 
    594 /* Delete a POSIX realtime timer */
    595 int
    596 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    597 {
    598 	struct sys_timer_delete_args /*  {
    599 		syscallarg(timer_t) timerid;
    600 	} */ *uap = v;
    601 	struct proc *p = l->l_proc;
    602 	int timerid;
    603 	struct ptimer *pt, *ptn;
    604 	int s;
    605 
    606 	timerid = SCARG(uap, timerid);
    607 
    608 	if ((p->p_timers == NULL) ||
    609 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    610 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    611 		return (EINVAL);
    612 
    613 	if (pt->pt_type == CLOCK_REALTIME)
    614 		callout_stop(&pt->pt_ch);
    615 	else if (pt->pt_active) {
    616 		s = splclock();
    617 		ptn = LIST_NEXT(pt, pt_list);
    618 		LIST_REMOVE(pt, pt_list);
    619 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    620 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    621 			    &ptn->pt_time.it_value);
    622 		splx(s);
    623 	}
    624 
    625 	p->p_timers->pts_timers[timerid] = NULL;
    626 	pool_put(&ptimer_pool, pt);
    627 
    628 	return (0);
    629 }
    630 
    631 /*
    632  * Set up the given timer. The value in pt->pt_time.it_value is taken to be
    633  * relative to now.
    634  * Must be called at splclock().
    635  */
    636 void
    637 timer_settime(struct ptimer *pt)
    638 {
    639 	struct ptimer *ptn, *pptn;
    640 	struct ptlist *ptl;
    641 
    642 	if (pt->pt_type == CLOCK_REALTIME) {
    643 		callout_stop(&pt->pt_ch);
    644 		if (timerisset(&pt->pt_time.it_value)) {
    645 			timeradd(&pt->pt_time.it_value, &time,
    646 			    &pt->pt_time.it_value);
    647 			/*
    648 			 * Don't need to check hzto() return value, here.
    649 			 * callout_reset() does it for us.
    650 			 */
    651 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    652 			    realtimerexpire, pt);
    653 		}
    654 	} else {
    655 		if (pt->pt_active) {
    656 			ptn = LIST_NEXT(pt, pt_list);
    657 			LIST_REMOVE(pt, pt_list);
    658 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    659 				timeradd(&pt->pt_time.it_value,
    660 				    &ptn->pt_time.it_value,
    661 				    &ptn->pt_time.it_value);
    662 		}
    663 		if (timerisset(&pt->pt_time.it_value)) {
    664 			if (pt->pt_type == CLOCK_VIRTUAL)
    665 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    666 			else
    667 				ptl = &pt->pt_proc->p_timers->pts_prof;
    668 
    669 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    670 			     ptn && timercmp(&pt->pt_time.it_value,
    671 				 &ptn->pt_time.it_value, >);
    672 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    673 				timersub(&pt->pt_time.it_value,
    674 				    &ptn->pt_time.it_value,
    675 				    &pt->pt_time.it_value);
    676 
    677 			if (pptn)
    678 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    679 			else
    680 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    681 
    682 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    683 				timersub(&ptn->pt_time.it_value,
    684 				    &pt->pt_time.it_value,
    685 				    &ptn->pt_time.it_value);
    686 
    687 			pt->pt_active = 1;
    688 		} else
    689 			pt->pt_active = 0;
    690 	}
    691 }
    692 
    693 void
    694 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    695 {
    696 	struct ptimer *ptn;
    697 
    698 	*aitv = pt->pt_time;
    699 	if (pt->pt_type == CLOCK_REALTIME) {
    700 		/*
    701 		 * Convert from absolute to relative time in .it_value
    702 		 * part of real time timer.  If time for real time
    703 		 * timer has passed return 0, else return difference
    704 		 * between current time and time for the timer to go
    705 		 * off.
    706 		 */
    707 		if (timerisset(&aitv->it_value)) {
    708 			if (timercmp(&aitv->it_value, &time, <))
    709 				timerclear(&aitv->it_value);
    710 			else
    711 				timersub(&aitv->it_value, &time,
    712 				    &aitv->it_value);
    713 		}
    714 	} else if (pt->pt_active) {
    715 		if (pt->pt_type == CLOCK_VIRTUAL)
    716 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    717 		else
    718 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    719 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    720 			timeradd(&aitv->it_value,
    721 			    &ptn->pt_time.it_value, &aitv->it_value);
    722 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    723 	} else
    724 		timerclear(&aitv->it_value);
    725 }
    726 
    727 
    728 
    729 /* Set and arm a POSIX realtime timer */
    730 int
    731 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    732 {
    733 	struct sys_timer_settime_args /* {
    734 		syscallarg(timer_t) timerid;
    735 		syscallarg(int) flags;
    736 		syscallarg(const struct itimerspec *) value;
    737 		syscallarg(struct itimerspec *) ovalue;
    738 	} */ *uap = v;
    739 	struct proc *p = l->l_proc;
    740 	int error, s, timerid;
    741 	struct itimerval val, oval;
    742 	struct itimerspec value, ovalue;
    743 	struct ptimer *pt;
    744 
    745 	timerid = SCARG(uap, timerid);
    746 
    747 	if ((p->p_timers == NULL) ||
    748 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    749 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    750 		return (EINVAL);
    751 
    752 	if ((error = copyin(SCARG(uap, value), &value,
    753 	    sizeof(struct itimerspec))) != 0)
    754 		return (error);
    755 
    756 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
    757 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
    758 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    759 		return (EINVAL);
    760 
    761 	oval = pt->pt_time;
    762 	pt->pt_time = val;
    763 
    764 	s = splclock();
    765 	/* If we've been passed an absolute time, convert it to relative. */
    766 	if (timerisset(&pt->pt_time.it_value) &&
    767 	    (SCARG(uap, flags) & TIMER_ABSTIME))
    768 		timersub(&pt->pt_time.it_value, &time,
    769 		    &pt->pt_time.it_value);
    770 	timer_settime(pt);
    771 	splx(s);
    772 
    773 	if (SCARG(uap, ovalue)) {
    774 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
    775 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
    776 		return copyout(&ovalue, SCARG(uap, ovalue),
    777 		    sizeof(struct itimerspec));
    778 	}
    779 
    780 	return (0);
    781 }
    782 
    783 /* Return the time remaining until a POSIX timer fires. */
    784 int
    785 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    786 {
    787 	struct sys_timer_gettime_args /* {
    788 		syscallarg(timer_t) timerid;
    789 		syscallarg(struct itimerspec *) value;
    790 	} */ *uap = v;
    791 	struct itimerval aitv;
    792 	struct itimerspec its;
    793 	struct proc *p = l->l_proc;
    794 	int s, timerid;
    795 	struct ptimer *pt;
    796 
    797 	timerid = SCARG(uap, timerid);
    798 
    799 	if ((p->p_timers == NULL) ||
    800 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    801 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    802 		return (EINVAL);
    803 
    804 	s = splclock();
    805 	timer_gettime(pt, &aitv);
    806 	splx(s);
    807 
    808 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
    809 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
    810 
    811 	return copyout(&its, SCARG(uap, value), sizeof(its));
    812 }
    813 
    814 /*
    815  * Return the count of the number of times a periodic timer expired
    816  * while a notification was already pending. The counter is reset when
    817  * a timer expires and a notification can be posted.
    818  */
    819 int
    820 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    821 {
    822 	struct sys_timer_getoverrun_args /* {
    823 		syscallarg(timer_t) timerid;
    824 	} */ *uap = v;
    825 	struct proc *p = l->l_proc;
    826 	int timerid;
    827 	struct ptimer *pt;
    828 
    829 	timerid = SCARG(uap, timerid);
    830 
    831 	if ((p->p_timers == NULL) ||
    832 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    833 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    834 		return (EINVAL);
    835 
    836 	*retval = pt->pt_poverruns;
    837 
    838 	return (0);
    839 }
    840 
    841 /* Glue function that triggers an upcall; called from userret(). */
    842 static void
    843 timerupcall(struct lwp *l, void *arg)
    844 {
    845 	struct ptimers *pt = (struct ptimers *)arg;
    846 	unsigned int i, fired, done;
    847 	KERNEL_PROC_LOCK(l);
    848 
    849 	fired = pt->pts_fired;
    850 	done = 0;
    851 	while ((i = ffs(fired)) != 0) {
    852 		i--;
    853 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    854 		    sizeof(siginfo_t), &pt->pts_timers[i]->pt_info) == 0)
    855 			done |= 1 << i;
    856 		fired &= ~(1 << i);
    857 	}
    858 	pt->pts_fired &= ~done;
    859 	if (pt->pts_fired == 0)
    860 		l->l_proc->p_userret = NULL;
    861 
    862 	KERNEL_PROC_UNLOCK(l);
    863 }
    864 
    865 
    866 /*
    867  * Real interval timer expired:
    868  * send process whose timer expired an alarm signal.
    869  * If time is not set up to reload, then just return.
    870  * Else compute next time timer should go off which is > current time.
    871  * This is where delay in processing this timeout causes multiple
    872  * SIGALRM calls to be compressed into one.
    873  */
    874 void
    875 realtimerexpire(void *arg)
    876 {
    877 	struct ptimer *pt;
    878 	int s;
    879 
    880 	pt = (struct ptimer *)arg;
    881 
    882 	itimerfire(pt);
    883 
    884 	if (!timerisset(&pt->pt_time.it_interval)) {
    885 		timerclear(&pt->pt_time.it_value);
    886 		return;
    887 	}
    888 	for (;;) {
    889 		s = splclock();
    890 		timeradd(&pt->pt_time.it_value,
    891 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    892 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
    893 			/*
    894 			 * Don't need to check hzto() return value, here.
    895 			 * callout_reset() does it for us.
    896 			 */
    897 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    898 			    realtimerexpire, pt);
    899 			splx(s);
    900 			return;
    901 		}
    902 		splx(s);
    903 		pt->pt_overruns++;
    904 	}
    905 }
    906 
    907 /* BSD routine to get the value of an interval timer. */
    908 /* ARGSUSED */
    909 int
    910 sys_getitimer(struct lwp *l, void *v, register_t *retval)
    911 {
    912 	struct sys_getitimer_args /* {
    913 		syscallarg(int) which;
    914 		syscallarg(struct itimerval *) itv;
    915 	} */ *uap = v;
    916 	struct proc *p = l->l_proc;
    917 	struct itimerval aitv;
    918 	int s, which;
    919 
    920 	which = SCARG(uap, which);
    921 
    922 	if ((u_int)which > ITIMER_PROF)
    923 		return (EINVAL);
    924 
    925 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
    926 		timerclear(&aitv.it_value);
    927 		timerclear(&aitv.it_interval);
    928 	} else {
    929 		s = splclock();
    930 		timer_gettime(p->p_timers->pts_timers[which], &aitv);
    931 		splx(s);
    932 	}
    933 
    934 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    935 
    936 }
    937 
    938 /* BSD routine to set/arm an interval timer. */
    939 /* ARGSUSED */
    940 int
    941 sys_setitimer(struct lwp *l, void *v, register_t *retval)
    942 {
    943 	struct sys_setitimer_args /* {
    944 		syscallarg(int) which;
    945 		syscallarg(const struct itimerval *) itv;
    946 		syscallarg(struct itimerval *) oitv;
    947 	} */ *uap = v;
    948 	struct proc *p = l->l_proc;
    949 	int which = SCARG(uap, which);
    950 	struct sys_getitimer_args getargs;
    951 	struct itimerval aitv;
    952 	const struct itimerval *itvp;
    953 	struct ptimer *pt;
    954 	int s, error;
    955 
    956 	if ((u_int)which > ITIMER_PROF)
    957 		return (EINVAL);
    958 	itvp = SCARG(uap, itv);
    959 	if (itvp &&
    960 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    961 		return (error);
    962 	if (SCARG(uap, oitv) != NULL) {
    963 		SCARG(&getargs, which) = which;
    964 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    965 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
    966 			return (error);
    967 	}
    968 	if (itvp == 0)
    969 		return (0);
    970 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    971 		return (EINVAL);
    972 
    973 	/*
    974 	 * Don't bother allocating data structures if the process just
    975 	 * wants to clear the timer.
    976 	 */
    977 	if (!timerisset(&aitv.it_value) &&
    978 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
    979 		return (0);
    980 
    981 	if (p->p_timers == NULL)
    982 		timers_alloc(p);
    983 	if (p->p_timers->pts_timers[which] == NULL) {
    984 		pt = pool_get(&ptimer_pool, PR_WAITOK);
    985 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    986 		pt->pt_overruns = 0;
    987 		pt->pt_proc = p;
    988 		pt->pt_type = which;
    989 		pt->pt_entry = which;
    990 		switch (which) {
    991 		case ITIMER_REAL:
    992 			callout_init(&pt->pt_ch);
    993 			pt->pt_ev.sigev_signo = SIGALRM;
    994 			break;
    995 		case ITIMER_VIRTUAL:
    996 			pt->pt_active = 0;
    997 			pt->pt_ev.sigev_signo = SIGVTALRM;
    998 			break;
    999 		case ITIMER_PROF:
   1000 			pt->pt_active = 0;
   1001 			pt->pt_ev.sigev_signo = SIGPROF;
   1002 			break;
   1003 		}
   1004 	} else
   1005 		pt = p->p_timers->pts_timers[which];
   1006 
   1007 	pt->pt_time = aitv;
   1008 	p->p_timers->pts_timers[which] = pt;
   1009 
   1010 	s = splclock();
   1011 	timer_settime(pt);
   1012 	splx(s);
   1013 
   1014 	return (0);
   1015 }
   1016 
   1017 /* Utility routines to manage the array of pointers to timers. */
   1018 void
   1019 timers_alloc(struct proc *p)
   1020 {
   1021 	int i;
   1022 	struct ptimers *pts;
   1023 
   1024 	pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
   1025 	LIST_INIT(&pts->pts_virtual);
   1026 	LIST_INIT(&pts->pts_prof);
   1027 	for (i = 0; i < TIMER_MAX; i++)
   1028 		pts->pts_timers[i] = NULL;
   1029 	pts->pts_fired = 0;
   1030 	p->p_timers = pts;
   1031 }
   1032 
   1033 /*
   1034  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1035  * then clean up all timers and free all the data structures. If
   1036  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1037  * by timer_create(), not the BSD setitimer() timers, and only free the
   1038  * structure if none of those remain.
   1039  */
   1040 void
   1041 timers_free(struct proc *p, int which)
   1042 {
   1043 	int i, s;
   1044 	struct ptimers *pts;
   1045 	struct ptimer *pt, *ptn;
   1046 	struct timeval tv;
   1047 
   1048 	if (p->p_timers) {
   1049 		pts = p->p_timers;
   1050 		if (which == TIMERS_ALL)
   1051 			i = 0;
   1052 		else {
   1053 			s = splclock();
   1054 			timerclear(&tv);
   1055 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1056 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1057 			     ptn = LIST_NEXT(ptn, pt_list))
   1058 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1059 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1060 			if (ptn) {
   1061 				timeradd(&tv, &ptn->pt_time.it_value,
   1062 				    &ptn->pt_time.it_value);
   1063 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1064 				    ptn, pt_list);
   1065 			}
   1066 
   1067 			timerclear(&tv);
   1068 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1069 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1070 			     ptn = LIST_NEXT(ptn, pt_list))
   1071 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1072 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1073 			if (ptn) {
   1074 				timeradd(&tv, &ptn->pt_time.it_value,
   1075 				    &ptn->pt_time.it_value);
   1076 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1077 				    pt_list);
   1078 			}
   1079 			splx(s);
   1080 			i = 3;
   1081 		}
   1082 		for ( ; i < TIMER_MAX; i++)
   1083 			if ((pt = pts->pts_timers[i]) != NULL) {
   1084 				if (pt->pt_type == CLOCK_REALTIME)
   1085 					callout_stop(&pt->pt_ch);
   1086 				pts->pts_timers[i] = NULL;
   1087 				pool_put(&ptimer_pool, pt);
   1088 			}
   1089 		if ((pts->pts_timers[0] == NULL) &&
   1090 		    (pts->pts_timers[1] == NULL) &&
   1091 		    (pts->pts_timers[2] == NULL)) {
   1092 			p->p_timers = NULL;
   1093 			free(pts, M_SUBPROC);
   1094 		}
   1095 	}
   1096 }
   1097 
   1098 /*
   1099  * Check that a proposed value to load into the .it_value or
   1100  * .it_interval part of an interval timer is acceptable, and
   1101  * fix it to have at least minimal value (i.e. if it is less
   1102  * than the resolution of the clock, round it up.)
   1103  */
   1104 int
   1105 itimerfix(struct timeval *tv)
   1106 {
   1107 
   1108 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1109 		return (EINVAL);
   1110 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1111 		tv->tv_usec = tick;
   1112 	return (0);
   1113 }
   1114 
   1115 /*
   1116  * Decrement an interval timer by a specified number
   1117  * of microseconds, which must be less than a second,
   1118  * i.e. < 1000000.  If the timer expires, then reload
   1119  * it.  In this case, carry over (usec - old value) to
   1120  * reduce the value reloaded into the timer so that
   1121  * the timer does not drift.  This routine assumes
   1122  * that it is called in a context where the timers
   1123  * on which it is operating cannot change in value.
   1124  */
   1125 int
   1126 itimerdecr(struct ptimer *pt, int usec)
   1127 {
   1128 	struct itimerval *itp;
   1129 
   1130 	itp = &pt->pt_time;
   1131 	if (itp->it_value.tv_usec < usec) {
   1132 		if (itp->it_value.tv_sec == 0) {
   1133 			/* expired, and already in next interval */
   1134 			usec -= itp->it_value.tv_usec;
   1135 			goto expire;
   1136 		}
   1137 		itp->it_value.tv_usec += 1000000;
   1138 		itp->it_value.tv_sec--;
   1139 	}
   1140 	itp->it_value.tv_usec -= usec;
   1141 	usec = 0;
   1142 	if (timerisset(&itp->it_value))
   1143 		return (1);
   1144 	/* expired, exactly at end of interval */
   1145 expire:
   1146 	if (timerisset(&itp->it_interval)) {
   1147 		itp->it_value = itp->it_interval;
   1148 		itp->it_value.tv_usec -= usec;
   1149 		if (itp->it_value.tv_usec < 0) {
   1150 			itp->it_value.tv_usec += 1000000;
   1151 			itp->it_value.tv_sec--;
   1152 		}
   1153 		timer_settime(pt);
   1154 	} else
   1155 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1156 	return (0);
   1157 }
   1158 
   1159 void
   1160 itimerfire(struct ptimer *pt)
   1161 {
   1162 	struct proc *p = pt->pt_proc;
   1163 	int s;
   1164 
   1165 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1166 		/*
   1167 		 * No RT signal infrastructure exists at this time;
   1168 		 * just post the signal number and throw away the
   1169 		 * value.
   1170 		 */
   1171 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
   1172 			pt->pt_overruns++;
   1173 		else {
   1174 			pt->pt_poverruns = pt->pt_overruns;
   1175 			pt->pt_overruns = 0;
   1176 			psignal(p, pt->pt_ev.sigev_signo);
   1177 		}
   1178 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
   1179 		/* Cause the process to generate an upcall when it returns. */
   1180 		struct sadata *sa = p->p_sa;
   1181 		unsigned int i;
   1182 
   1183 		if (p->p_userret == NULL) {
   1184 			if (sa->sa_idle) {
   1185 				SCHED_LOCK(s);
   1186 				setrunnable(sa->sa_idle);
   1187 				SCHED_UNLOCK(s);
   1188 			}
   1189 			pt->pt_poverruns = pt->pt_overruns;
   1190 			pt->pt_overruns = 0;
   1191 			i = 1 << pt->pt_entry;
   1192 			p->p_timers->pts_fired = i;
   1193 			p->p_userret = timerupcall;
   1194 			p->p_userret_arg = p->p_timers;
   1195 		} else if (p->p_userret == timerupcall) {
   1196 			i = 1 << pt->pt_entry;
   1197 			if ((p->p_timers->pts_fired & i) == 0) {
   1198 				pt->pt_poverruns = pt->pt_overruns;
   1199 				pt->pt_overruns = 0;
   1200 				p->p_timers->pts_fired |= 1 << i;
   1201 			} else
   1202 				pt->pt_overruns++;
   1203 		} else {
   1204 			pt->pt_overruns++;
   1205 			printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
   1206 			    p->p_pid, pt->pt_overruns,
   1207 			    pt->pt_ev.sigev_value.sival_int,
   1208 			    p->p_userret);
   1209 		}
   1210 	}
   1211 
   1212 }
   1213 
   1214 /*
   1215  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1216  * for usage and rationale.
   1217  */
   1218 int
   1219 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1220 {
   1221 	struct timeval tv, delta;
   1222 	int s, rv = 0;
   1223 
   1224 	s = splclock();
   1225 	tv = mono_time;
   1226 	splx(s);
   1227 
   1228 	timersub(&tv, lasttime, &delta);
   1229 
   1230 	/*
   1231 	 * check for 0,0 is so that the message will be seen at least once,
   1232 	 * even if interval is huge.
   1233 	 */
   1234 	if (timercmp(&delta, mininterval, >=) ||
   1235 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1236 		*lasttime = tv;
   1237 		rv = 1;
   1238 	}
   1239 
   1240 	return (rv);
   1241 }
   1242 
   1243 /*
   1244  * ppsratecheck(): packets (or events) per second limitation.
   1245  */
   1246 int
   1247 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1248 {
   1249 	struct timeval tv, delta;
   1250 	int s, rv;
   1251 
   1252 	s = splclock();
   1253 	tv = mono_time;
   1254 	splx(s);
   1255 
   1256 	timersub(&tv, lasttime, &delta);
   1257 
   1258 	/*
   1259 	 * check for 0,0 is so that the message will be seen at least once.
   1260 	 * if more than one second have passed since the last update of
   1261 	 * lasttime, reset the counter.
   1262 	 *
   1263 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1264 	 * try to use *curpps for stat purposes as well.
   1265 	 */
   1266 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1267 	    delta.tv_sec >= 1) {
   1268 		*lasttime = tv;
   1269 		*curpps = 0;
   1270 		rv = 1;
   1271 	} else if (maxpps < 0)
   1272 		rv = 1;
   1273 	else if (*curpps < maxpps)
   1274 		rv = 1;
   1275 	else
   1276 		rv = 0;
   1277 
   1278 #if 1 /*DIAGNOSTIC?*/
   1279 	/* be careful about wrap-around */
   1280 	if (*curpps + 1 > *curpps)
   1281 		*curpps = *curpps + 1;
   1282 #else
   1283 	/*
   1284 	 * assume that there's not too many calls to this function.
   1285 	 * not sure if the assumption holds, as it depends on *caller's*
   1286 	 * behavior, not the behavior of this function.
   1287 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1288 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1289 	 */
   1290 	*curpps = *curpps + 1;
   1291 #endif
   1292 
   1293 	return (rv);
   1294 }
   1295