kern_time.c revision 1.64 1 /* $NetBSD: kern_time.c,v 1.64 2003/02/03 23:39:41 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.64 2003/02/03 23:39:41 nathanw Exp $");
76
77 #include "fs_nfs.h"
78 #include "opt_nfs.h"
79 #include "opt_nfsserver.h"
80
81 #include <sys/param.h>
82 #include <sys/resourcevar.h>
83 #include <sys/kernel.h>
84 #include <sys/systm.h>
85 #include <sys/malloc.h>
86 #include <sys/proc.h>
87 #include <sys/sa.h>
88 #include <sys/savar.h>
89 #include <sys/vnode.h>
90 #include <sys/signalvar.h>
91 #include <sys/syslog.h>
92
93 #include <sys/mount.h>
94 #include <sys/syscallargs.h>
95
96 #include <uvm/uvm_extern.h>
97
98 #if defined(NFS) || defined(NFSSERVER)
99 #include <nfs/rpcv2.h>
100 #include <nfs/nfsproto.h>
101 #include <nfs/nfs_var.h>
102 #endif
103
104 #include <machine/cpu.h>
105
106 static void timerupcall(struct lwp *, void *);
107
108
109 /* Time of day and interval timer support.
110 *
111 * These routines provide the kernel entry points to get and set
112 * the time-of-day and per-process interval timers. Subroutines
113 * here provide support for adding and subtracting timeval structures
114 * and decrementing interval timers, optionally reloading the interval
115 * timers when they expire.
116 */
117
118 /* This function is used by clock_settime and settimeofday */
119 int
120 settime(struct timeval *tv)
121 {
122 struct timeval delta;
123 struct cpu_info *ci;
124 int s;
125
126 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
127 s = splclock();
128 timersub(tv, &time, &delta);
129 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
130 splx(s);
131 return (EPERM);
132 }
133 #ifdef notyet
134 if ((delta.tv_sec < 86400) && securelevel > 0) {
135 splx(s);
136 return (EPERM);
137 }
138 #endif
139 time = *tv;
140 (void) spllowersoftclock();
141 timeradd(&boottime, &delta, &boottime);
142 /*
143 * XXXSMP
144 * This is wrong. We should traverse a list of all
145 * CPUs and add the delta to the runtime of those
146 * CPUs which have a process on them.
147 */
148 ci = curcpu();
149 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
150 &ci->ci_schedstate.spc_runtime);
151 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
152 nqnfs_lease_updatetime(delta.tv_sec);
153 # endif
154 splx(s);
155 resettodr();
156 return (0);
157 }
158
159 /* ARGSUSED */
160 int
161 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
162 {
163 struct sys_clock_gettime_args /* {
164 syscallarg(clockid_t) clock_id;
165 syscallarg(struct timespec *) tp;
166 } */ *uap = v;
167 clockid_t clock_id;
168 struct timeval atv;
169 struct timespec ats;
170 int s;
171
172 clock_id = SCARG(uap, clock_id);
173 switch (clock_id) {
174 case CLOCK_REALTIME:
175 microtime(&atv);
176 TIMEVAL_TO_TIMESPEC(&atv,&ats);
177 break;
178 case CLOCK_MONOTONIC:
179 /* XXX "hz" granularity */
180 s = splclock();
181 atv = mono_time;
182 splx(s);
183 TIMEVAL_TO_TIMESPEC(&atv,&ats);
184 break;
185 default:
186 return (EINVAL);
187 }
188
189 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
190 }
191
192 /* ARGSUSED */
193 int
194 sys_clock_settime(l, v, retval)
195 struct lwp *l;
196 void *v;
197 register_t *retval;
198 {
199 struct sys_clock_settime_args /* {
200 syscallarg(clockid_t) clock_id;
201 syscallarg(const struct timespec *) tp;
202 } */ *uap = v;
203 struct proc *p = l->l_proc;
204 int error;
205
206 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
207 return (error);
208
209 return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
210 }
211
212
213 int
214 clock_settime1(clock_id, tp)
215 clockid_t clock_id;
216 const struct timespec *tp;
217 {
218 struct timespec ats;
219 struct timeval atv;
220 int error;
221
222 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
223 return (error);
224
225 switch (clock_id) {
226 case CLOCK_REALTIME:
227 TIMESPEC_TO_TIMEVAL(&atv, &ats);
228 if ((error = settime(&atv)) != 0)
229 return (error);
230 break;
231 case CLOCK_MONOTONIC:
232 return (EINVAL); /* read-only clock */
233 default:
234 return (EINVAL);
235 }
236
237 return 0;
238 }
239
240 int
241 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
242 {
243 struct sys_clock_getres_args /* {
244 syscallarg(clockid_t) clock_id;
245 syscallarg(struct timespec *) tp;
246 } */ *uap = v;
247 clockid_t clock_id;
248 struct timespec ts;
249 int error = 0;
250
251 clock_id = SCARG(uap, clock_id);
252 switch (clock_id) {
253 case CLOCK_REALTIME:
254 case CLOCK_MONOTONIC:
255 ts.tv_sec = 0;
256 ts.tv_nsec = 1000000000 / hz;
257 break;
258 default:
259 return (EINVAL);
260 }
261
262 if (SCARG(uap, tp))
263 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
264
265 return error;
266 }
267
268 /* ARGSUSED */
269 int
270 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
271 {
272 static int nanowait;
273 struct sys_nanosleep_args/* {
274 syscallarg(struct timespec *) rqtp;
275 syscallarg(struct timespec *) rmtp;
276 } */ *uap = v;
277 struct timespec rqt;
278 struct timespec rmt;
279 struct timeval atv, utv;
280 int error, s, timo;
281
282 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
283 sizeof(struct timespec));
284 if (error)
285 return (error);
286
287 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
288 if (itimerfix(&atv) || atv.tv_sec > 1000000000)
289 return (EINVAL);
290
291 s = splclock();
292 timeradd(&atv,&time,&atv);
293 timo = hzto(&atv);
294 /*
295 * Avoid inadvertantly sleeping forever
296 */
297 if (timo == 0)
298 timo = 1;
299 splx(s);
300
301 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
302 if (error == ERESTART)
303 error = EINTR;
304 if (error == EWOULDBLOCK)
305 error = 0;
306
307 if (SCARG(uap, rmtp)) {
308 int error;
309
310 s = splclock();
311 utv = time;
312 splx(s);
313
314 timersub(&atv, &utv, &utv);
315 if (utv.tv_sec < 0)
316 timerclear(&utv);
317
318 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
319 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
320 sizeof(rmt));
321 if (error)
322 return (error);
323 }
324
325 return error;
326 }
327
328 /* ARGSUSED */
329 int
330 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
331 {
332 struct sys_gettimeofday_args /* {
333 syscallarg(struct timeval *) tp;
334 syscallarg(struct timezone *) tzp;
335 } */ *uap = v;
336 struct timeval atv;
337 int error = 0;
338 struct timezone tzfake;
339
340 if (SCARG(uap, tp)) {
341 microtime(&atv);
342 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
343 if (error)
344 return (error);
345 }
346 if (SCARG(uap, tzp)) {
347 /*
348 * NetBSD has no kernel notion of time zone, so we just
349 * fake up a timezone struct and return it if demanded.
350 */
351 tzfake.tz_minuteswest = 0;
352 tzfake.tz_dsttime = 0;
353 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
354 }
355 return (error);
356 }
357
358 /* ARGSUSED */
359 int
360 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
361 {
362 struct sys_settimeofday_args /* {
363 syscallarg(const struct timeval *) tv;
364 syscallarg(const struct timezone *) tzp;
365 } */ *uap = v;
366 struct proc *p = l->l_proc;
367 int error;
368
369 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
370 return (error);
371
372 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
373 }
374
375 int
376 settimeofday1(utv, utzp, p)
377 const struct timeval *utv;
378 const struct timezone *utzp;
379 struct proc *p;
380 {
381 struct timeval atv;
382 struct timezone atz;
383 struct timeval *tv = NULL;
384 struct timezone *tzp = NULL;
385 int error;
386
387 /* Verify all parameters before changing time. */
388 if (utv) {
389 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
390 return (error);
391 tv = &atv;
392 }
393 /* XXX since we don't use tz, probably no point in doing copyin. */
394 if (utzp) {
395 if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
396 return (error);
397 tzp = &atz;
398 }
399
400 if (tv)
401 if ((error = settime(tv)) != 0)
402 return (error);
403 /*
404 * NetBSD has no kernel notion of time zone, and only an
405 * obsolete program would try to set it, so we log a warning.
406 */
407 if (tzp)
408 log(LOG_WARNING, "pid %d attempted to set the "
409 "(obsolete) kernel time zone\n", p->p_pid);
410 return (0);
411 }
412
413 int tickdelta; /* current clock skew, us. per tick */
414 long timedelta; /* unapplied time correction, us. */
415 long bigadj = 1000000; /* use 10x skew above bigadj us. */
416
417 /* ARGSUSED */
418 int
419 sys_adjtime(struct lwp *l, void *v, register_t *retval)
420 {
421 struct sys_adjtime_args /* {
422 syscallarg(const struct timeval *) delta;
423 syscallarg(struct timeval *) olddelta;
424 } */ *uap = v;
425 struct proc *p = l->l_proc;
426 int error;
427
428 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
429 return (error);
430
431 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
432 }
433
434 int
435 adjtime1(delta, olddelta, p)
436 const struct timeval *delta;
437 struct timeval *olddelta;
438 struct proc *p;
439 {
440 struct timeval atv;
441 long ndelta, ntickdelta, odelta;
442 int error;
443 int s;
444
445 error = copyin(delta, &atv, sizeof(struct timeval));
446 if (error)
447 return (error);
448
449 if (olddelta != NULL) {
450 if (uvm_useracc((caddr_t)olddelta,
451 sizeof(struct timeval), B_WRITE) == FALSE)
452 return (EFAULT);
453 }
454
455 /*
456 * Compute the total correction and the rate at which to apply it.
457 * Round the adjustment down to a whole multiple of the per-tick
458 * delta, so that after some number of incremental changes in
459 * hardclock(), tickdelta will become zero, lest the correction
460 * overshoot and start taking us away from the desired final time.
461 */
462 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
463 if (ndelta > bigadj || ndelta < -bigadj)
464 ntickdelta = 10 * tickadj;
465 else
466 ntickdelta = tickadj;
467 if (ndelta % ntickdelta)
468 ndelta = ndelta / ntickdelta * ntickdelta;
469
470 /*
471 * To make hardclock()'s job easier, make the per-tick delta negative
472 * if we want time to run slower; then hardclock can simply compute
473 * tick + tickdelta, and subtract tickdelta from timedelta.
474 */
475 if (ndelta < 0)
476 ntickdelta = -ntickdelta;
477 s = splclock();
478 odelta = timedelta;
479 timedelta = ndelta;
480 tickdelta = ntickdelta;
481 splx(s);
482
483 if (olddelta) {
484 atv.tv_sec = odelta / 1000000;
485 atv.tv_usec = odelta % 1000000;
486 (void) copyout(&atv, olddelta, sizeof(struct timeval));
487 }
488 return (0);
489 }
490
491 /*
492 * Interval timer support. Both the BSD getitimer() family and the POSIX
493 * timer_*() family of routines are supported.
494 *
495 * All timers are kept in an array pointed to by p_timers, which is
496 * allocated on demand - many processes don't use timers at all. The
497 * first three elements in this array are reserved for the BSD timers:
498 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
499 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
500 * syscall.
501 *
502 * Realtime timers are kept in the ptimer structure as an absolute
503 * time; virtual time timers are kept as a linked list of deltas.
504 * Virtual time timers are processed in the hardclock() routine of
505 * kern_clock.c. The real time timer is processed by a callout
506 * routine, called from the softclock() routine. Since a callout may
507 * be delayed in real time due to interrupt processing in the system,
508 * it is possible for the real time timeout routine (realtimeexpire,
509 * given below), to be delayed in real time past when it is supposed
510 * to occur. It does not suffice, therefore, to reload the real timer
511 * .it_value from the real time timers .it_interval. Rather, we
512 * compute the next time in absolute time the timer should go off. */
513
514 /* Allocate a POSIX realtime timer. */
515 int
516 sys_timer_create(struct lwp *l, void *v, register_t *retval)
517 {
518 struct sys_timer_create_args /* {
519 syscallarg(clockid_t) clock_id;
520 syscallarg(struct sigevent *) evp;
521 syscallarg(timer_t *) timerid;
522 } */ *uap = v;
523 struct proc *p = l->l_proc;
524 clockid_t id;
525 struct sigevent *evp;
526 struct ptimer *pt;
527 int timerid, error;
528
529 id = SCARG(uap, clock_id);
530 if (id < CLOCK_REALTIME ||
531 id > CLOCK_PROF)
532 return (EINVAL);
533
534 if (p->p_timers == NULL)
535 timers_alloc(p);
536
537 /* Find a free timer slot, skipping those reserved for setitimer(). */
538 for (timerid = 3; timerid < TIMER_MAX; timerid++)
539 if (p->p_timers->pts_timers[timerid] == NULL)
540 break;
541
542 if (timerid == TIMER_MAX)
543 return EAGAIN;
544
545 pt = pool_get(&ptimer_pool, PR_WAITOK);
546 evp = SCARG(uap, evp);
547 if (evp) {
548 if (((error =
549 copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
550 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
551 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
552 pool_put(&ptimer_pool, pt);
553 return (error ? error : EINVAL);
554 }
555 } else {
556 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
557 switch (id) {
558 case CLOCK_REALTIME:
559 pt->pt_ev.sigev_signo = SIGALRM;
560 break;
561 case CLOCK_VIRTUAL:
562 pt->pt_ev.sigev_signo = SIGVTALRM;
563 break;
564 case CLOCK_PROF:
565 pt->pt_ev.sigev_signo = SIGPROF;
566 break;
567 }
568 pt->pt_ev.sigev_value.sival_int = timerid;
569 }
570 pt->pt_info.si_signo = pt->pt_ev.sigev_signo;
571 pt->pt_info.si_errno = 0;
572 pt->pt_info.si_code = 0;
573 pt->pt_info.si_pid = p->p_pid;
574 pt->pt_info.si_uid = p->p_cred->p_ruid;
575 pt->pt_info.si_sigval = pt->pt_ev.sigev_value;
576
577 pt->pt_type = id;
578 pt->pt_proc = p;
579 pt->pt_overruns = 0;
580 pt->pt_poverruns = 0;
581 pt->pt_entry = timerid;
582 timerclear(&pt->pt_time.it_value);
583 if (id == CLOCK_REALTIME)
584 callout_init(&pt->pt_ch);
585 else
586 pt->pt_active = 0;
587
588 p->p_timers->pts_timers[timerid] = pt;
589
590 return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
591 }
592
593
594 /* Delete a POSIX realtime timer */
595 int
596 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
597 {
598 struct sys_timer_delete_args /* {
599 syscallarg(timer_t) timerid;
600 } */ *uap = v;
601 struct proc *p = l->l_proc;
602 int timerid;
603 struct ptimer *pt, *ptn;
604 int s;
605
606 timerid = SCARG(uap, timerid);
607
608 if ((p->p_timers == NULL) ||
609 (timerid < 2) || (timerid >= TIMER_MAX) ||
610 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
611 return (EINVAL);
612
613 if (pt->pt_type == CLOCK_REALTIME)
614 callout_stop(&pt->pt_ch);
615 else if (pt->pt_active) {
616 s = splclock();
617 ptn = LIST_NEXT(pt, pt_list);
618 LIST_REMOVE(pt, pt_list);
619 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
620 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
621 &ptn->pt_time.it_value);
622 splx(s);
623 }
624
625 p->p_timers->pts_timers[timerid] = NULL;
626 pool_put(&ptimer_pool, pt);
627
628 return (0);
629 }
630
631 /*
632 * Set up the given timer. The value in pt->pt_time.it_value is taken to be
633 * relative to now.
634 * Must be called at splclock().
635 */
636 void
637 timer_settime(struct ptimer *pt)
638 {
639 struct ptimer *ptn, *pptn;
640 struct ptlist *ptl;
641
642 if (pt->pt_type == CLOCK_REALTIME) {
643 callout_stop(&pt->pt_ch);
644 if (timerisset(&pt->pt_time.it_value)) {
645 timeradd(&pt->pt_time.it_value, &time,
646 &pt->pt_time.it_value);
647 /*
648 * Don't need to check hzto() return value, here.
649 * callout_reset() does it for us.
650 */
651 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
652 realtimerexpire, pt);
653 }
654 } else {
655 if (pt->pt_active) {
656 ptn = LIST_NEXT(pt, pt_list);
657 LIST_REMOVE(pt, pt_list);
658 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
659 timeradd(&pt->pt_time.it_value,
660 &ptn->pt_time.it_value,
661 &ptn->pt_time.it_value);
662 }
663 if (timerisset(&pt->pt_time.it_value)) {
664 if (pt->pt_type == CLOCK_VIRTUAL)
665 ptl = &pt->pt_proc->p_timers->pts_virtual;
666 else
667 ptl = &pt->pt_proc->p_timers->pts_prof;
668
669 for (ptn = LIST_FIRST(ptl), pptn = NULL;
670 ptn && timercmp(&pt->pt_time.it_value,
671 &ptn->pt_time.it_value, >);
672 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
673 timersub(&pt->pt_time.it_value,
674 &ptn->pt_time.it_value,
675 &pt->pt_time.it_value);
676
677 if (pptn)
678 LIST_INSERT_AFTER(pptn, pt, pt_list);
679 else
680 LIST_INSERT_HEAD(ptl, pt, pt_list);
681
682 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
683 timersub(&ptn->pt_time.it_value,
684 &pt->pt_time.it_value,
685 &ptn->pt_time.it_value);
686
687 pt->pt_active = 1;
688 } else
689 pt->pt_active = 0;
690 }
691 }
692
693 void
694 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
695 {
696 struct ptimer *ptn;
697
698 *aitv = pt->pt_time;
699 if (pt->pt_type == CLOCK_REALTIME) {
700 /*
701 * Convert from absolute to relative time in .it_value
702 * part of real time timer. If time for real time
703 * timer has passed return 0, else return difference
704 * between current time and time for the timer to go
705 * off.
706 */
707 if (timerisset(&aitv->it_value)) {
708 if (timercmp(&aitv->it_value, &time, <))
709 timerclear(&aitv->it_value);
710 else
711 timersub(&aitv->it_value, &time,
712 &aitv->it_value);
713 }
714 } else if (pt->pt_active) {
715 if (pt->pt_type == CLOCK_VIRTUAL)
716 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
717 else
718 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
719 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
720 timeradd(&aitv->it_value,
721 &ptn->pt_time.it_value, &aitv->it_value);
722 KASSERT(ptn != NULL); /* pt should be findable on the list */
723 } else
724 timerclear(&aitv->it_value);
725 }
726
727
728
729 /* Set and arm a POSIX realtime timer */
730 int
731 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
732 {
733 struct sys_timer_settime_args /* {
734 syscallarg(timer_t) timerid;
735 syscallarg(int) flags;
736 syscallarg(const struct itimerspec *) value;
737 syscallarg(struct itimerspec *) ovalue;
738 } */ *uap = v;
739 struct proc *p = l->l_proc;
740 int error, s, timerid;
741 struct itimerval val, oval;
742 struct itimerspec value, ovalue;
743 struct ptimer *pt;
744
745 timerid = SCARG(uap, timerid);
746
747 if ((p->p_timers == NULL) ||
748 (timerid < 2) || (timerid >= TIMER_MAX) ||
749 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
750 return (EINVAL);
751
752 if ((error = copyin(SCARG(uap, value), &value,
753 sizeof(struct itimerspec))) != 0)
754 return (error);
755
756 TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
757 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
758 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
759 return (EINVAL);
760
761 oval = pt->pt_time;
762 pt->pt_time = val;
763
764 s = splclock();
765 /* If we've been passed an absolute time, convert it to relative. */
766 if (timerisset(&pt->pt_time.it_value) &&
767 (SCARG(uap, flags) & TIMER_ABSTIME))
768 timersub(&pt->pt_time.it_value, &time,
769 &pt->pt_time.it_value);
770 timer_settime(pt);
771 splx(s);
772
773 if (SCARG(uap, ovalue)) {
774 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
775 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
776 return copyout(&ovalue, SCARG(uap, ovalue),
777 sizeof(struct itimerspec));
778 }
779
780 return (0);
781 }
782
783 /* Return the time remaining until a POSIX timer fires. */
784 int
785 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
786 {
787 struct sys_timer_gettime_args /* {
788 syscallarg(timer_t) timerid;
789 syscallarg(struct itimerspec *) value;
790 } */ *uap = v;
791 struct itimerval aitv;
792 struct itimerspec its;
793 struct proc *p = l->l_proc;
794 int s, timerid;
795 struct ptimer *pt;
796
797 timerid = SCARG(uap, timerid);
798
799 if ((p->p_timers == NULL) ||
800 (timerid < 2) || (timerid >= TIMER_MAX) ||
801 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
802 return (EINVAL);
803
804 s = splclock();
805 timer_gettime(pt, &aitv);
806 splx(s);
807
808 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
809 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
810
811 return copyout(&its, SCARG(uap, value), sizeof(its));
812 }
813
814 /*
815 * Return the count of the number of times a periodic timer expired
816 * while a notification was already pending. The counter is reset when
817 * a timer expires and a notification can be posted.
818 */
819 int
820 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
821 {
822 struct sys_timer_getoverrun_args /* {
823 syscallarg(timer_t) timerid;
824 } */ *uap = v;
825 struct proc *p = l->l_proc;
826 int timerid;
827 struct ptimer *pt;
828
829 timerid = SCARG(uap, timerid);
830
831 if ((p->p_timers == NULL) ||
832 (timerid < 2) || (timerid >= TIMER_MAX) ||
833 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
834 return (EINVAL);
835
836 *retval = pt->pt_poverruns;
837
838 return (0);
839 }
840
841 /* Glue function that triggers an upcall; called from userret(). */
842 static void
843 timerupcall(struct lwp *l, void *arg)
844 {
845 struct ptimers *pt = (struct ptimers *)arg;
846 unsigned int i, fired, done;
847 KERNEL_PROC_LOCK(l);
848
849 fired = pt->pts_fired;
850 done = 0;
851 while ((i = ffs(fired)) != 0) {
852 i--;
853 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
854 sizeof(siginfo_t), &pt->pts_timers[i]->pt_info) == 0)
855 done |= 1 << i;
856 fired &= ~(1 << i);
857 }
858 pt->pts_fired &= ~done;
859 if (pt->pts_fired == 0)
860 l->l_proc->p_userret = NULL;
861
862 KERNEL_PROC_UNLOCK(l);
863 }
864
865
866 /*
867 * Real interval timer expired:
868 * send process whose timer expired an alarm signal.
869 * If time is not set up to reload, then just return.
870 * Else compute next time timer should go off which is > current time.
871 * This is where delay in processing this timeout causes multiple
872 * SIGALRM calls to be compressed into one.
873 */
874 void
875 realtimerexpire(void *arg)
876 {
877 struct ptimer *pt;
878 int s;
879
880 pt = (struct ptimer *)arg;
881
882 itimerfire(pt);
883
884 if (!timerisset(&pt->pt_time.it_interval)) {
885 timerclear(&pt->pt_time.it_value);
886 return;
887 }
888 for (;;) {
889 s = splclock();
890 timeradd(&pt->pt_time.it_value,
891 &pt->pt_time.it_interval, &pt->pt_time.it_value);
892 if (timercmp(&pt->pt_time.it_value, &time, >)) {
893 /*
894 * Don't need to check hzto() return value, here.
895 * callout_reset() does it for us.
896 */
897 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
898 realtimerexpire, pt);
899 splx(s);
900 return;
901 }
902 splx(s);
903 pt->pt_overruns++;
904 }
905 }
906
907 /* BSD routine to get the value of an interval timer. */
908 /* ARGSUSED */
909 int
910 sys_getitimer(struct lwp *l, void *v, register_t *retval)
911 {
912 struct sys_getitimer_args /* {
913 syscallarg(int) which;
914 syscallarg(struct itimerval *) itv;
915 } */ *uap = v;
916 struct proc *p = l->l_proc;
917 struct itimerval aitv;
918 int s, which;
919
920 which = SCARG(uap, which);
921
922 if ((u_int)which > ITIMER_PROF)
923 return (EINVAL);
924
925 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
926 timerclear(&aitv.it_value);
927 timerclear(&aitv.it_interval);
928 } else {
929 s = splclock();
930 timer_gettime(p->p_timers->pts_timers[which], &aitv);
931 splx(s);
932 }
933
934 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
935
936 }
937
938 /* BSD routine to set/arm an interval timer. */
939 /* ARGSUSED */
940 int
941 sys_setitimer(struct lwp *l, void *v, register_t *retval)
942 {
943 struct sys_setitimer_args /* {
944 syscallarg(int) which;
945 syscallarg(const struct itimerval *) itv;
946 syscallarg(struct itimerval *) oitv;
947 } */ *uap = v;
948 struct proc *p = l->l_proc;
949 int which = SCARG(uap, which);
950 struct sys_getitimer_args getargs;
951 struct itimerval aitv;
952 const struct itimerval *itvp;
953 struct ptimer *pt;
954 int s, error;
955
956 if ((u_int)which > ITIMER_PROF)
957 return (EINVAL);
958 itvp = SCARG(uap, itv);
959 if (itvp &&
960 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
961 return (error);
962 if (SCARG(uap, oitv) != NULL) {
963 SCARG(&getargs, which) = which;
964 SCARG(&getargs, itv) = SCARG(uap, oitv);
965 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
966 return (error);
967 }
968 if (itvp == 0)
969 return (0);
970 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
971 return (EINVAL);
972
973 /*
974 * Don't bother allocating data structures if the process just
975 * wants to clear the timer.
976 */
977 if (!timerisset(&aitv.it_value) &&
978 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
979 return (0);
980
981 if (p->p_timers == NULL)
982 timers_alloc(p);
983 if (p->p_timers->pts_timers[which] == NULL) {
984 pt = pool_get(&ptimer_pool, PR_WAITOK);
985 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
986 pt->pt_overruns = 0;
987 pt->pt_proc = p;
988 pt->pt_type = which;
989 pt->pt_entry = which;
990 switch (which) {
991 case ITIMER_REAL:
992 callout_init(&pt->pt_ch);
993 pt->pt_ev.sigev_signo = SIGALRM;
994 break;
995 case ITIMER_VIRTUAL:
996 pt->pt_active = 0;
997 pt->pt_ev.sigev_signo = SIGVTALRM;
998 break;
999 case ITIMER_PROF:
1000 pt->pt_active = 0;
1001 pt->pt_ev.sigev_signo = SIGPROF;
1002 break;
1003 }
1004 } else
1005 pt = p->p_timers->pts_timers[which];
1006
1007 pt->pt_time = aitv;
1008 p->p_timers->pts_timers[which] = pt;
1009
1010 s = splclock();
1011 timer_settime(pt);
1012 splx(s);
1013
1014 return (0);
1015 }
1016
1017 /* Utility routines to manage the array of pointers to timers. */
1018 void
1019 timers_alloc(struct proc *p)
1020 {
1021 int i;
1022 struct ptimers *pts;
1023
1024 pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1025 LIST_INIT(&pts->pts_virtual);
1026 LIST_INIT(&pts->pts_prof);
1027 for (i = 0; i < TIMER_MAX; i++)
1028 pts->pts_timers[i] = NULL;
1029 pts->pts_fired = 0;
1030 p->p_timers = pts;
1031 }
1032
1033 /*
1034 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1035 * then clean up all timers and free all the data structures. If
1036 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1037 * by timer_create(), not the BSD setitimer() timers, and only free the
1038 * structure if none of those remain.
1039 */
1040 void
1041 timers_free(struct proc *p, int which)
1042 {
1043 int i, s;
1044 struct ptimers *pts;
1045 struct ptimer *pt, *ptn;
1046 struct timeval tv;
1047
1048 if (p->p_timers) {
1049 pts = p->p_timers;
1050 if (which == TIMERS_ALL)
1051 i = 0;
1052 else {
1053 s = splclock();
1054 timerclear(&tv);
1055 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1056 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1057 ptn = LIST_NEXT(ptn, pt_list))
1058 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1059 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1060 if (ptn) {
1061 timeradd(&tv, &ptn->pt_time.it_value,
1062 &ptn->pt_time.it_value);
1063 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1064 ptn, pt_list);
1065 }
1066
1067 timerclear(&tv);
1068 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1069 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1070 ptn = LIST_NEXT(ptn, pt_list))
1071 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1072 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1073 if (ptn) {
1074 timeradd(&tv, &ptn->pt_time.it_value,
1075 &ptn->pt_time.it_value);
1076 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1077 pt_list);
1078 }
1079 splx(s);
1080 i = 3;
1081 }
1082 for ( ; i < TIMER_MAX; i++)
1083 if ((pt = pts->pts_timers[i]) != NULL) {
1084 if (pt->pt_type == CLOCK_REALTIME)
1085 callout_stop(&pt->pt_ch);
1086 pts->pts_timers[i] = NULL;
1087 pool_put(&ptimer_pool, pt);
1088 }
1089 if ((pts->pts_timers[0] == NULL) &&
1090 (pts->pts_timers[1] == NULL) &&
1091 (pts->pts_timers[2] == NULL)) {
1092 p->p_timers = NULL;
1093 free(pts, M_SUBPROC);
1094 }
1095 }
1096 }
1097
1098 /*
1099 * Check that a proposed value to load into the .it_value or
1100 * .it_interval part of an interval timer is acceptable, and
1101 * fix it to have at least minimal value (i.e. if it is less
1102 * than the resolution of the clock, round it up.)
1103 */
1104 int
1105 itimerfix(struct timeval *tv)
1106 {
1107
1108 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1109 return (EINVAL);
1110 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1111 tv->tv_usec = tick;
1112 return (0);
1113 }
1114
1115 /*
1116 * Decrement an interval timer by a specified number
1117 * of microseconds, which must be less than a second,
1118 * i.e. < 1000000. If the timer expires, then reload
1119 * it. In this case, carry over (usec - old value) to
1120 * reduce the value reloaded into the timer so that
1121 * the timer does not drift. This routine assumes
1122 * that it is called in a context where the timers
1123 * on which it is operating cannot change in value.
1124 */
1125 int
1126 itimerdecr(struct ptimer *pt, int usec)
1127 {
1128 struct itimerval *itp;
1129
1130 itp = &pt->pt_time;
1131 if (itp->it_value.tv_usec < usec) {
1132 if (itp->it_value.tv_sec == 0) {
1133 /* expired, and already in next interval */
1134 usec -= itp->it_value.tv_usec;
1135 goto expire;
1136 }
1137 itp->it_value.tv_usec += 1000000;
1138 itp->it_value.tv_sec--;
1139 }
1140 itp->it_value.tv_usec -= usec;
1141 usec = 0;
1142 if (timerisset(&itp->it_value))
1143 return (1);
1144 /* expired, exactly at end of interval */
1145 expire:
1146 if (timerisset(&itp->it_interval)) {
1147 itp->it_value = itp->it_interval;
1148 itp->it_value.tv_usec -= usec;
1149 if (itp->it_value.tv_usec < 0) {
1150 itp->it_value.tv_usec += 1000000;
1151 itp->it_value.tv_sec--;
1152 }
1153 timer_settime(pt);
1154 } else
1155 itp->it_value.tv_usec = 0; /* sec is already 0 */
1156 return (0);
1157 }
1158
1159 void
1160 itimerfire(struct ptimer *pt)
1161 {
1162 struct proc *p = pt->pt_proc;
1163 int s;
1164
1165 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1166 /*
1167 * No RT signal infrastructure exists at this time;
1168 * just post the signal number and throw away the
1169 * value.
1170 */
1171 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1172 pt->pt_overruns++;
1173 else {
1174 pt->pt_poverruns = pt->pt_overruns;
1175 pt->pt_overruns = 0;
1176 psignal(p, pt->pt_ev.sigev_signo);
1177 }
1178 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1179 /* Cause the process to generate an upcall when it returns. */
1180 struct sadata *sa = p->p_sa;
1181 unsigned int i;
1182
1183 if (p->p_userret == NULL) {
1184 if (sa->sa_idle) {
1185 SCHED_LOCK(s);
1186 setrunnable(sa->sa_idle);
1187 SCHED_UNLOCK(s);
1188 }
1189 pt->pt_poverruns = pt->pt_overruns;
1190 pt->pt_overruns = 0;
1191 i = 1 << pt->pt_entry;
1192 p->p_timers->pts_fired = i;
1193 p->p_userret = timerupcall;
1194 p->p_userret_arg = p->p_timers;
1195 } else if (p->p_userret == timerupcall) {
1196 i = 1 << pt->pt_entry;
1197 if ((p->p_timers->pts_fired & i) == 0) {
1198 pt->pt_poverruns = pt->pt_overruns;
1199 pt->pt_overruns = 0;
1200 p->p_timers->pts_fired |= 1 << i;
1201 } else
1202 pt->pt_overruns++;
1203 } else {
1204 pt->pt_overruns++;
1205 printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1206 p->p_pid, pt->pt_overruns,
1207 pt->pt_ev.sigev_value.sival_int,
1208 p->p_userret);
1209 }
1210 }
1211
1212 }
1213
1214 /*
1215 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1216 * for usage and rationale.
1217 */
1218 int
1219 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1220 {
1221 struct timeval tv, delta;
1222 int s, rv = 0;
1223
1224 s = splclock();
1225 tv = mono_time;
1226 splx(s);
1227
1228 timersub(&tv, lasttime, &delta);
1229
1230 /*
1231 * check for 0,0 is so that the message will be seen at least once,
1232 * even if interval is huge.
1233 */
1234 if (timercmp(&delta, mininterval, >=) ||
1235 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1236 *lasttime = tv;
1237 rv = 1;
1238 }
1239
1240 return (rv);
1241 }
1242
1243 /*
1244 * ppsratecheck(): packets (or events) per second limitation.
1245 */
1246 int
1247 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1248 {
1249 struct timeval tv, delta;
1250 int s, rv;
1251
1252 s = splclock();
1253 tv = mono_time;
1254 splx(s);
1255
1256 timersub(&tv, lasttime, &delta);
1257
1258 /*
1259 * check for 0,0 is so that the message will be seen at least once.
1260 * if more than one second have passed since the last update of
1261 * lasttime, reset the counter.
1262 *
1263 * we do increment *curpps even in *curpps < maxpps case, as some may
1264 * try to use *curpps for stat purposes as well.
1265 */
1266 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1267 delta.tv_sec >= 1) {
1268 *lasttime = tv;
1269 *curpps = 0;
1270 rv = 1;
1271 } else if (maxpps < 0)
1272 rv = 1;
1273 else if (*curpps < maxpps)
1274 rv = 1;
1275 else
1276 rv = 0;
1277
1278 #if 1 /*DIAGNOSTIC?*/
1279 /* be careful about wrap-around */
1280 if (*curpps + 1 > *curpps)
1281 *curpps = *curpps + 1;
1282 #else
1283 /*
1284 * assume that there's not too many calls to this function.
1285 * not sure if the assumption holds, as it depends on *caller's*
1286 * behavior, not the behavior of this function.
1287 * IMHO it is wrong to make assumption on the caller's behavior,
1288 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1289 */
1290 *curpps = *curpps + 1;
1291 #endif
1292
1293 return (rv);
1294 }
1295