Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.66
      1 /*	$NetBSD: kern_time.c,v 1.66 2003/02/04 15:50:06 jdolecek Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the University of
     54  *	California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     72  */
     73 
     74 #include <sys/cdefs.h>
     75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.66 2003/02/04 15:50:06 jdolecek Exp $");
     76 
     77 #include "fs_nfs.h"
     78 #include "opt_nfs.h"
     79 #include "opt_nfsserver.h"
     80 
     81 #include <sys/param.h>
     82 #include <sys/resourcevar.h>
     83 #include <sys/kernel.h>
     84 #include <sys/systm.h>
     85 #include <sys/malloc.h>
     86 #include <sys/proc.h>
     87 #include <sys/sa.h>
     88 #include <sys/savar.h>
     89 #include <sys/vnode.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/syslog.h>
     92 
     93 #include <sys/mount.h>
     94 #include <sys/syscallargs.h>
     95 
     96 #include <uvm/uvm_extern.h>
     97 
     98 #if defined(NFS) || defined(NFSSERVER)
     99 #include <nfs/rpcv2.h>
    100 #include <nfs/nfsproto.h>
    101 #include <nfs/nfs_var.h>
    102 #endif
    103 
    104 #include <machine/cpu.h>
    105 
    106 static void timerupcall(struct lwp *, void *);
    107 
    108 
    109 /* Time of day and interval timer support.
    110  *
    111  * These routines provide the kernel entry points to get and set
    112  * the time-of-day and per-process interval timers.  Subroutines
    113  * here provide support for adding and subtracting timeval structures
    114  * and decrementing interval timers, optionally reloading the interval
    115  * timers when they expire.
    116  */
    117 
    118 /* This function is used by clock_settime and settimeofday */
    119 int
    120 settime(struct timeval *tv)
    121 {
    122 	struct timeval delta;
    123 	struct cpu_info *ci;
    124 	int s;
    125 
    126 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    127 	s = splclock();
    128 	timersub(tv, &time, &delta);
    129 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    130 		splx(s);
    131 		return (EPERM);
    132 	}
    133 #ifdef notyet
    134 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    135 		splx(s);
    136 		return (EPERM);
    137 	}
    138 #endif
    139 	time = *tv;
    140 	(void) spllowersoftclock();
    141 	timeradd(&boottime, &delta, &boottime);
    142 	/*
    143 	 * XXXSMP
    144 	 * This is wrong.  We should traverse a list of all
    145 	 * CPUs and add the delta to the runtime of those
    146 	 * CPUs which have a process on them.
    147 	 */
    148 	ci = curcpu();
    149 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    150 	    &ci->ci_schedstate.spc_runtime);
    151 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    152 		nqnfs_lease_updatetime(delta.tv_sec);
    153 #	endif
    154 	splx(s);
    155 	resettodr();
    156 	return (0);
    157 }
    158 
    159 /* ARGSUSED */
    160 int
    161 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    162 {
    163 	struct sys_clock_gettime_args /* {
    164 		syscallarg(clockid_t) clock_id;
    165 		syscallarg(struct timespec *) tp;
    166 	} */ *uap = v;
    167 	clockid_t clock_id;
    168 	struct timeval atv;
    169 	struct timespec ats;
    170 	int s;
    171 
    172 	clock_id = SCARG(uap, clock_id);
    173 	switch (clock_id) {
    174 	case CLOCK_REALTIME:
    175 		microtime(&atv);
    176 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    177 		break;
    178 	case CLOCK_MONOTONIC:
    179 		/* XXX "hz" granularity */
    180 		s = splclock();
    181 		atv = mono_time;
    182 		splx(s);
    183 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    184 		break;
    185 	default:
    186 		return (EINVAL);
    187 	}
    188 
    189 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    190 }
    191 
    192 /* ARGSUSED */
    193 int
    194 sys_clock_settime(l, v, retval)
    195 	struct lwp *l;
    196 	void *v;
    197 	register_t *retval;
    198 {
    199 	struct sys_clock_settime_args /* {
    200 		syscallarg(clockid_t) clock_id;
    201 		syscallarg(const struct timespec *) tp;
    202 	} */ *uap = v;
    203 	struct proc *p = l->l_proc;
    204 	int error;
    205 
    206 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    207 		return (error);
    208 
    209 	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
    210 }
    211 
    212 
    213 int
    214 clock_settime1(clock_id, tp)
    215 	clockid_t clock_id;
    216 	const struct timespec *tp;
    217 {
    218 	struct timespec ats;
    219 	struct timeval atv;
    220 	int error;
    221 
    222 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    223 		return (error);
    224 
    225 	switch (clock_id) {
    226 	case CLOCK_REALTIME:
    227 		TIMESPEC_TO_TIMEVAL(&atv, &ats);
    228 		if ((error = settime(&atv)) != 0)
    229 			return (error);
    230 		break;
    231 	case CLOCK_MONOTONIC:
    232 		return (EINVAL);	/* read-only clock */
    233 	default:
    234 		return (EINVAL);
    235 	}
    236 
    237 	return 0;
    238 }
    239 
    240 int
    241 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    242 {
    243 	struct sys_clock_getres_args /* {
    244 		syscallarg(clockid_t) clock_id;
    245 		syscallarg(struct timespec *) tp;
    246 	} */ *uap = v;
    247 	clockid_t clock_id;
    248 	struct timespec ts;
    249 	int error = 0;
    250 
    251 	clock_id = SCARG(uap, clock_id);
    252 	switch (clock_id) {
    253 	case CLOCK_REALTIME:
    254 	case CLOCK_MONOTONIC:
    255 		ts.tv_sec = 0;
    256 		ts.tv_nsec = 1000000000 / hz;
    257 		break;
    258 	default:
    259 		return (EINVAL);
    260 	}
    261 
    262 	if (SCARG(uap, tp))
    263 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    264 
    265 	return error;
    266 }
    267 
    268 /* ARGSUSED */
    269 int
    270 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    271 {
    272 	static int nanowait;
    273 	struct sys_nanosleep_args/* {
    274 		syscallarg(struct timespec *) rqtp;
    275 		syscallarg(struct timespec *) rmtp;
    276 	} */ *uap = v;
    277 	struct timespec rqt;
    278 	struct timespec rmt;
    279 	struct timeval atv, utv;
    280 	int error, s, timo;
    281 
    282 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    283 		       sizeof(struct timespec));
    284 	if (error)
    285 		return (error);
    286 
    287 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    288 	if (itimerfix(&atv) || atv.tv_sec > 1000000000)
    289 		return (EINVAL);
    290 
    291 	s = splclock();
    292 	timeradd(&atv,&time,&atv);
    293 	timo = hzto(&atv);
    294 	/*
    295 	 * Avoid inadvertantly sleeping forever
    296 	 */
    297 	if (timo == 0)
    298 		timo = 1;
    299 	splx(s);
    300 
    301 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    302 	if (error == ERESTART)
    303 		error = EINTR;
    304 	if (error == EWOULDBLOCK)
    305 		error = 0;
    306 
    307 	if (SCARG(uap, rmtp)) {
    308 		int error;
    309 
    310 		s = splclock();
    311 		utv = time;
    312 		splx(s);
    313 
    314 		timersub(&atv, &utv, &utv);
    315 		if (utv.tv_sec < 0)
    316 			timerclear(&utv);
    317 
    318 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    319 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    320 			sizeof(rmt));
    321 		if (error)
    322 			return (error);
    323 	}
    324 
    325 	return error;
    326 }
    327 
    328 /* ARGSUSED */
    329 int
    330 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    331 {
    332 	struct sys_gettimeofday_args /* {
    333 		syscallarg(struct timeval *) tp;
    334 		syscallarg(struct timezone *) tzp;
    335 	} */ *uap = v;
    336 	struct timeval atv;
    337 	int error = 0;
    338 	struct timezone tzfake;
    339 
    340 	if (SCARG(uap, tp)) {
    341 		microtime(&atv);
    342 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    343 		if (error)
    344 			return (error);
    345 	}
    346 	if (SCARG(uap, tzp)) {
    347 		/*
    348 		 * NetBSD has no kernel notion of time zone, so we just
    349 		 * fake up a timezone struct and return it if demanded.
    350 		 */
    351 		tzfake.tz_minuteswest = 0;
    352 		tzfake.tz_dsttime = 0;
    353 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    354 	}
    355 	return (error);
    356 }
    357 
    358 /* ARGSUSED */
    359 int
    360 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    361 {
    362 	struct sys_settimeofday_args /* {
    363 		syscallarg(const struct timeval *) tv;
    364 		syscallarg(const struct timezone *) tzp;
    365 	} */ *uap = v;
    366 	struct proc *p = l->l_proc;
    367 	int error;
    368 
    369 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    370 		return (error);
    371 
    372 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
    373 }
    374 
    375 int
    376 settimeofday1(utv, utzp, p)
    377 	const struct timeval *utv;
    378 	const struct timezone *utzp;
    379 	struct proc *p;
    380 {
    381 	struct timeval atv;
    382 	struct timezone atz;
    383 	struct timeval *tv = NULL;
    384 	struct timezone *tzp = NULL;
    385 	int error;
    386 
    387 	/* Verify all parameters before changing time. */
    388 	if (utv) {
    389 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    390 			return (error);
    391 		tv = &atv;
    392 	}
    393 	/* XXX since we don't use tz, probably no point in doing copyin. */
    394 	if (utzp) {
    395 		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
    396 			return (error);
    397 		tzp = &atz;
    398 	}
    399 
    400 	if (tv)
    401 		if ((error = settime(tv)) != 0)
    402 			return (error);
    403 	/*
    404 	 * NetBSD has no kernel notion of time zone, and only an
    405 	 * obsolete program would try to set it, so we log a warning.
    406 	 */
    407 	if (tzp)
    408 		log(LOG_WARNING, "pid %d attempted to set the "
    409 		    "(obsolete) kernel time zone\n", p->p_pid);
    410 	return (0);
    411 }
    412 
    413 int	tickdelta;			/* current clock skew, us. per tick */
    414 long	timedelta;			/* unapplied time correction, us. */
    415 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    416 
    417 /* ARGSUSED */
    418 int
    419 sys_adjtime(struct lwp *l, void *v, register_t *retval)
    420 {
    421 	struct sys_adjtime_args /* {
    422 		syscallarg(const struct timeval *) delta;
    423 		syscallarg(struct timeval *) olddelta;
    424 	} */ *uap = v;
    425 	struct proc *p = l->l_proc;
    426 	int error;
    427 
    428 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    429 		return (error);
    430 
    431 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
    432 }
    433 
    434 int
    435 adjtime1(delta, olddelta, p)
    436 	const struct timeval *delta;
    437 	struct timeval *olddelta;
    438 	struct proc *p;
    439 {
    440 	struct timeval atv;
    441 	long ndelta, ntickdelta, odelta;
    442 	int error;
    443 	int s;
    444 
    445 	error = copyin(delta, &atv, sizeof(struct timeval));
    446 	if (error)
    447 		return (error);
    448 
    449 	if (olddelta != NULL) {
    450 		if (uvm_useracc((caddr_t)olddelta,
    451 		    sizeof(struct timeval), B_WRITE) == FALSE)
    452 			return (EFAULT);
    453 	}
    454 
    455 	/*
    456 	 * Compute the total correction and the rate at which to apply it.
    457 	 * Round the adjustment down to a whole multiple of the per-tick
    458 	 * delta, so that after some number of incremental changes in
    459 	 * hardclock(), tickdelta will become zero, lest the correction
    460 	 * overshoot and start taking us away from the desired final time.
    461 	 */
    462 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    463 	if (ndelta > bigadj || ndelta < -bigadj)
    464 		ntickdelta = 10 * tickadj;
    465 	else
    466 		ntickdelta = tickadj;
    467 	if (ndelta % ntickdelta)
    468 		ndelta = ndelta / ntickdelta * ntickdelta;
    469 
    470 	/*
    471 	 * To make hardclock()'s job easier, make the per-tick delta negative
    472 	 * if we want time to run slower; then hardclock can simply compute
    473 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    474 	 */
    475 	if (ndelta < 0)
    476 		ntickdelta = -ntickdelta;
    477 	s = splclock();
    478 	odelta = timedelta;
    479 	timedelta = ndelta;
    480 	tickdelta = ntickdelta;
    481 	splx(s);
    482 
    483 	if (olddelta) {
    484 		atv.tv_sec = odelta / 1000000;
    485 		atv.tv_usec = odelta % 1000000;
    486 		(void) copyout(&atv, olddelta, sizeof(struct timeval));
    487 	}
    488 	return (0);
    489 }
    490 
    491 /*
    492  * Interval timer support. Both the BSD getitimer() family and the POSIX
    493  * timer_*() family of routines are supported.
    494  *
    495  * All timers are kept in an array pointed to by p_timers, which is
    496  * allocated on demand - many processes don't use timers at all. The
    497  * first three elements in this array are reserved for the BSD timers:
    498  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    499  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    500  * syscall.
    501  *
    502  * Realtime timers are kept in the ptimer structure as an absolute
    503  * time; virtual time timers are kept as a linked list of deltas.
    504  * Virtual time timers are processed in the hardclock() routine of
    505  * kern_clock.c.  The real time timer is processed by a callout
    506  * routine, called from the softclock() routine.  Since a callout may
    507  * be delayed in real time due to interrupt processing in the system,
    508  * it is possible for the real time timeout routine (realtimeexpire,
    509  * given below), to be delayed in real time past when it is supposed
    510  * to occur.  It does not suffice, therefore, to reload the real timer
    511  * .it_value from the real time timers .it_interval.  Rather, we
    512  * compute the next time in absolute time the timer should go off.  */
    513 
    514 /* Allocate a POSIX realtime timer. */
    515 int
    516 sys_timer_create(struct lwp *l, void *v, register_t *retval)
    517 {
    518 	struct sys_timer_create_args /* {
    519 		syscallarg(clockid_t) clock_id;
    520 		syscallarg(struct sigevent *) evp;
    521 		syscallarg(timer_t *) timerid;
    522 	} */ *uap = v;
    523 	struct proc *p = l->l_proc;
    524 	clockid_t id;
    525 	struct sigevent *evp;
    526 	struct ptimer *pt;
    527 	timer_t timerid;
    528 	int error;
    529 
    530 	id = SCARG(uap, clock_id);
    531 	if (id < CLOCK_REALTIME ||
    532 	    id > CLOCK_PROF)
    533 		return (EINVAL);
    534 
    535 	if (p->p_timers == NULL)
    536 		timers_alloc(p);
    537 
    538 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    539 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    540 		if (p->p_timers->pts_timers[timerid] == NULL)
    541 			break;
    542 
    543 	if (timerid == TIMER_MAX)
    544 		return EAGAIN;
    545 
    546 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    547 	evp = SCARG(uap, evp);
    548 	if (evp) {
    549 		if (((error =
    550 		    copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
    551 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    552 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    553 			pool_put(&ptimer_pool, pt);
    554 			return (error ? error : EINVAL);
    555 		}
    556 	} else {
    557 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    558 		switch (id) {
    559 		case CLOCK_REALTIME:
    560 			pt->pt_ev.sigev_signo = SIGALRM;
    561 			break;
    562 		case CLOCK_VIRTUAL:
    563 			pt->pt_ev.sigev_signo = SIGVTALRM;
    564 			break;
    565 		case CLOCK_PROF:
    566 			pt->pt_ev.sigev_signo = SIGPROF;
    567 			break;
    568 		}
    569 		pt->pt_ev.sigev_value.sival_int = timerid;
    570 	}
    571 	pt->pt_info.si_signo = pt->pt_ev.sigev_signo;
    572 	pt->pt_info.si_errno = 0;
    573 	pt->pt_info.si_code = 0;
    574 	pt->pt_info.si_pid = p->p_pid;
    575 	pt->pt_info.si_uid = p->p_cred->p_ruid;
    576 	pt->pt_info.si_sigval = pt->pt_ev.sigev_value;
    577 
    578 	pt->pt_type = id;
    579 	pt->pt_proc = p;
    580 	pt->pt_overruns = 0;
    581 	pt->pt_poverruns = 0;
    582 	pt->pt_entry = timerid;
    583 	timerclear(&pt->pt_time.it_value);
    584 	if (id == CLOCK_REALTIME)
    585 		callout_init(&pt->pt_ch);
    586 	else
    587 		pt->pt_active = 0;
    588 
    589 	p->p_timers->pts_timers[timerid] = pt;
    590 
    591 	return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
    592 }
    593 
    594 
    595 /* Delete a POSIX realtime timer */
    596 int
    597 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    598 {
    599 	struct sys_timer_delete_args /*  {
    600 		syscallarg(timer_t) timerid;
    601 	} */ *uap = v;
    602 	struct proc *p = l->l_proc;
    603 	timer_t timerid;
    604 	struct ptimer *pt, *ptn;
    605 	int s;
    606 
    607 	timerid = SCARG(uap, timerid);
    608 
    609 	if ((p->p_timers == NULL) ||
    610 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    611 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    612 		return (EINVAL);
    613 
    614 	if (pt->pt_type == CLOCK_REALTIME)
    615 		callout_stop(&pt->pt_ch);
    616 	else if (pt->pt_active) {
    617 		s = splclock();
    618 		ptn = LIST_NEXT(pt, pt_list);
    619 		LIST_REMOVE(pt, pt_list);
    620 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    621 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    622 			    &ptn->pt_time.it_value);
    623 		splx(s);
    624 	}
    625 
    626 	p->p_timers->pts_timers[timerid] = NULL;
    627 	pool_put(&ptimer_pool, pt);
    628 
    629 	return (0);
    630 }
    631 
    632 /*
    633  * Set up the given timer. The value in pt->pt_time.it_value is taken to be
    634  * relative to now.
    635  * Must be called at splclock().
    636  */
    637 void
    638 timer_settime(struct ptimer *pt)
    639 {
    640 	struct ptimer *ptn, *pptn;
    641 	struct ptlist *ptl;
    642 
    643 	if (pt->pt_type == CLOCK_REALTIME) {
    644 		callout_stop(&pt->pt_ch);
    645 		if (timerisset(&pt->pt_time.it_value)) {
    646 			timeradd(&pt->pt_time.it_value, &time,
    647 			    &pt->pt_time.it_value);
    648 			/*
    649 			 * Don't need to check hzto() return value, here.
    650 			 * callout_reset() does it for us.
    651 			 */
    652 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    653 			    realtimerexpire, pt);
    654 		}
    655 	} else {
    656 		if (pt->pt_active) {
    657 			ptn = LIST_NEXT(pt, pt_list);
    658 			LIST_REMOVE(pt, pt_list);
    659 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    660 				timeradd(&pt->pt_time.it_value,
    661 				    &ptn->pt_time.it_value,
    662 				    &ptn->pt_time.it_value);
    663 		}
    664 		if (timerisset(&pt->pt_time.it_value)) {
    665 			if (pt->pt_type == CLOCK_VIRTUAL)
    666 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    667 			else
    668 				ptl = &pt->pt_proc->p_timers->pts_prof;
    669 
    670 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    671 			     ptn && timercmp(&pt->pt_time.it_value,
    672 				 &ptn->pt_time.it_value, >);
    673 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    674 				timersub(&pt->pt_time.it_value,
    675 				    &ptn->pt_time.it_value,
    676 				    &pt->pt_time.it_value);
    677 
    678 			if (pptn)
    679 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    680 			else
    681 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    682 
    683 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    684 				timersub(&ptn->pt_time.it_value,
    685 				    &pt->pt_time.it_value,
    686 				    &ptn->pt_time.it_value);
    687 
    688 			pt->pt_active = 1;
    689 		} else
    690 			pt->pt_active = 0;
    691 	}
    692 }
    693 
    694 void
    695 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    696 {
    697 	struct ptimer *ptn;
    698 
    699 	*aitv = pt->pt_time;
    700 	if (pt->pt_type == CLOCK_REALTIME) {
    701 		/*
    702 		 * Convert from absolute to relative time in .it_value
    703 		 * part of real time timer.  If time for real time
    704 		 * timer has passed return 0, else return difference
    705 		 * between current time and time for the timer to go
    706 		 * off.
    707 		 */
    708 		if (timerisset(&aitv->it_value)) {
    709 			if (timercmp(&aitv->it_value, &time, <))
    710 				timerclear(&aitv->it_value);
    711 			else
    712 				timersub(&aitv->it_value, &time,
    713 				    &aitv->it_value);
    714 		}
    715 	} else if (pt->pt_active) {
    716 		if (pt->pt_type == CLOCK_VIRTUAL)
    717 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    718 		else
    719 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    720 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    721 			timeradd(&aitv->it_value,
    722 			    &ptn->pt_time.it_value, &aitv->it_value);
    723 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    724 	} else
    725 		timerclear(&aitv->it_value);
    726 }
    727 
    728 
    729 
    730 /* Set and arm a POSIX realtime timer */
    731 int
    732 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    733 {
    734 	struct sys_timer_settime_args /* {
    735 		syscallarg(timer_t) timerid;
    736 		syscallarg(int) flags;
    737 		syscallarg(const struct itimerspec *) value;
    738 		syscallarg(struct itimerspec *) ovalue;
    739 	} */ *uap = v;
    740 	struct proc *p = l->l_proc;
    741 	int error, s, timerid;
    742 	struct itimerval val, oval;
    743 	struct itimerspec value, ovalue;
    744 	struct ptimer *pt;
    745 
    746 	timerid = SCARG(uap, timerid);
    747 
    748 	if ((p->p_timers == NULL) ||
    749 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    750 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    751 		return (EINVAL);
    752 
    753 	if ((error = copyin(SCARG(uap, value), &value,
    754 	    sizeof(struct itimerspec))) != 0)
    755 		return (error);
    756 
    757 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
    758 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
    759 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    760 		return (EINVAL);
    761 
    762 	oval = pt->pt_time;
    763 	pt->pt_time = val;
    764 
    765 	s = splclock();
    766 	/* If we've been passed an absolute time, convert it to relative. */
    767 	if (timerisset(&pt->pt_time.it_value) &&
    768 	    (SCARG(uap, flags) & TIMER_ABSTIME))
    769 		timersub(&pt->pt_time.it_value, &time,
    770 		    &pt->pt_time.it_value);
    771 	timer_settime(pt);
    772 	splx(s);
    773 
    774 	if (SCARG(uap, ovalue)) {
    775 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
    776 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
    777 		return copyout(&ovalue, SCARG(uap, ovalue),
    778 		    sizeof(struct itimerspec));
    779 	}
    780 
    781 	return (0);
    782 }
    783 
    784 /* Return the time remaining until a POSIX timer fires. */
    785 int
    786 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    787 {
    788 	struct sys_timer_gettime_args /* {
    789 		syscallarg(timer_t) timerid;
    790 		syscallarg(struct itimerspec *) value;
    791 	} */ *uap = v;
    792 	struct itimerval aitv;
    793 	struct itimerspec its;
    794 	struct proc *p = l->l_proc;
    795 	int s, timerid;
    796 	struct ptimer *pt;
    797 
    798 	timerid = SCARG(uap, timerid);
    799 
    800 	if ((p->p_timers == NULL) ||
    801 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    802 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    803 		return (EINVAL);
    804 
    805 	s = splclock();
    806 	timer_gettime(pt, &aitv);
    807 	splx(s);
    808 
    809 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
    810 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
    811 
    812 	return copyout(&its, SCARG(uap, value), sizeof(its));
    813 }
    814 
    815 /*
    816  * Return the count of the number of times a periodic timer expired
    817  * while a notification was already pending. The counter is reset when
    818  * a timer expires and a notification can be posted.
    819  */
    820 int
    821 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    822 {
    823 	struct sys_timer_getoverrun_args /* {
    824 		syscallarg(timer_t) timerid;
    825 	} */ *uap = v;
    826 	struct proc *p = l->l_proc;
    827 	int timerid;
    828 	struct ptimer *pt;
    829 
    830 	timerid = SCARG(uap, timerid);
    831 
    832 	if ((p->p_timers == NULL) ||
    833 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    834 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    835 		return (EINVAL);
    836 
    837 	*retval = pt->pt_poverruns;
    838 
    839 	return (0);
    840 }
    841 
    842 /* Glue function that triggers an upcall; called from userret(). */
    843 static void
    844 timerupcall(struct lwp *l, void *arg)
    845 {
    846 	struct ptimers *pt = (struct ptimers *)arg;
    847 	unsigned int i, fired, done;
    848 	KERNEL_PROC_LOCK(l);
    849 
    850 	fired = pt->pts_fired;
    851 	done = 0;
    852 	while ((i = ffs(fired)) != 0) {
    853 		i--;
    854 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    855 		    sizeof(siginfo_t), &pt->pts_timers[i]->pt_info) == 0)
    856 			done |= 1 << i;
    857 		fired &= ~(1 << i);
    858 	}
    859 	pt->pts_fired &= ~done;
    860 	if (pt->pts_fired == 0)
    861 		l->l_proc->p_userret = NULL;
    862 
    863 	KERNEL_PROC_UNLOCK(l);
    864 }
    865 
    866 
    867 /*
    868  * Real interval timer expired:
    869  * send process whose timer expired an alarm signal.
    870  * If time is not set up to reload, then just return.
    871  * Else compute next time timer should go off which is > current time.
    872  * This is where delay in processing this timeout causes multiple
    873  * SIGALRM calls to be compressed into one.
    874  */
    875 void
    876 realtimerexpire(void *arg)
    877 {
    878 	struct ptimer *pt;
    879 	int s;
    880 
    881 	pt = (struct ptimer *)arg;
    882 
    883 	itimerfire(pt);
    884 
    885 	if (!timerisset(&pt->pt_time.it_interval)) {
    886 		timerclear(&pt->pt_time.it_value);
    887 		return;
    888 	}
    889 	for (;;) {
    890 		s = splclock();
    891 		timeradd(&pt->pt_time.it_value,
    892 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    893 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
    894 			/*
    895 			 * Don't need to check hzto() return value, here.
    896 			 * callout_reset() does it for us.
    897 			 */
    898 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    899 			    realtimerexpire, pt);
    900 			splx(s);
    901 			return;
    902 		}
    903 		splx(s);
    904 		pt->pt_overruns++;
    905 	}
    906 }
    907 
    908 /* BSD routine to get the value of an interval timer. */
    909 /* ARGSUSED */
    910 int
    911 sys_getitimer(struct lwp *l, void *v, register_t *retval)
    912 {
    913 	struct sys_getitimer_args /* {
    914 		syscallarg(int) which;
    915 		syscallarg(struct itimerval *) itv;
    916 	} */ *uap = v;
    917 	struct proc *p = l->l_proc;
    918 	struct itimerval aitv;
    919 	int s, which;
    920 
    921 	which = SCARG(uap, which);
    922 
    923 	if ((u_int)which > ITIMER_PROF)
    924 		return (EINVAL);
    925 
    926 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
    927 		timerclear(&aitv.it_value);
    928 		timerclear(&aitv.it_interval);
    929 	} else {
    930 		s = splclock();
    931 		timer_gettime(p->p_timers->pts_timers[which], &aitv);
    932 		splx(s);
    933 	}
    934 
    935 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    936 
    937 }
    938 
    939 /* BSD routine to set/arm an interval timer. */
    940 /* ARGSUSED */
    941 int
    942 sys_setitimer(struct lwp *l, void *v, register_t *retval)
    943 {
    944 	struct sys_setitimer_args /* {
    945 		syscallarg(int) which;
    946 		syscallarg(const struct itimerval *) itv;
    947 		syscallarg(struct itimerval *) oitv;
    948 	} */ *uap = v;
    949 	struct proc *p = l->l_proc;
    950 	int which = SCARG(uap, which);
    951 	struct sys_getitimer_args getargs;
    952 	struct itimerval aitv;
    953 	const struct itimerval *itvp;
    954 	struct ptimer *pt;
    955 	int s, error;
    956 
    957 	if ((u_int)which > ITIMER_PROF)
    958 		return (EINVAL);
    959 	itvp = SCARG(uap, itv);
    960 	if (itvp &&
    961 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    962 		return (error);
    963 	if (SCARG(uap, oitv) != NULL) {
    964 		SCARG(&getargs, which) = which;
    965 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    966 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
    967 			return (error);
    968 	}
    969 	if (itvp == 0)
    970 		return (0);
    971 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    972 		return (EINVAL);
    973 
    974 	/*
    975 	 * Don't bother allocating data structures if the process just
    976 	 * wants to clear the timer.
    977 	 */
    978 	if (!timerisset(&aitv.it_value) &&
    979 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
    980 		return (0);
    981 
    982 	if (p->p_timers == NULL)
    983 		timers_alloc(p);
    984 	if (p->p_timers->pts_timers[which] == NULL) {
    985 		pt = pool_get(&ptimer_pool, PR_WAITOK);
    986 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    987 		pt->pt_overruns = 0;
    988 		pt->pt_proc = p;
    989 		pt->pt_type = which;
    990 		pt->pt_entry = which;
    991 		switch (which) {
    992 		case ITIMER_REAL:
    993 			callout_init(&pt->pt_ch);
    994 			pt->pt_ev.sigev_signo = SIGALRM;
    995 			break;
    996 		case ITIMER_VIRTUAL:
    997 			pt->pt_active = 0;
    998 			pt->pt_ev.sigev_signo = SIGVTALRM;
    999 			break;
   1000 		case ITIMER_PROF:
   1001 			pt->pt_active = 0;
   1002 			pt->pt_ev.sigev_signo = SIGPROF;
   1003 			break;
   1004 		}
   1005 	} else
   1006 		pt = p->p_timers->pts_timers[which];
   1007 
   1008 	pt->pt_time = aitv;
   1009 	p->p_timers->pts_timers[which] = pt;
   1010 
   1011 	s = splclock();
   1012 	timer_settime(pt);
   1013 	splx(s);
   1014 
   1015 	return (0);
   1016 }
   1017 
   1018 /* Utility routines to manage the array of pointers to timers. */
   1019 void
   1020 timers_alloc(struct proc *p)
   1021 {
   1022 	int i;
   1023 	struct ptimers *pts;
   1024 
   1025 	pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
   1026 	LIST_INIT(&pts->pts_virtual);
   1027 	LIST_INIT(&pts->pts_prof);
   1028 	for (i = 0; i < TIMER_MAX; i++)
   1029 		pts->pts_timers[i] = NULL;
   1030 	pts->pts_fired = 0;
   1031 	p->p_timers = pts;
   1032 }
   1033 
   1034 /*
   1035  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1036  * then clean up all timers and free all the data structures. If
   1037  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1038  * by timer_create(), not the BSD setitimer() timers, and only free the
   1039  * structure if none of those remain.
   1040  */
   1041 void
   1042 timers_free(struct proc *p, int which)
   1043 {
   1044 	int i, s;
   1045 	struct ptimers *pts;
   1046 	struct ptimer *pt, *ptn;
   1047 	struct timeval tv;
   1048 
   1049 	if (p->p_timers) {
   1050 		pts = p->p_timers;
   1051 		if (which == TIMERS_ALL)
   1052 			i = 0;
   1053 		else {
   1054 			s = splclock();
   1055 			timerclear(&tv);
   1056 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1057 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1058 			     ptn = LIST_NEXT(ptn, pt_list))
   1059 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1060 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1061 			if (ptn) {
   1062 				timeradd(&tv, &ptn->pt_time.it_value,
   1063 				    &ptn->pt_time.it_value);
   1064 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1065 				    ptn, pt_list);
   1066 			}
   1067 
   1068 			timerclear(&tv);
   1069 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1070 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1071 			     ptn = LIST_NEXT(ptn, pt_list))
   1072 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1073 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1074 			if (ptn) {
   1075 				timeradd(&tv, &ptn->pt_time.it_value,
   1076 				    &ptn->pt_time.it_value);
   1077 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1078 				    pt_list);
   1079 			}
   1080 			splx(s);
   1081 			i = 3;
   1082 		}
   1083 		for ( ; i < TIMER_MAX; i++)
   1084 			if ((pt = pts->pts_timers[i]) != NULL) {
   1085 				if (pt->pt_type == CLOCK_REALTIME)
   1086 					callout_stop(&pt->pt_ch);
   1087 				pts->pts_timers[i] = NULL;
   1088 				pool_put(&ptimer_pool, pt);
   1089 			}
   1090 		if ((pts->pts_timers[0] == NULL) &&
   1091 		    (pts->pts_timers[1] == NULL) &&
   1092 		    (pts->pts_timers[2] == NULL)) {
   1093 			p->p_timers = NULL;
   1094 			free(pts, M_SUBPROC);
   1095 		}
   1096 	}
   1097 }
   1098 
   1099 /*
   1100  * Check that a proposed value to load into the .it_value or
   1101  * .it_interval part of an interval timer is acceptable, and
   1102  * fix it to have at least minimal value (i.e. if it is less
   1103  * than the resolution of the clock, round it up.)
   1104  */
   1105 int
   1106 itimerfix(struct timeval *tv)
   1107 {
   1108 
   1109 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1110 		return (EINVAL);
   1111 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1112 		tv->tv_usec = tick;
   1113 	return (0);
   1114 }
   1115 
   1116 /*
   1117  * Decrement an interval timer by a specified number
   1118  * of microseconds, which must be less than a second,
   1119  * i.e. < 1000000.  If the timer expires, then reload
   1120  * it.  In this case, carry over (usec - old value) to
   1121  * reduce the value reloaded into the timer so that
   1122  * the timer does not drift.  This routine assumes
   1123  * that it is called in a context where the timers
   1124  * on which it is operating cannot change in value.
   1125  */
   1126 int
   1127 itimerdecr(struct ptimer *pt, int usec)
   1128 {
   1129 	struct itimerval *itp;
   1130 
   1131 	itp = &pt->pt_time;
   1132 	if (itp->it_value.tv_usec < usec) {
   1133 		if (itp->it_value.tv_sec == 0) {
   1134 			/* expired, and already in next interval */
   1135 			usec -= itp->it_value.tv_usec;
   1136 			goto expire;
   1137 		}
   1138 		itp->it_value.tv_usec += 1000000;
   1139 		itp->it_value.tv_sec--;
   1140 	}
   1141 	itp->it_value.tv_usec -= usec;
   1142 	usec = 0;
   1143 	if (timerisset(&itp->it_value))
   1144 		return (1);
   1145 	/* expired, exactly at end of interval */
   1146 expire:
   1147 	if (timerisset(&itp->it_interval)) {
   1148 		itp->it_value = itp->it_interval;
   1149 		itp->it_value.tv_usec -= usec;
   1150 		if (itp->it_value.tv_usec < 0) {
   1151 			itp->it_value.tv_usec += 1000000;
   1152 			itp->it_value.tv_sec--;
   1153 		}
   1154 		timer_settime(pt);
   1155 	} else
   1156 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1157 	return (0);
   1158 }
   1159 
   1160 void
   1161 itimerfire(struct ptimer *pt)
   1162 {
   1163 	struct proc *p = pt->pt_proc;
   1164 	int s;
   1165 
   1166 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1167 		/*
   1168 		 * No RT signal infrastructure exists at this time;
   1169 		 * just post the signal number and throw away the
   1170 		 * value.
   1171 		 */
   1172 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
   1173 			pt->pt_overruns++;
   1174 		else {
   1175 			pt->pt_poverruns = pt->pt_overruns;
   1176 			pt->pt_overruns = 0;
   1177 			psignal(p, pt->pt_ev.sigev_signo);
   1178 		}
   1179 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
   1180 		/* Cause the process to generate an upcall when it returns. */
   1181 		struct sadata *sa = p->p_sa;
   1182 		unsigned int i;
   1183 
   1184 		if (p->p_userret == NULL) {
   1185 			if (sa->sa_idle) {
   1186 				SCHED_LOCK(s);
   1187 				setrunnable(sa->sa_idle);
   1188 				SCHED_UNLOCK(s);
   1189 			}
   1190 			pt->pt_poverruns = pt->pt_overruns;
   1191 			pt->pt_overruns = 0;
   1192 			i = 1 << pt->pt_entry;
   1193 			p->p_timers->pts_fired = i;
   1194 			p->p_userret = timerupcall;
   1195 			p->p_userret_arg = p->p_timers;
   1196 		} else if (p->p_userret == timerupcall) {
   1197 			i = 1 << pt->pt_entry;
   1198 			if ((p->p_timers->pts_fired & i) == 0) {
   1199 				pt->pt_poverruns = pt->pt_overruns;
   1200 				pt->pt_overruns = 0;
   1201 				p->p_timers->pts_fired |= i;
   1202 			} else
   1203 				pt->pt_overruns++;
   1204 		} else {
   1205 			pt->pt_overruns++;
   1206 			printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
   1207 			    p->p_pid, pt->pt_overruns,
   1208 			    pt->pt_ev.sigev_value.sival_int,
   1209 			    p->p_userret);
   1210 		}
   1211 	}
   1212 
   1213 }
   1214 
   1215 /*
   1216  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1217  * for usage and rationale.
   1218  */
   1219 int
   1220 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1221 {
   1222 	struct timeval tv, delta;
   1223 	int s, rv = 0;
   1224 
   1225 	s = splclock();
   1226 	tv = mono_time;
   1227 	splx(s);
   1228 
   1229 	timersub(&tv, lasttime, &delta);
   1230 
   1231 	/*
   1232 	 * check for 0,0 is so that the message will be seen at least once,
   1233 	 * even if interval is huge.
   1234 	 */
   1235 	if (timercmp(&delta, mininterval, >=) ||
   1236 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1237 		*lasttime = tv;
   1238 		rv = 1;
   1239 	}
   1240 
   1241 	return (rv);
   1242 }
   1243 
   1244 /*
   1245  * ppsratecheck(): packets (or events) per second limitation.
   1246  */
   1247 int
   1248 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1249 {
   1250 	struct timeval tv, delta;
   1251 	int s, rv;
   1252 
   1253 	s = splclock();
   1254 	tv = mono_time;
   1255 	splx(s);
   1256 
   1257 	timersub(&tv, lasttime, &delta);
   1258 
   1259 	/*
   1260 	 * check for 0,0 is so that the message will be seen at least once.
   1261 	 * if more than one second have passed since the last update of
   1262 	 * lasttime, reset the counter.
   1263 	 *
   1264 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1265 	 * try to use *curpps for stat purposes as well.
   1266 	 */
   1267 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1268 	    delta.tv_sec >= 1) {
   1269 		*lasttime = tv;
   1270 		*curpps = 0;
   1271 		rv = 1;
   1272 	} else if (maxpps < 0)
   1273 		rv = 1;
   1274 	else if (*curpps < maxpps)
   1275 		rv = 1;
   1276 	else
   1277 		rv = 0;
   1278 
   1279 #if 1 /*DIAGNOSTIC?*/
   1280 	/* be careful about wrap-around */
   1281 	if (*curpps + 1 > *curpps)
   1282 		*curpps = *curpps + 1;
   1283 #else
   1284 	/*
   1285 	 * assume that there's not too many calls to this function.
   1286 	 * not sure if the assumption holds, as it depends on *caller's*
   1287 	 * behavior, not the behavior of this function.
   1288 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1289 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1290 	 */
   1291 	*curpps = *curpps + 1;
   1292 #endif
   1293 
   1294 	return (rv);
   1295 }
   1296