Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.69
      1 /*	$NetBSD: kern_time.c,v 1.69 2003/05/19 03:23:37 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the University of
     54  *	California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     72  */
     73 
     74 #include <sys/cdefs.h>
     75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.69 2003/05/19 03:23:37 dyoung Exp $");
     76 
     77 #include "fs_nfs.h"
     78 #include "opt_nfs.h"
     79 #include "opt_nfsserver.h"
     80 
     81 #include <sys/param.h>
     82 #include <sys/resourcevar.h>
     83 #include <sys/kernel.h>
     84 #include <sys/systm.h>
     85 #include <sys/malloc.h>
     86 #include <sys/proc.h>
     87 #include <sys/sa.h>
     88 #include <sys/savar.h>
     89 #include <sys/vnode.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/syslog.h>
     92 
     93 #include <sys/mount.h>
     94 #include <sys/syscallargs.h>
     95 
     96 #include <uvm/uvm_extern.h>
     97 
     98 #if defined(NFS) || defined(NFSSERVER)
     99 #include <nfs/rpcv2.h>
    100 #include <nfs/nfsproto.h>
    101 #include <nfs/nfs_var.h>
    102 #endif
    103 
    104 #include <machine/cpu.h>
    105 
    106 static void timerupcall(struct lwp *, void *);
    107 
    108 
    109 /* Time of day and interval timer support.
    110  *
    111  * These routines provide the kernel entry points to get and set
    112  * the time-of-day and per-process interval timers.  Subroutines
    113  * here provide support for adding and subtracting timeval structures
    114  * and decrementing interval timers, optionally reloading the interval
    115  * timers when they expire.
    116  */
    117 
    118 /* This function is used by clock_settime and settimeofday */
    119 int
    120 settime(struct timeval *tv)
    121 {
    122 	struct timeval delta;
    123 	struct cpu_info *ci;
    124 	int s;
    125 
    126 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    127 	s = splclock();
    128 	timersub(tv, &time, &delta);
    129 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    130 		splx(s);
    131 		return (EPERM);
    132 	}
    133 #ifdef notyet
    134 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    135 		splx(s);
    136 		return (EPERM);
    137 	}
    138 #endif
    139 	time = *tv;
    140 	(void) spllowersoftclock();
    141 	timeradd(&boottime, &delta, &boottime);
    142 	/*
    143 	 * XXXSMP
    144 	 * This is wrong.  We should traverse a list of all
    145 	 * CPUs and add the delta to the runtime of those
    146 	 * CPUs which have a process on them.
    147 	 */
    148 	ci = curcpu();
    149 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    150 	    &ci->ci_schedstate.spc_runtime);
    151 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    152 		nqnfs_lease_updatetime(delta.tv_sec);
    153 #	endif
    154 	splx(s);
    155 	resettodr();
    156 	return (0);
    157 }
    158 
    159 /* ARGSUSED */
    160 int
    161 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    162 {
    163 	struct sys_clock_gettime_args /* {
    164 		syscallarg(clockid_t) clock_id;
    165 		syscallarg(struct timespec *) tp;
    166 	} */ *uap = v;
    167 	clockid_t clock_id;
    168 	struct timeval atv;
    169 	struct timespec ats;
    170 	int s;
    171 
    172 	clock_id = SCARG(uap, clock_id);
    173 	switch (clock_id) {
    174 	case CLOCK_REALTIME:
    175 		microtime(&atv);
    176 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    177 		break;
    178 	case CLOCK_MONOTONIC:
    179 		/* XXX "hz" granularity */
    180 		s = splclock();
    181 		atv = mono_time;
    182 		splx(s);
    183 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    184 		break;
    185 	default:
    186 		return (EINVAL);
    187 	}
    188 
    189 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    190 }
    191 
    192 /* ARGSUSED */
    193 int
    194 sys_clock_settime(l, v, retval)
    195 	struct lwp *l;
    196 	void *v;
    197 	register_t *retval;
    198 {
    199 	struct sys_clock_settime_args /* {
    200 		syscallarg(clockid_t) clock_id;
    201 		syscallarg(const struct timespec *) tp;
    202 	} */ *uap = v;
    203 	struct proc *p = l->l_proc;
    204 	int error;
    205 
    206 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    207 		return (error);
    208 
    209 	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
    210 }
    211 
    212 
    213 int
    214 clock_settime1(clock_id, tp)
    215 	clockid_t clock_id;
    216 	const struct timespec *tp;
    217 {
    218 	struct timespec ats;
    219 	struct timeval atv;
    220 	int error;
    221 
    222 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    223 		return (error);
    224 
    225 	switch (clock_id) {
    226 	case CLOCK_REALTIME:
    227 		TIMESPEC_TO_TIMEVAL(&atv, &ats);
    228 		if ((error = settime(&atv)) != 0)
    229 			return (error);
    230 		break;
    231 	case CLOCK_MONOTONIC:
    232 		return (EINVAL);	/* read-only clock */
    233 	default:
    234 		return (EINVAL);
    235 	}
    236 
    237 	return 0;
    238 }
    239 
    240 int
    241 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    242 {
    243 	struct sys_clock_getres_args /* {
    244 		syscallarg(clockid_t) clock_id;
    245 		syscallarg(struct timespec *) tp;
    246 	} */ *uap = v;
    247 	clockid_t clock_id;
    248 	struct timespec ts;
    249 	int error = 0;
    250 
    251 	clock_id = SCARG(uap, clock_id);
    252 	switch (clock_id) {
    253 	case CLOCK_REALTIME:
    254 	case CLOCK_MONOTONIC:
    255 		ts.tv_sec = 0;
    256 		ts.tv_nsec = 1000000000 / hz;
    257 		break;
    258 	default:
    259 		return (EINVAL);
    260 	}
    261 
    262 	if (SCARG(uap, tp))
    263 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    264 
    265 	return error;
    266 }
    267 
    268 /* ARGSUSED */
    269 int
    270 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    271 {
    272 	static int nanowait;
    273 	struct sys_nanosleep_args/* {
    274 		syscallarg(struct timespec *) rqtp;
    275 		syscallarg(struct timespec *) rmtp;
    276 	} */ *uap = v;
    277 	struct timespec rqt;
    278 	struct timespec rmt;
    279 	struct timeval atv, utv;
    280 	int error, s, timo;
    281 
    282 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    283 		       sizeof(struct timespec));
    284 	if (error)
    285 		return (error);
    286 
    287 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    288 	if (itimerfix(&atv) || atv.tv_sec > 1000000000)
    289 		return (EINVAL);
    290 
    291 	s = splclock();
    292 	timeradd(&atv,&time,&atv);
    293 	timo = hzto(&atv);
    294 	/*
    295 	 * Avoid inadvertantly sleeping forever
    296 	 */
    297 	if (timo == 0)
    298 		timo = 1;
    299 	splx(s);
    300 
    301 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    302 	if (error == ERESTART)
    303 		error = EINTR;
    304 	if (error == EWOULDBLOCK)
    305 		error = 0;
    306 
    307 	if (SCARG(uap, rmtp)) {
    308 		int error;
    309 
    310 		s = splclock();
    311 		utv = time;
    312 		splx(s);
    313 
    314 		timersub(&atv, &utv, &utv);
    315 		if (utv.tv_sec < 0)
    316 			timerclear(&utv);
    317 
    318 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    319 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    320 			sizeof(rmt));
    321 		if (error)
    322 			return (error);
    323 	}
    324 
    325 	return error;
    326 }
    327 
    328 /* ARGSUSED */
    329 int
    330 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    331 {
    332 	struct sys_gettimeofday_args /* {
    333 		syscallarg(struct timeval *) tp;
    334 		syscallarg(struct timezone *) tzp;
    335 	} */ *uap = v;
    336 	struct timeval atv;
    337 	int error = 0;
    338 	struct timezone tzfake;
    339 
    340 	if (SCARG(uap, tp)) {
    341 		microtime(&atv);
    342 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    343 		if (error)
    344 			return (error);
    345 	}
    346 	if (SCARG(uap, tzp)) {
    347 		/*
    348 		 * NetBSD has no kernel notion of time zone, so we just
    349 		 * fake up a timezone struct and return it if demanded.
    350 		 */
    351 		tzfake.tz_minuteswest = 0;
    352 		tzfake.tz_dsttime = 0;
    353 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    354 	}
    355 	return (error);
    356 }
    357 
    358 /* ARGSUSED */
    359 int
    360 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    361 {
    362 	struct sys_settimeofday_args /* {
    363 		syscallarg(const struct timeval *) tv;
    364 		syscallarg(const struct timezone *) tzp;
    365 	} */ *uap = v;
    366 	struct proc *p = l->l_proc;
    367 	int error;
    368 
    369 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    370 		return (error);
    371 
    372 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
    373 }
    374 
    375 int
    376 settimeofday1(utv, utzp, p)
    377 	const struct timeval *utv;
    378 	const struct timezone *utzp;
    379 	struct proc *p;
    380 {
    381 	struct timeval atv;
    382 	struct timezone atz;
    383 	struct timeval *tv = NULL;
    384 	struct timezone *tzp = NULL;
    385 	int error;
    386 
    387 	/* Verify all parameters before changing time. */
    388 	if (utv) {
    389 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    390 			return (error);
    391 		tv = &atv;
    392 	}
    393 	/* XXX since we don't use tz, probably no point in doing copyin. */
    394 	if (utzp) {
    395 		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
    396 			return (error);
    397 		tzp = &atz;
    398 	}
    399 
    400 	if (tv)
    401 		if ((error = settime(tv)) != 0)
    402 			return (error);
    403 	/*
    404 	 * NetBSD has no kernel notion of time zone, and only an
    405 	 * obsolete program would try to set it, so we log a warning.
    406 	 */
    407 	if (tzp)
    408 		log(LOG_WARNING, "pid %d attempted to set the "
    409 		    "(obsolete) kernel time zone\n", p->p_pid);
    410 	return (0);
    411 }
    412 
    413 int	tickdelta;			/* current clock skew, us. per tick */
    414 long	timedelta;			/* unapplied time correction, us. */
    415 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    416 int	time_adjusted;			/* set if an adjustment is made */
    417 
    418 /* ARGSUSED */
    419 int
    420 sys_adjtime(struct lwp *l, void *v, register_t *retval)
    421 {
    422 	struct sys_adjtime_args /* {
    423 		syscallarg(const struct timeval *) delta;
    424 		syscallarg(struct timeval *) olddelta;
    425 	} */ *uap = v;
    426 	struct proc *p = l->l_proc;
    427 	int error;
    428 
    429 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    430 		return (error);
    431 
    432 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
    433 }
    434 
    435 int
    436 adjtime1(delta, olddelta, p)
    437 	const struct timeval *delta;
    438 	struct timeval *olddelta;
    439 	struct proc *p;
    440 {
    441 	struct timeval atv;
    442 	long ndelta, ntickdelta, odelta;
    443 	int error;
    444 	int s;
    445 
    446 	error = copyin(delta, &atv, sizeof(struct timeval));
    447 	if (error)
    448 		return (error);
    449 
    450 	if (olddelta != NULL) {
    451 		if (uvm_useracc((caddr_t)olddelta,
    452 		    sizeof(struct timeval), B_WRITE) == FALSE)
    453 			return (EFAULT);
    454 	}
    455 
    456 	/*
    457 	 * Compute the total correction and the rate at which to apply it.
    458 	 * Round the adjustment down to a whole multiple of the per-tick
    459 	 * delta, so that after some number of incremental changes in
    460 	 * hardclock(), tickdelta will become zero, lest the correction
    461 	 * overshoot and start taking us away from the desired final time.
    462 	 */
    463 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    464 	if (ndelta > bigadj || ndelta < -bigadj)
    465 		ntickdelta = 10 * tickadj;
    466 	else
    467 		ntickdelta = tickadj;
    468 	if (ndelta % ntickdelta)
    469 		ndelta = ndelta / ntickdelta * ntickdelta;
    470 
    471 	/*
    472 	 * To make hardclock()'s job easier, make the per-tick delta negative
    473 	 * if we want time to run slower; then hardclock can simply compute
    474 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    475 	 */
    476 	if (ndelta < 0)
    477 		ntickdelta = -ntickdelta;
    478 	if (ndelta != 0)
    479 		/* We need to save the system clock time during shutdown */
    480 		time_adjusted |= 1;
    481 	s = splclock();
    482 	odelta = timedelta;
    483 	timedelta = ndelta;
    484 	tickdelta = ntickdelta;
    485 	splx(s);
    486 
    487 	if (olddelta) {
    488 		atv.tv_sec = odelta / 1000000;
    489 		atv.tv_usec = odelta % 1000000;
    490 		(void) copyout(&atv, olddelta, sizeof(struct timeval));
    491 	}
    492 	return (0);
    493 }
    494 
    495 /*
    496  * Interval timer support. Both the BSD getitimer() family and the POSIX
    497  * timer_*() family of routines are supported.
    498  *
    499  * All timers are kept in an array pointed to by p_timers, which is
    500  * allocated on demand - many processes don't use timers at all. The
    501  * first three elements in this array are reserved for the BSD timers:
    502  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    503  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    504  * syscall.
    505  *
    506  * Realtime timers are kept in the ptimer structure as an absolute
    507  * time; virtual time timers are kept as a linked list of deltas.
    508  * Virtual time timers are processed in the hardclock() routine of
    509  * kern_clock.c.  The real time timer is processed by a callout
    510  * routine, called from the softclock() routine.  Since a callout may
    511  * be delayed in real time due to interrupt processing in the system,
    512  * it is possible for the real time timeout routine (realtimeexpire,
    513  * given below), to be delayed in real time past when it is supposed
    514  * to occur.  It does not suffice, therefore, to reload the real timer
    515  * .it_value from the real time timers .it_interval.  Rather, we
    516  * compute the next time in absolute time the timer should go off.  */
    517 
    518 /* Allocate a POSIX realtime timer. */
    519 int
    520 sys_timer_create(struct lwp *l, void *v, register_t *retval)
    521 {
    522 	struct sys_timer_create_args /* {
    523 		syscallarg(clockid_t) clock_id;
    524 		syscallarg(struct sigevent *) evp;
    525 		syscallarg(timer_t *) timerid;
    526 	} */ *uap = v;
    527 	struct proc *p = l->l_proc;
    528 	clockid_t id;
    529 	struct sigevent *evp;
    530 	struct ptimer *pt;
    531 	timer_t timerid;
    532 	int error;
    533 
    534 	id = SCARG(uap, clock_id);
    535 	if (id < CLOCK_REALTIME ||
    536 	    id > CLOCK_PROF)
    537 		return (EINVAL);
    538 
    539 	if (p->p_timers == NULL)
    540 		timers_alloc(p);
    541 
    542 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    543 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    544 		if (p->p_timers->pts_timers[timerid] == NULL)
    545 			break;
    546 
    547 	if (timerid == TIMER_MAX)
    548 		return EAGAIN;
    549 
    550 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    551 	evp = SCARG(uap, evp);
    552 	if (evp) {
    553 		if (((error =
    554 		    copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
    555 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    556 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    557 			pool_put(&ptimer_pool, pt);
    558 			return (error ? error : EINVAL);
    559 		}
    560 	} else {
    561 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    562 		switch (id) {
    563 		case CLOCK_REALTIME:
    564 			pt->pt_ev.sigev_signo = SIGALRM;
    565 			break;
    566 		case CLOCK_VIRTUAL:
    567 			pt->pt_ev.sigev_signo = SIGVTALRM;
    568 			break;
    569 		case CLOCK_PROF:
    570 			pt->pt_ev.sigev_signo = SIGPROF;
    571 			break;
    572 		}
    573 		pt->pt_ev.sigev_value.sival_int = timerid;
    574 	}
    575 	pt->pt_info.si_signo = pt->pt_ev.sigev_signo;
    576 	pt->pt_info.si_errno = 0;
    577 	pt->pt_info.si_code = 0;
    578 	pt->pt_info.si_pid = p->p_pid;
    579 	pt->pt_info.si_uid = p->p_cred->p_ruid;
    580 	pt->pt_info.si_sigval = pt->pt_ev.sigev_value;
    581 
    582 	pt->pt_type = id;
    583 	pt->pt_proc = p;
    584 	pt->pt_overruns = 0;
    585 	pt->pt_poverruns = 0;
    586 	pt->pt_entry = timerid;
    587 	timerclear(&pt->pt_time.it_value);
    588 	if (id == CLOCK_REALTIME)
    589 		callout_init(&pt->pt_ch);
    590 	else
    591 		pt->pt_active = 0;
    592 
    593 	p->p_timers->pts_timers[timerid] = pt;
    594 
    595 	return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
    596 }
    597 
    598 
    599 /* Delete a POSIX realtime timer */
    600 int
    601 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    602 {
    603 	struct sys_timer_delete_args /*  {
    604 		syscallarg(timer_t) timerid;
    605 	} */ *uap = v;
    606 	struct proc *p = l->l_proc;
    607 	timer_t timerid;
    608 	struct ptimer *pt, *ptn;
    609 	int s;
    610 
    611 	timerid = SCARG(uap, timerid);
    612 
    613 	if ((p->p_timers == NULL) ||
    614 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    615 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    616 		return (EINVAL);
    617 
    618 	if (pt->pt_type == CLOCK_REALTIME)
    619 		callout_stop(&pt->pt_ch);
    620 	else if (pt->pt_active) {
    621 		s = splclock();
    622 		ptn = LIST_NEXT(pt, pt_list);
    623 		LIST_REMOVE(pt, pt_list);
    624 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    625 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    626 			    &ptn->pt_time.it_value);
    627 		splx(s);
    628 	}
    629 
    630 	p->p_timers->pts_timers[timerid] = NULL;
    631 	pool_put(&ptimer_pool, pt);
    632 
    633 	return (0);
    634 }
    635 
    636 /*
    637  * Set up the given timer. The value in pt->pt_time.it_value is taken
    638  * to be an absolute time for CLOCK_REALTIME timers and a relative
    639  * time for virtual timers.
    640  * Must be called at splclock().
    641  */
    642 void
    643 timer_settime(struct ptimer *pt)
    644 {
    645 	struct ptimer *ptn, *pptn;
    646 	struct ptlist *ptl;
    647 
    648 	if (pt->pt_type == CLOCK_REALTIME) {
    649 		callout_stop(&pt->pt_ch);
    650 		if (timerisset(&pt->pt_time.it_value)) {
    651 			/*
    652 			 * Don't need to check hzto() return value, here.
    653 			 * callout_reset() does it for us.
    654 			 */
    655 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    656 			    realtimerexpire, pt);
    657 		}
    658 	} else {
    659 		if (pt->pt_active) {
    660 			ptn = LIST_NEXT(pt, pt_list);
    661 			LIST_REMOVE(pt, pt_list);
    662 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    663 				timeradd(&pt->pt_time.it_value,
    664 				    &ptn->pt_time.it_value,
    665 				    &ptn->pt_time.it_value);
    666 		}
    667 		if (timerisset(&pt->pt_time.it_value)) {
    668 			if (pt->pt_type == CLOCK_VIRTUAL)
    669 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    670 			else
    671 				ptl = &pt->pt_proc->p_timers->pts_prof;
    672 
    673 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    674 			     ptn && timercmp(&pt->pt_time.it_value,
    675 				 &ptn->pt_time.it_value, >);
    676 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    677 				timersub(&pt->pt_time.it_value,
    678 				    &ptn->pt_time.it_value,
    679 				    &pt->pt_time.it_value);
    680 
    681 			if (pptn)
    682 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    683 			else
    684 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    685 
    686 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    687 				timersub(&ptn->pt_time.it_value,
    688 				    &pt->pt_time.it_value,
    689 				    &ptn->pt_time.it_value);
    690 
    691 			pt->pt_active = 1;
    692 		} else
    693 			pt->pt_active = 0;
    694 	}
    695 }
    696 
    697 void
    698 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    699 {
    700 	struct ptimer *ptn;
    701 
    702 	*aitv = pt->pt_time;
    703 	if (pt->pt_type == CLOCK_REALTIME) {
    704 		/*
    705 		 * Convert from absolute to relative time in .it_value
    706 		 * part of real time timer.  If time for real time
    707 		 * timer has passed return 0, else return difference
    708 		 * between current time and time for the timer to go
    709 		 * off.
    710 		 */
    711 		if (timerisset(&aitv->it_value)) {
    712 			if (timercmp(&aitv->it_value, &time, <))
    713 				timerclear(&aitv->it_value);
    714 			else
    715 				timersub(&aitv->it_value, &time,
    716 				    &aitv->it_value);
    717 		}
    718 	} else if (pt->pt_active) {
    719 		if (pt->pt_type == CLOCK_VIRTUAL)
    720 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    721 		else
    722 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    723 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    724 			timeradd(&aitv->it_value,
    725 			    &ptn->pt_time.it_value, &aitv->it_value);
    726 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    727 	} else
    728 		timerclear(&aitv->it_value);
    729 }
    730 
    731 
    732 
    733 /* Set and arm a POSIX realtime timer */
    734 int
    735 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    736 {
    737 	struct sys_timer_settime_args /* {
    738 		syscallarg(timer_t) timerid;
    739 		syscallarg(int) flags;
    740 		syscallarg(const struct itimerspec *) value;
    741 		syscallarg(struct itimerspec *) ovalue;
    742 	} */ *uap = v;
    743 	struct proc *p = l->l_proc;
    744 	int error, s, timerid;
    745 	struct itimerval val, oval;
    746 	struct itimerspec value, ovalue;
    747 	struct ptimer *pt;
    748 
    749 	timerid = SCARG(uap, timerid);
    750 
    751 	if ((p->p_timers == NULL) ||
    752 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    753 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    754 		return (EINVAL);
    755 
    756 	if ((error = copyin(SCARG(uap, value), &value,
    757 	    sizeof(struct itimerspec))) != 0)
    758 		return (error);
    759 
    760 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
    761 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
    762 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    763 		return (EINVAL);
    764 
    765 	oval = pt->pt_time;
    766 	pt->pt_time = val;
    767 
    768 	s = splclock();
    769 	/*
    770 	 * If we've been passed a relative time for a realtime timer,
    771 	 * convert it to absolute; if an absolute time for a virtual
    772 	 * timer, convert it to relative and make sure we don't set it
    773 	 * to zero, which would cancel the timer, or let it go
    774 	 * negative, which would confuse the comparison tests.
    775 	 */
    776 	if (timerisset(&pt->pt_time.it_value)) {
    777 		if (pt->pt_type == CLOCK_REALTIME) {
    778 			if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
    779 				timeradd(&pt->pt_time.it_value, &time,
    780 				    &pt->pt_time.it_value);
    781 		} else {
    782 			if ((SCARG(uap, flags) & TIMER_ABSTIME) != 0) {
    783 				timersub(&pt->pt_time.it_value, &time,
    784 				    &pt->pt_time.it_value);
    785 				if (!timerisset(&pt->pt_time.it_value) ||
    786 				    pt->pt_time.it_value.tv_sec < 0) {
    787 					pt->pt_time.it_value.tv_sec = 0;
    788 					pt->pt_time.it_value.tv_usec = 1;
    789 				}
    790 			}
    791 		}
    792 	}
    793 
    794 	timer_settime(pt);
    795 	splx(s);
    796 
    797 	if (SCARG(uap, ovalue)) {
    798 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
    799 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
    800 		return copyout(&ovalue, SCARG(uap, ovalue),
    801 		    sizeof(struct itimerspec));
    802 	}
    803 
    804 	return (0);
    805 }
    806 
    807 /* Return the time remaining until a POSIX timer fires. */
    808 int
    809 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    810 {
    811 	struct sys_timer_gettime_args /* {
    812 		syscallarg(timer_t) timerid;
    813 		syscallarg(struct itimerspec *) value;
    814 	} */ *uap = v;
    815 	struct itimerval aitv;
    816 	struct itimerspec its;
    817 	struct proc *p = l->l_proc;
    818 	int s, timerid;
    819 	struct ptimer *pt;
    820 
    821 	timerid = SCARG(uap, timerid);
    822 
    823 	if ((p->p_timers == NULL) ||
    824 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    825 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    826 		return (EINVAL);
    827 
    828 	s = splclock();
    829 	timer_gettime(pt, &aitv);
    830 	splx(s);
    831 
    832 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
    833 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
    834 
    835 	return copyout(&its, SCARG(uap, value), sizeof(its));
    836 }
    837 
    838 /*
    839  * Return the count of the number of times a periodic timer expired
    840  * while a notification was already pending. The counter is reset when
    841  * a timer expires and a notification can be posted.
    842  */
    843 int
    844 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    845 {
    846 	struct sys_timer_getoverrun_args /* {
    847 		syscallarg(timer_t) timerid;
    848 	} */ *uap = v;
    849 	struct proc *p = l->l_proc;
    850 	int timerid;
    851 	struct ptimer *pt;
    852 
    853 	timerid = SCARG(uap, timerid);
    854 
    855 	if ((p->p_timers == NULL) ||
    856 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    857 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    858 		return (EINVAL);
    859 
    860 	*retval = pt->pt_poverruns;
    861 
    862 	return (0);
    863 }
    864 
    865 /* Glue function that triggers an upcall; called from userret(). */
    866 static void
    867 timerupcall(struct lwp *l, void *arg)
    868 {
    869 	struct ptimers *pt = (struct ptimers *)arg;
    870 	unsigned int i, fired, done;
    871 	KERNEL_PROC_LOCK(l);
    872 
    873 	fired = pt->pts_fired;
    874 	done = 0;
    875 	while ((i = ffs(fired)) != 0) {
    876 		i--;
    877 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    878 		    sizeof(siginfo_t), &pt->pts_timers[i]->pt_info) == 0)
    879 			done |= 1 << i;
    880 		fired &= ~(1 << i);
    881 	}
    882 	pt->pts_fired &= ~done;
    883 	if (pt->pts_fired == 0)
    884 		l->l_proc->p_userret = NULL;
    885 
    886 	KERNEL_PROC_UNLOCK(l);
    887 }
    888 
    889 
    890 /*
    891  * Real interval timer expired:
    892  * send process whose timer expired an alarm signal.
    893  * If time is not set up to reload, then just return.
    894  * Else compute next time timer should go off which is > current time.
    895  * This is where delay in processing this timeout causes multiple
    896  * SIGALRM calls to be compressed into one.
    897  */
    898 void
    899 realtimerexpire(void *arg)
    900 {
    901 	struct ptimer *pt;
    902 	int s;
    903 
    904 	pt = (struct ptimer *)arg;
    905 
    906 	itimerfire(pt);
    907 
    908 	if (!timerisset(&pt->pt_time.it_interval)) {
    909 		timerclear(&pt->pt_time.it_value);
    910 		return;
    911 	}
    912 	for (;;) {
    913 		s = splclock();
    914 		timeradd(&pt->pt_time.it_value,
    915 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    916 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
    917 			/*
    918 			 * Don't need to check hzto() return value, here.
    919 			 * callout_reset() does it for us.
    920 			 */
    921 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    922 			    realtimerexpire, pt);
    923 			splx(s);
    924 			return;
    925 		}
    926 		splx(s);
    927 		pt->pt_overruns++;
    928 	}
    929 }
    930 
    931 /* BSD routine to get the value of an interval timer. */
    932 /* ARGSUSED */
    933 int
    934 sys_getitimer(struct lwp *l, void *v, register_t *retval)
    935 {
    936 	struct sys_getitimer_args /* {
    937 		syscallarg(int) which;
    938 		syscallarg(struct itimerval *) itv;
    939 	} */ *uap = v;
    940 	struct proc *p = l->l_proc;
    941 	struct itimerval aitv;
    942 	int s, which;
    943 
    944 	which = SCARG(uap, which);
    945 
    946 	if ((u_int)which > ITIMER_PROF)
    947 		return (EINVAL);
    948 
    949 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
    950 		timerclear(&aitv.it_value);
    951 		timerclear(&aitv.it_interval);
    952 	} else {
    953 		s = splclock();
    954 		timer_gettime(p->p_timers->pts_timers[which], &aitv);
    955 		splx(s);
    956 	}
    957 
    958 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    959 
    960 }
    961 
    962 /* BSD routine to set/arm an interval timer. */
    963 /* ARGSUSED */
    964 int
    965 sys_setitimer(struct lwp *l, void *v, register_t *retval)
    966 {
    967 	struct sys_setitimer_args /* {
    968 		syscallarg(int) which;
    969 		syscallarg(const struct itimerval *) itv;
    970 		syscallarg(struct itimerval *) oitv;
    971 	} */ *uap = v;
    972 	struct proc *p = l->l_proc;
    973 	int which = SCARG(uap, which);
    974 	struct sys_getitimer_args getargs;
    975 	struct itimerval aitv;
    976 	const struct itimerval *itvp;
    977 	struct ptimer *pt;
    978 	int s, error;
    979 
    980 	if ((u_int)which > ITIMER_PROF)
    981 		return (EINVAL);
    982 	itvp = SCARG(uap, itv);
    983 	if (itvp &&
    984 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    985 		return (error);
    986 	if (SCARG(uap, oitv) != NULL) {
    987 		SCARG(&getargs, which) = which;
    988 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    989 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
    990 			return (error);
    991 	}
    992 	if (itvp == 0)
    993 		return (0);
    994 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    995 		return (EINVAL);
    996 
    997 	/*
    998 	 * Don't bother allocating data structures if the process just
    999 	 * wants to clear the timer.
   1000 	 */
   1001 	if (!timerisset(&aitv.it_value) &&
   1002 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1003 		return (0);
   1004 
   1005 	if (p->p_timers == NULL)
   1006 		timers_alloc(p);
   1007 	if (p->p_timers->pts_timers[which] == NULL) {
   1008 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1009 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1010 		pt->pt_overruns = 0;
   1011 		pt->pt_proc = p;
   1012 		pt->pt_type = which;
   1013 		pt->pt_entry = which;
   1014 		switch (which) {
   1015 		case ITIMER_REAL:
   1016 			callout_init(&pt->pt_ch);
   1017 			pt->pt_ev.sigev_signo = SIGALRM;
   1018 			break;
   1019 		case ITIMER_VIRTUAL:
   1020 			pt->pt_active = 0;
   1021 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1022 			break;
   1023 		case ITIMER_PROF:
   1024 			pt->pt_active = 0;
   1025 			pt->pt_ev.sigev_signo = SIGPROF;
   1026 			break;
   1027 		}
   1028 	} else
   1029 		pt = p->p_timers->pts_timers[which];
   1030 
   1031 	pt->pt_time = aitv;
   1032 	p->p_timers->pts_timers[which] = pt;
   1033 
   1034 	s = splclock();
   1035 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1036 		/* Convert to absolute time */
   1037 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1038 	}
   1039 	timer_settime(pt);
   1040 	splx(s);
   1041 
   1042 	return (0);
   1043 }
   1044 
   1045 /* Utility routines to manage the array of pointers to timers. */
   1046 void
   1047 timers_alloc(struct proc *p)
   1048 {
   1049 	int i;
   1050 	struct ptimers *pts;
   1051 
   1052 	pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
   1053 	LIST_INIT(&pts->pts_virtual);
   1054 	LIST_INIT(&pts->pts_prof);
   1055 	for (i = 0; i < TIMER_MAX; i++)
   1056 		pts->pts_timers[i] = NULL;
   1057 	pts->pts_fired = 0;
   1058 	p->p_timers = pts;
   1059 }
   1060 
   1061 /*
   1062  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1063  * then clean up all timers and free all the data structures. If
   1064  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1065  * by timer_create(), not the BSD setitimer() timers, and only free the
   1066  * structure if none of those remain.
   1067  */
   1068 void
   1069 timers_free(struct proc *p, int which)
   1070 {
   1071 	int i, s;
   1072 	struct ptimers *pts;
   1073 	struct ptimer *pt, *ptn;
   1074 	struct timeval tv;
   1075 
   1076 	if (p->p_timers) {
   1077 		pts = p->p_timers;
   1078 		if (which == TIMERS_ALL)
   1079 			i = 0;
   1080 		else {
   1081 			s = splclock();
   1082 			timerclear(&tv);
   1083 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1084 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1085 			     ptn = LIST_NEXT(ptn, pt_list))
   1086 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1087 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1088 			if (ptn) {
   1089 				timeradd(&tv, &ptn->pt_time.it_value,
   1090 				    &ptn->pt_time.it_value);
   1091 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1092 				    ptn, pt_list);
   1093 			}
   1094 
   1095 			timerclear(&tv);
   1096 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1097 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1098 			     ptn = LIST_NEXT(ptn, pt_list))
   1099 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1100 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1101 			if (ptn) {
   1102 				timeradd(&tv, &ptn->pt_time.it_value,
   1103 				    &ptn->pt_time.it_value);
   1104 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1105 				    pt_list);
   1106 			}
   1107 			splx(s);
   1108 			i = 3;
   1109 		}
   1110 		for ( ; i < TIMER_MAX; i++)
   1111 			if ((pt = pts->pts_timers[i]) != NULL) {
   1112 				if (pt->pt_type == CLOCK_REALTIME)
   1113 					callout_stop(&pt->pt_ch);
   1114 				pts->pts_timers[i] = NULL;
   1115 				pool_put(&ptimer_pool, pt);
   1116 			}
   1117 		if ((pts->pts_timers[0] == NULL) &&
   1118 		    (pts->pts_timers[1] == NULL) &&
   1119 		    (pts->pts_timers[2] == NULL)) {
   1120 			p->p_timers = NULL;
   1121 			free(pts, M_SUBPROC);
   1122 		}
   1123 	}
   1124 }
   1125 
   1126 /*
   1127  * Check that a proposed value to load into the .it_value or
   1128  * .it_interval part of an interval timer is acceptable, and
   1129  * fix it to have at least minimal value (i.e. if it is less
   1130  * than the resolution of the clock, round it up.)
   1131  */
   1132 int
   1133 itimerfix(struct timeval *tv)
   1134 {
   1135 
   1136 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1137 		return (EINVAL);
   1138 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1139 		tv->tv_usec = tick;
   1140 	return (0);
   1141 }
   1142 
   1143 /*
   1144  * Decrement an interval timer by a specified number
   1145  * of microseconds, which must be less than a second,
   1146  * i.e. < 1000000.  If the timer expires, then reload
   1147  * it.  In this case, carry over (usec - old value) to
   1148  * reduce the value reloaded into the timer so that
   1149  * the timer does not drift.  This routine assumes
   1150  * that it is called in a context where the timers
   1151  * on which it is operating cannot change in value.
   1152  */
   1153 int
   1154 itimerdecr(struct ptimer *pt, int usec)
   1155 {
   1156 	struct itimerval *itp;
   1157 
   1158 	itp = &pt->pt_time;
   1159 	if (itp->it_value.tv_usec < usec) {
   1160 		if (itp->it_value.tv_sec == 0) {
   1161 			/* expired, and already in next interval */
   1162 			usec -= itp->it_value.tv_usec;
   1163 			goto expire;
   1164 		}
   1165 		itp->it_value.tv_usec += 1000000;
   1166 		itp->it_value.tv_sec--;
   1167 	}
   1168 	itp->it_value.tv_usec -= usec;
   1169 	usec = 0;
   1170 	if (timerisset(&itp->it_value))
   1171 		return (1);
   1172 	/* expired, exactly at end of interval */
   1173 expire:
   1174 	if (timerisset(&itp->it_interval)) {
   1175 		itp->it_value = itp->it_interval;
   1176 		itp->it_value.tv_usec -= usec;
   1177 		if (itp->it_value.tv_usec < 0) {
   1178 			itp->it_value.tv_usec += 1000000;
   1179 			itp->it_value.tv_sec--;
   1180 		}
   1181 		timer_settime(pt);
   1182 	} else
   1183 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1184 	return (0);
   1185 }
   1186 
   1187 void
   1188 itimerfire(struct ptimer *pt)
   1189 {
   1190 	struct proc *p = pt->pt_proc;
   1191 	int s;
   1192 
   1193 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1194 		/*
   1195 		 * No RT signal infrastructure exists at this time;
   1196 		 * just post the signal number and throw away the
   1197 		 * value.
   1198 		 */
   1199 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
   1200 			pt->pt_overruns++;
   1201 		else {
   1202 			pt->pt_poverruns = pt->pt_overruns;
   1203 			pt->pt_overruns = 0;
   1204 			psignal(p, pt->pt_ev.sigev_signo);
   1205 		}
   1206 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
   1207 		/* Cause the process to generate an upcall when it returns. */
   1208 		struct sadata *sa = p->p_sa;
   1209 		unsigned int i;
   1210 
   1211 		if (p->p_userret == NULL) {
   1212 			if (sa->sa_idle) {
   1213 				SCHED_LOCK(s);
   1214 				setrunnable(sa->sa_idle);
   1215 				SCHED_UNLOCK(s);
   1216 			}
   1217 			pt->pt_poverruns = pt->pt_overruns;
   1218 			pt->pt_overruns = 0;
   1219 			i = 1 << pt->pt_entry;
   1220 			p->p_timers->pts_fired = i;
   1221 			p->p_userret = timerupcall;
   1222 			p->p_userret_arg = p->p_timers;
   1223 		} else if (p->p_userret == timerupcall) {
   1224 			i = 1 << pt->pt_entry;
   1225 			if ((p->p_timers->pts_fired & i) == 0) {
   1226 				pt->pt_poverruns = pt->pt_overruns;
   1227 				pt->pt_overruns = 0;
   1228 				p->p_timers->pts_fired |= i;
   1229 			} else
   1230 				pt->pt_overruns++;
   1231 		} else {
   1232 			pt->pt_overruns++;
   1233 			printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
   1234 			    p->p_pid, pt->pt_overruns,
   1235 			    pt->pt_ev.sigev_value.sival_int,
   1236 			    p->p_userret);
   1237 		}
   1238 	}
   1239 
   1240 }
   1241 
   1242 /*
   1243  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1244  * for usage and rationale.
   1245  */
   1246 int
   1247 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1248 {
   1249 	struct timeval tv, delta;
   1250 	int s, rv = 0;
   1251 
   1252 	s = splclock();
   1253 	tv = mono_time;
   1254 	splx(s);
   1255 
   1256 	timersub(&tv, lasttime, &delta);
   1257 
   1258 	/*
   1259 	 * check for 0,0 is so that the message will be seen at least once,
   1260 	 * even if interval is huge.
   1261 	 */
   1262 	if (timercmp(&delta, mininterval, >=) ||
   1263 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1264 		*lasttime = tv;
   1265 		rv = 1;
   1266 	}
   1267 
   1268 	return (rv);
   1269 }
   1270 
   1271 /*
   1272  * ppsratecheck(): packets (or events) per second limitation.
   1273  */
   1274 int
   1275 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1276 {
   1277 	struct timeval tv, delta;
   1278 	int s, rv;
   1279 
   1280 	s = splclock();
   1281 	tv = mono_time;
   1282 	splx(s);
   1283 
   1284 	timersub(&tv, lasttime, &delta);
   1285 
   1286 	/*
   1287 	 * check for 0,0 is so that the message will be seen at least once.
   1288 	 * if more than one second have passed since the last update of
   1289 	 * lasttime, reset the counter.
   1290 	 *
   1291 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1292 	 * try to use *curpps for stat purposes as well.
   1293 	 */
   1294 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1295 	    delta.tv_sec >= 1) {
   1296 		*lasttime = tv;
   1297 		*curpps = 0;
   1298 	}
   1299 	if (maxpps < 0)
   1300 		rv = 1;
   1301 	else if (*curpps < maxpps)
   1302 		rv = 1;
   1303 	else
   1304 		rv = 0;
   1305 
   1306 #if 1 /*DIAGNOSTIC?*/
   1307 	/* be careful about wrap-around */
   1308 	if (*curpps + 1 > *curpps)
   1309 		*curpps = *curpps + 1;
   1310 #else
   1311 	/*
   1312 	 * assume that there's not too many calls to this function.
   1313 	 * not sure if the assumption holds, as it depends on *caller's*
   1314 	 * behavior, not the behavior of this function.
   1315 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1316 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1317 	 */
   1318 	*curpps = *curpps + 1;
   1319 #endif
   1320 
   1321 	return (rv);
   1322 }
   1323