kern_time.c revision 1.70 1 /* $NetBSD: kern_time.c,v 1.70 2003/05/28 22:27:57 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 */
73
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.70 2003/05/28 22:27:57 nathanw Exp $");
76
77 #include "fs_nfs.h"
78 #include "opt_nfs.h"
79 #include "opt_nfsserver.h"
80
81 #include <sys/param.h>
82 #include <sys/resourcevar.h>
83 #include <sys/kernel.h>
84 #include <sys/systm.h>
85 #include <sys/malloc.h>
86 #include <sys/proc.h>
87 #include <sys/sa.h>
88 #include <sys/savar.h>
89 #include <sys/vnode.h>
90 #include <sys/signalvar.h>
91 #include <sys/syslog.h>
92
93 #include <sys/mount.h>
94 #include <sys/syscallargs.h>
95
96 #include <uvm/uvm_extern.h>
97
98 #if defined(NFS) || defined(NFSSERVER)
99 #include <nfs/rpcv2.h>
100 #include <nfs/nfsproto.h>
101 #include <nfs/nfs_var.h>
102 #endif
103
104 #include <machine/cpu.h>
105
106 static void timerupcall(struct lwp *, void *);
107
108
109 /* Time of day and interval timer support.
110 *
111 * These routines provide the kernel entry points to get and set
112 * the time-of-day and per-process interval timers. Subroutines
113 * here provide support for adding and subtracting timeval structures
114 * and decrementing interval timers, optionally reloading the interval
115 * timers when they expire.
116 */
117
118 /* This function is used by clock_settime and settimeofday */
119 int
120 settime(struct timeval *tv)
121 {
122 struct timeval delta;
123 struct cpu_info *ci;
124 int s;
125
126 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
127 s = splclock();
128 timersub(tv, &time, &delta);
129 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
130 splx(s);
131 return (EPERM);
132 }
133 #ifdef notyet
134 if ((delta.tv_sec < 86400) && securelevel > 0) {
135 splx(s);
136 return (EPERM);
137 }
138 #endif
139 time = *tv;
140 (void) spllowersoftclock();
141 timeradd(&boottime, &delta, &boottime);
142 /*
143 * XXXSMP
144 * This is wrong. We should traverse a list of all
145 * CPUs and add the delta to the runtime of those
146 * CPUs which have a process on them.
147 */
148 ci = curcpu();
149 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
150 &ci->ci_schedstate.spc_runtime);
151 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
152 nqnfs_lease_updatetime(delta.tv_sec);
153 # endif
154 splx(s);
155 resettodr();
156 return (0);
157 }
158
159 /* ARGSUSED */
160 int
161 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
162 {
163 struct sys_clock_gettime_args /* {
164 syscallarg(clockid_t) clock_id;
165 syscallarg(struct timespec *) tp;
166 } */ *uap = v;
167 clockid_t clock_id;
168 struct timeval atv;
169 struct timespec ats;
170 int s;
171
172 clock_id = SCARG(uap, clock_id);
173 switch (clock_id) {
174 case CLOCK_REALTIME:
175 microtime(&atv);
176 TIMEVAL_TO_TIMESPEC(&atv,&ats);
177 break;
178 case CLOCK_MONOTONIC:
179 /* XXX "hz" granularity */
180 s = splclock();
181 atv = mono_time;
182 splx(s);
183 TIMEVAL_TO_TIMESPEC(&atv,&ats);
184 break;
185 default:
186 return (EINVAL);
187 }
188
189 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
190 }
191
192 /* ARGSUSED */
193 int
194 sys_clock_settime(l, v, retval)
195 struct lwp *l;
196 void *v;
197 register_t *retval;
198 {
199 struct sys_clock_settime_args /* {
200 syscallarg(clockid_t) clock_id;
201 syscallarg(const struct timespec *) tp;
202 } */ *uap = v;
203 struct proc *p = l->l_proc;
204 int error;
205
206 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
207 return (error);
208
209 return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
210 }
211
212
213 int
214 clock_settime1(clock_id, tp)
215 clockid_t clock_id;
216 const struct timespec *tp;
217 {
218 struct timespec ats;
219 struct timeval atv;
220 int error;
221
222 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
223 return (error);
224
225 switch (clock_id) {
226 case CLOCK_REALTIME:
227 TIMESPEC_TO_TIMEVAL(&atv, &ats);
228 if ((error = settime(&atv)) != 0)
229 return (error);
230 break;
231 case CLOCK_MONOTONIC:
232 return (EINVAL); /* read-only clock */
233 default:
234 return (EINVAL);
235 }
236
237 return 0;
238 }
239
240 int
241 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
242 {
243 struct sys_clock_getres_args /* {
244 syscallarg(clockid_t) clock_id;
245 syscallarg(struct timespec *) tp;
246 } */ *uap = v;
247 clockid_t clock_id;
248 struct timespec ts;
249 int error = 0;
250
251 clock_id = SCARG(uap, clock_id);
252 switch (clock_id) {
253 case CLOCK_REALTIME:
254 case CLOCK_MONOTONIC:
255 ts.tv_sec = 0;
256 ts.tv_nsec = 1000000000 / hz;
257 break;
258 default:
259 return (EINVAL);
260 }
261
262 if (SCARG(uap, tp))
263 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
264
265 return error;
266 }
267
268 /* ARGSUSED */
269 int
270 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
271 {
272 static int nanowait;
273 struct sys_nanosleep_args/* {
274 syscallarg(struct timespec *) rqtp;
275 syscallarg(struct timespec *) rmtp;
276 } */ *uap = v;
277 struct timespec rqt;
278 struct timespec rmt;
279 struct timeval atv, utv;
280 int error, s, timo;
281
282 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
283 sizeof(struct timespec));
284 if (error)
285 return (error);
286
287 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
288 if (itimerfix(&atv) || atv.tv_sec > 1000000000)
289 return (EINVAL);
290
291 s = splclock();
292 timeradd(&atv,&time,&atv);
293 timo = hzto(&atv);
294 /*
295 * Avoid inadvertantly sleeping forever
296 */
297 if (timo == 0)
298 timo = 1;
299 splx(s);
300
301 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
302 if (error == ERESTART)
303 error = EINTR;
304 if (error == EWOULDBLOCK)
305 error = 0;
306
307 if (SCARG(uap, rmtp)) {
308 int error;
309
310 s = splclock();
311 utv = time;
312 splx(s);
313
314 timersub(&atv, &utv, &utv);
315 if (utv.tv_sec < 0)
316 timerclear(&utv);
317
318 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
319 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
320 sizeof(rmt));
321 if (error)
322 return (error);
323 }
324
325 return error;
326 }
327
328 /* ARGSUSED */
329 int
330 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
331 {
332 struct sys_gettimeofday_args /* {
333 syscallarg(struct timeval *) tp;
334 syscallarg(struct timezone *) tzp;
335 } */ *uap = v;
336 struct timeval atv;
337 int error = 0;
338 struct timezone tzfake;
339
340 if (SCARG(uap, tp)) {
341 microtime(&atv);
342 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
343 if (error)
344 return (error);
345 }
346 if (SCARG(uap, tzp)) {
347 /*
348 * NetBSD has no kernel notion of time zone, so we just
349 * fake up a timezone struct and return it if demanded.
350 */
351 tzfake.tz_minuteswest = 0;
352 tzfake.tz_dsttime = 0;
353 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
354 }
355 return (error);
356 }
357
358 /* ARGSUSED */
359 int
360 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
361 {
362 struct sys_settimeofday_args /* {
363 syscallarg(const struct timeval *) tv;
364 syscallarg(const struct timezone *) tzp;
365 } */ *uap = v;
366 struct proc *p = l->l_proc;
367 int error;
368
369 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
370 return (error);
371
372 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
373 }
374
375 int
376 settimeofday1(utv, utzp, p)
377 const struct timeval *utv;
378 const struct timezone *utzp;
379 struct proc *p;
380 {
381 struct timeval atv;
382 struct timezone atz;
383 struct timeval *tv = NULL;
384 struct timezone *tzp = NULL;
385 int error;
386
387 /* Verify all parameters before changing time. */
388 if (utv) {
389 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
390 return (error);
391 tv = &atv;
392 }
393 /* XXX since we don't use tz, probably no point in doing copyin. */
394 if (utzp) {
395 if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
396 return (error);
397 tzp = &atz;
398 }
399
400 if (tv)
401 if ((error = settime(tv)) != 0)
402 return (error);
403 /*
404 * NetBSD has no kernel notion of time zone, and only an
405 * obsolete program would try to set it, so we log a warning.
406 */
407 if (tzp)
408 log(LOG_WARNING, "pid %d attempted to set the "
409 "(obsolete) kernel time zone\n", p->p_pid);
410 return (0);
411 }
412
413 int tickdelta; /* current clock skew, us. per tick */
414 long timedelta; /* unapplied time correction, us. */
415 long bigadj = 1000000; /* use 10x skew above bigadj us. */
416 int time_adjusted; /* set if an adjustment is made */
417
418 /* ARGSUSED */
419 int
420 sys_adjtime(struct lwp *l, void *v, register_t *retval)
421 {
422 struct sys_adjtime_args /* {
423 syscallarg(const struct timeval *) delta;
424 syscallarg(struct timeval *) olddelta;
425 } */ *uap = v;
426 struct proc *p = l->l_proc;
427 int error;
428
429 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
430 return (error);
431
432 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
433 }
434
435 int
436 adjtime1(delta, olddelta, p)
437 const struct timeval *delta;
438 struct timeval *olddelta;
439 struct proc *p;
440 {
441 struct timeval atv;
442 long ndelta, ntickdelta, odelta;
443 int error;
444 int s;
445
446 error = copyin(delta, &atv, sizeof(struct timeval));
447 if (error)
448 return (error);
449
450 if (olddelta != NULL) {
451 if (uvm_useracc((caddr_t)olddelta,
452 sizeof(struct timeval), B_WRITE) == FALSE)
453 return (EFAULT);
454 }
455
456 /*
457 * Compute the total correction and the rate at which to apply it.
458 * Round the adjustment down to a whole multiple of the per-tick
459 * delta, so that after some number of incremental changes in
460 * hardclock(), tickdelta will become zero, lest the correction
461 * overshoot and start taking us away from the desired final time.
462 */
463 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
464 if (ndelta > bigadj || ndelta < -bigadj)
465 ntickdelta = 10 * tickadj;
466 else
467 ntickdelta = tickadj;
468 if (ndelta % ntickdelta)
469 ndelta = ndelta / ntickdelta * ntickdelta;
470
471 /*
472 * To make hardclock()'s job easier, make the per-tick delta negative
473 * if we want time to run slower; then hardclock can simply compute
474 * tick + tickdelta, and subtract tickdelta from timedelta.
475 */
476 if (ndelta < 0)
477 ntickdelta = -ntickdelta;
478 if (ndelta != 0)
479 /* We need to save the system clock time during shutdown */
480 time_adjusted |= 1;
481 s = splclock();
482 odelta = timedelta;
483 timedelta = ndelta;
484 tickdelta = ntickdelta;
485 splx(s);
486
487 if (olddelta) {
488 atv.tv_sec = odelta / 1000000;
489 atv.tv_usec = odelta % 1000000;
490 (void) copyout(&atv, olddelta, sizeof(struct timeval));
491 }
492 return (0);
493 }
494
495 /*
496 * Interval timer support. Both the BSD getitimer() family and the POSIX
497 * timer_*() family of routines are supported.
498 *
499 * All timers are kept in an array pointed to by p_timers, which is
500 * allocated on demand - many processes don't use timers at all. The
501 * first three elements in this array are reserved for the BSD timers:
502 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
503 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
504 * syscall.
505 *
506 * Realtime timers are kept in the ptimer structure as an absolute
507 * time; virtual time timers are kept as a linked list of deltas.
508 * Virtual time timers are processed in the hardclock() routine of
509 * kern_clock.c. The real time timer is processed by a callout
510 * routine, called from the softclock() routine. Since a callout may
511 * be delayed in real time due to interrupt processing in the system,
512 * it is possible for the real time timeout routine (realtimeexpire,
513 * given below), to be delayed in real time past when it is supposed
514 * to occur. It does not suffice, therefore, to reload the real timer
515 * .it_value from the real time timers .it_interval. Rather, we
516 * compute the next time in absolute time the timer should go off. */
517
518 /* Allocate a POSIX realtime timer. */
519 int
520 sys_timer_create(struct lwp *l, void *v, register_t *retval)
521 {
522 struct sys_timer_create_args /* {
523 syscallarg(clockid_t) clock_id;
524 syscallarg(struct sigevent *) evp;
525 syscallarg(timer_t *) timerid;
526 } */ *uap = v;
527 struct proc *p = l->l_proc;
528 clockid_t id;
529 struct sigevent *evp;
530 struct ptimer *pt;
531 timer_t timerid;
532 int error;
533
534 id = SCARG(uap, clock_id);
535 if (id < CLOCK_REALTIME ||
536 id > CLOCK_PROF)
537 return (EINVAL);
538
539 if (p->p_timers == NULL)
540 timers_alloc(p);
541
542 /* Find a free timer slot, skipping those reserved for setitimer(). */
543 for (timerid = 3; timerid < TIMER_MAX; timerid++)
544 if (p->p_timers->pts_timers[timerid] == NULL)
545 break;
546
547 if (timerid == TIMER_MAX)
548 return EAGAIN;
549
550 pt = pool_get(&ptimer_pool, PR_WAITOK);
551 evp = SCARG(uap, evp);
552 if (evp) {
553 if (((error =
554 copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
555 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
556 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
557 pool_put(&ptimer_pool, pt);
558 return (error ? error : EINVAL);
559 }
560 } else {
561 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
562 switch (id) {
563 case CLOCK_REALTIME:
564 pt->pt_ev.sigev_signo = SIGALRM;
565 break;
566 case CLOCK_VIRTUAL:
567 pt->pt_ev.sigev_signo = SIGVTALRM;
568 break;
569 case CLOCK_PROF:
570 pt->pt_ev.sigev_signo = SIGPROF;
571 break;
572 }
573 pt->pt_ev.sigev_value.sival_int = timerid;
574 }
575 pt->pt_info.si_signo = pt->pt_ev.sigev_signo;
576 pt->pt_info.si_errno = 0;
577 pt->pt_info.si_code = 0;
578 pt->pt_info.si_pid = p->p_pid;
579 pt->pt_info.si_uid = p->p_cred->p_ruid;
580 pt->pt_info.si_sigval = pt->pt_ev.sigev_value;
581
582 pt->pt_type = id;
583 pt->pt_proc = p;
584 pt->pt_overruns = 0;
585 pt->pt_poverruns = 0;
586 pt->pt_entry = timerid;
587 timerclear(&pt->pt_time.it_value);
588 if (id == CLOCK_REALTIME)
589 callout_init(&pt->pt_ch);
590 else
591 pt->pt_active = 0;
592
593 p->p_timers->pts_timers[timerid] = pt;
594
595 return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
596 }
597
598
599 /* Delete a POSIX realtime timer */
600 int
601 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
602 {
603 struct sys_timer_delete_args /* {
604 syscallarg(timer_t) timerid;
605 } */ *uap = v;
606 struct proc *p = l->l_proc;
607 timer_t timerid;
608 struct ptimer *pt, *ptn;
609 int s;
610
611 timerid = SCARG(uap, timerid);
612
613 if ((p->p_timers == NULL) ||
614 (timerid < 2) || (timerid >= TIMER_MAX) ||
615 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
616 return (EINVAL);
617
618 if (pt->pt_type == CLOCK_REALTIME)
619 callout_stop(&pt->pt_ch);
620 else if (pt->pt_active) {
621 s = splclock();
622 ptn = LIST_NEXT(pt, pt_list);
623 LIST_REMOVE(pt, pt_list);
624 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
625 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
626 &ptn->pt_time.it_value);
627 splx(s);
628 }
629
630 p->p_timers->pts_timers[timerid] = NULL;
631 pool_put(&ptimer_pool, pt);
632
633 return (0);
634 }
635
636 /*
637 * Set up the given timer. The value in pt->pt_time.it_value is taken
638 * to be an absolute time for CLOCK_REALTIME timers and a relative
639 * time for virtual timers.
640 * Must be called at splclock().
641 */
642 void
643 timer_settime(struct ptimer *pt)
644 {
645 struct ptimer *ptn, *pptn;
646 struct ptlist *ptl;
647
648 if (pt->pt_type == CLOCK_REALTIME) {
649 callout_stop(&pt->pt_ch);
650 if (timerisset(&pt->pt_time.it_value)) {
651 /*
652 * Don't need to check hzto() return value, here.
653 * callout_reset() does it for us.
654 */
655 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
656 realtimerexpire, pt);
657 }
658 } else {
659 if (pt->pt_active) {
660 ptn = LIST_NEXT(pt, pt_list);
661 LIST_REMOVE(pt, pt_list);
662 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
663 timeradd(&pt->pt_time.it_value,
664 &ptn->pt_time.it_value,
665 &ptn->pt_time.it_value);
666 }
667 if (timerisset(&pt->pt_time.it_value)) {
668 if (pt->pt_type == CLOCK_VIRTUAL)
669 ptl = &pt->pt_proc->p_timers->pts_virtual;
670 else
671 ptl = &pt->pt_proc->p_timers->pts_prof;
672
673 for (ptn = LIST_FIRST(ptl), pptn = NULL;
674 ptn && timercmp(&pt->pt_time.it_value,
675 &ptn->pt_time.it_value, >);
676 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
677 timersub(&pt->pt_time.it_value,
678 &ptn->pt_time.it_value,
679 &pt->pt_time.it_value);
680
681 if (pptn)
682 LIST_INSERT_AFTER(pptn, pt, pt_list);
683 else
684 LIST_INSERT_HEAD(ptl, pt, pt_list);
685
686 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
687 timersub(&ptn->pt_time.it_value,
688 &pt->pt_time.it_value,
689 &ptn->pt_time.it_value);
690
691 pt->pt_active = 1;
692 } else
693 pt->pt_active = 0;
694 }
695 }
696
697 void
698 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
699 {
700 struct ptimer *ptn;
701
702 *aitv = pt->pt_time;
703 if (pt->pt_type == CLOCK_REALTIME) {
704 /*
705 * Convert from absolute to relative time in .it_value
706 * part of real time timer. If time for real time
707 * timer has passed return 0, else return difference
708 * between current time and time for the timer to go
709 * off.
710 */
711 if (timerisset(&aitv->it_value)) {
712 if (timercmp(&aitv->it_value, &time, <))
713 timerclear(&aitv->it_value);
714 else
715 timersub(&aitv->it_value, &time,
716 &aitv->it_value);
717 }
718 } else if (pt->pt_active) {
719 if (pt->pt_type == CLOCK_VIRTUAL)
720 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
721 else
722 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
723 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
724 timeradd(&aitv->it_value,
725 &ptn->pt_time.it_value, &aitv->it_value);
726 KASSERT(ptn != NULL); /* pt should be findable on the list */
727 } else
728 timerclear(&aitv->it_value);
729 }
730
731
732
733 /* Set and arm a POSIX realtime timer */
734 int
735 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
736 {
737 struct sys_timer_settime_args /* {
738 syscallarg(timer_t) timerid;
739 syscallarg(int) flags;
740 syscallarg(const struct itimerspec *) value;
741 syscallarg(struct itimerspec *) ovalue;
742 } */ *uap = v;
743 struct proc *p = l->l_proc;
744 int error, s, timerid;
745 struct itimerval val, oval;
746 struct itimerspec value, ovalue;
747 struct ptimer *pt;
748
749 timerid = SCARG(uap, timerid);
750
751 if ((p->p_timers == NULL) ||
752 (timerid < 2) || (timerid >= TIMER_MAX) ||
753 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
754 return (EINVAL);
755
756 if ((error = copyin(SCARG(uap, value), &value,
757 sizeof(struct itimerspec))) != 0)
758 return (error);
759
760 TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
761 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
762 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
763 return (EINVAL);
764
765 oval = pt->pt_time;
766 pt->pt_time = val;
767
768 s = splclock();
769 /*
770 * If we've been passed a relative time for a realtime timer,
771 * convert it to absolute; if an absolute time for a virtual
772 * timer, convert it to relative and make sure we don't set it
773 * to zero, which would cancel the timer, or let it go
774 * negative, which would confuse the comparison tests.
775 */
776 if (timerisset(&pt->pt_time.it_value)) {
777 if (pt->pt_type == CLOCK_REALTIME) {
778 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
779 timeradd(&pt->pt_time.it_value, &time,
780 &pt->pt_time.it_value);
781 } else {
782 if ((SCARG(uap, flags) & TIMER_ABSTIME) != 0) {
783 timersub(&pt->pt_time.it_value, &time,
784 &pt->pt_time.it_value);
785 if (!timerisset(&pt->pt_time.it_value) ||
786 pt->pt_time.it_value.tv_sec < 0) {
787 pt->pt_time.it_value.tv_sec = 0;
788 pt->pt_time.it_value.tv_usec = 1;
789 }
790 }
791 }
792 }
793
794 timer_settime(pt);
795 splx(s);
796
797 if (SCARG(uap, ovalue)) {
798 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
799 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
800 return copyout(&ovalue, SCARG(uap, ovalue),
801 sizeof(struct itimerspec));
802 }
803
804 return (0);
805 }
806
807 /* Return the time remaining until a POSIX timer fires. */
808 int
809 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
810 {
811 struct sys_timer_gettime_args /* {
812 syscallarg(timer_t) timerid;
813 syscallarg(struct itimerspec *) value;
814 } */ *uap = v;
815 struct itimerval aitv;
816 struct itimerspec its;
817 struct proc *p = l->l_proc;
818 int s, timerid;
819 struct ptimer *pt;
820
821 timerid = SCARG(uap, timerid);
822
823 if ((p->p_timers == NULL) ||
824 (timerid < 2) || (timerid >= TIMER_MAX) ||
825 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
826 return (EINVAL);
827
828 s = splclock();
829 timer_gettime(pt, &aitv);
830 splx(s);
831
832 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
833 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
834
835 return copyout(&its, SCARG(uap, value), sizeof(its));
836 }
837
838 /*
839 * Return the count of the number of times a periodic timer expired
840 * while a notification was already pending. The counter is reset when
841 * a timer expires and a notification can be posted.
842 */
843 int
844 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
845 {
846 struct sys_timer_getoverrun_args /* {
847 syscallarg(timer_t) timerid;
848 } */ *uap = v;
849 struct proc *p = l->l_proc;
850 int timerid;
851 struct ptimer *pt;
852
853 timerid = SCARG(uap, timerid);
854
855 if ((p->p_timers == NULL) ||
856 (timerid < 2) || (timerid >= TIMER_MAX) ||
857 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
858 return (EINVAL);
859
860 *retval = pt->pt_poverruns;
861
862 return (0);
863 }
864
865 /* Glue function that triggers an upcall; called from userret(). */
866 static void
867 timerupcall(struct lwp *l, void *arg)
868 {
869 struct ptimers *pt = (struct ptimers *)arg;
870 unsigned int i, fired, done;
871 KERNEL_PROC_LOCK(l);
872
873 fired = pt->pts_fired;
874 done = 0;
875 while ((i = ffs(fired)) != 0) {
876 i--;
877 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
878 sizeof(siginfo_t), &pt->pts_timers[i]->pt_info) == 0)
879 done |= 1 << i;
880 fired &= ~(1 << i);
881 }
882 pt->pts_fired &= ~done;
883 if (pt->pts_fired == 0)
884 l->l_proc->p_userret = NULL;
885
886 KERNEL_PROC_UNLOCK(l);
887 }
888
889
890 /*
891 * Real interval timer expired:
892 * send process whose timer expired an alarm signal.
893 * If time is not set up to reload, then just return.
894 * Else compute next time timer should go off which is > current time.
895 * This is where delay in processing this timeout causes multiple
896 * SIGALRM calls to be compressed into one.
897 */
898 void
899 realtimerexpire(void *arg)
900 {
901 struct ptimer *pt;
902 int s;
903
904 pt = (struct ptimer *)arg;
905
906 itimerfire(pt);
907
908 if (!timerisset(&pt->pt_time.it_interval)) {
909 timerclear(&pt->pt_time.it_value);
910 return;
911 }
912 for (;;) {
913 s = splclock();
914 timeradd(&pt->pt_time.it_value,
915 &pt->pt_time.it_interval, &pt->pt_time.it_value);
916 if (timercmp(&pt->pt_time.it_value, &time, >)) {
917 /*
918 * Don't need to check hzto() return value, here.
919 * callout_reset() does it for us.
920 */
921 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
922 realtimerexpire, pt);
923 splx(s);
924 return;
925 }
926 splx(s);
927 pt->pt_overruns++;
928 }
929 }
930
931 /* BSD routine to get the value of an interval timer. */
932 /* ARGSUSED */
933 int
934 sys_getitimer(struct lwp *l, void *v, register_t *retval)
935 {
936 struct sys_getitimer_args /* {
937 syscallarg(int) which;
938 syscallarg(struct itimerval *) itv;
939 } */ *uap = v;
940 struct proc *p = l->l_proc;
941 struct itimerval aitv;
942 int s, which;
943
944 which = SCARG(uap, which);
945
946 if ((u_int)which > ITIMER_PROF)
947 return (EINVAL);
948
949 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
950 timerclear(&aitv.it_value);
951 timerclear(&aitv.it_interval);
952 } else {
953 s = splclock();
954 timer_gettime(p->p_timers->pts_timers[which], &aitv);
955 splx(s);
956 }
957
958 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
959
960 }
961
962 /* BSD routine to set/arm an interval timer. */
963 /* ARGSUSED */
964 int
965 sys_setitimer(struct lwp *l, void *v, register_t *retval)
966 {
967 struct sys_setitimer_args /* {
968 syscallarg(int) which;
969 syscallarg(const struct itimerval *) itv;
970 syscallarg(struct itimerval *) oitv;
971 } */ *uap = v;
972 struct proc *p = l->l_proc;
973 int which = SCARG(uap, which);
974 struct sys_getitimer_args getargs;
975 struct itimerval aitv;
976 const struct itimerval *itvp;
977 struct ptimer *pt;
978 int s, error;
979
980 if ((u_int)which > ITIMER_PROF)
981 return (EINVAL);
982 itvp = SCARG(uap, itv);
983 if (itvp &&
984 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
985 return (error);
986 if (SCARG(uap, oitv) != NULL) {
987 SCARG(&getargs, which) = which;
988 SCARG(&getargs, itv) = SCARG(uap, oitv);
989 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
990 return (error);
991 }
992 if (itvp == 0)
993 return (0);
994 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
995 return (EINVAL);
996
997 /*
998 * Don't bother allocating data structures if the process just
999 * wants to clear the timer.
1000 */
1001 if (!timerisset(&aitv.it_value) &&
1002 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1003 return (0);
1004
1005 if (p->p_timers == NULL)
1006 timers_alloc(p);
1007 if (p->p_timers->pts_timers[which] == NULL) {
1008 pt = pool_get(&ptimer_pool, PR_WAITOK);
1009 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1010 pt->pt_overruns = 0;
1011 pt->pt_proc = p;
1012 pt->pt_type = which;
1013 pt->pt_entry = which;
1014 switch (which) {
1015 case ITIMER_REAL:
1016 callout_init(&pt->pt_ch);
1017 pt->pt_ev.sigev_signo = SIGALRM;
1018 break;
1019 case ITIMER_VIRTUAL:
1020 pt->pt_active = 0;
1021 pt->pt_ev.sigev_signo = SIGVTALRM;
1022 break;
1023 case ITIMER_PROF:
1024 pt->pt_active = 0;
1025 pt->pt_ev.sigev_signo = SIGPROF;
1026 break;
1027 }
1028 } else
1029 pt = p->p_timers->pts_timers[which];
1030
1031 pt->pt_time = aitv;
1032 p->p_timers->pts_timers[which] = pt;
1033
1034 s = splclock();
1035 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1036 /* Convert to absolute time */
1037 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1038 }
1039 timer_settime(pt);
1040 splx(s);
1041
1042 return (0);
1043 }
1044
1045 /* Utility routines to manage the array of pointers to timers. */
1046 void
1047 timers_alloc(struct proc *p)
1048 {
1049 int i;
1050 struct ptimers *pts;
1051
1052 pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1053 LIST_INIT(&pts->pts_virtual);
1054 LIST_INIT(&pts->pts_prof);
1055 for (i = 0; i < TIMER_MAX; i++)
1056 pts->pts_timers[i] = NULL;
1057 pts->pts_fired = 0;
1058 p->p_timers = pts;
1059 }
1060
1061 /*
1062 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1063 * then clean up all timers and free all the data structures. If
1064 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1065 * by timer_create(), not the BSD setitimer() timers, and only free the
1066 * structure if none of those remain.
1067 */
1068 void
1069 timers_free(struct proc *p, int which)
1070 {
1071 int i, s;
1072 struct ptimers *pts;
1073 struct ptimer *pt, *ptn;
1074 struct timeval tv;
1075
1076 if (p->p_timers) {
1077 pts = p->p_timers;
1078 if (which == TIMERS_ALL)
1079 i = 0;
1080 else {
1081 s = splclock();
1082 timerclear(&tv);
1083 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1084 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1085 ptn = LIST_NEXT(ptn, pt_list))
1086 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1087 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1088 if (ptn) {
1089 timeradd(&tv, &ptn->pt_time.it_value,
1090 &ptn->pt_time.it_value);
1091 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1092 ptn, pt_list);
1093 }
1094
1095 timerclear(&tv);
1096 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1097 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1098 ptn = LIST_NEXT(ptn, pt_list))
1099 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1100 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1101 if (ptn) {
1102 timeradd(&tv, &ptn->pt_time.it_value,
1103 &ptn->pt_time.it_value);
1104 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1105 pt_list);
1106 }
1107 splx(s);
1108 i = 3;
1109 }
1110 for ( ; i < TIMER_MAX; i++)
1111 if ((pt = pts->pts_timers[i]) != NULL) {
1112 if (pt->pt_type == CLOCK_REALTIME)
1113 callout_stop(&pt->pt_ch);
1114 pts->pts_timers[i] = NULL;
1115 pool_put(&ptimer_pool, pt);
1116 }
1117 if ((pts->pts_timers[0] == NULL) &&
1118 (pts->pts_timers[1] == NULL) &&
1119 (pts->pts_timers[2] == NULL)) {
1120 p->p_timers = NULL;
1121 free(pts, M_SUBPROC);
1122 }
1123 }
1124 }
1125
1126 /*
1127 * Check that a proposed value to load into the .it_value or
1128 * .it_interval part of an interval timer is acceptable, and
1129 * fix it to have at least minimal value (i.e. if it is less
1130 * than the resolution of the clock, round it up.)
1131 */
1132 int
1133 itimerfix(struct timeval *tv)
1134 {
1135
1136 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1137 return (EINVAL);
1138 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1139 tv->tv_usec = tick;
1140 return (0);
1141 }
1142
1143 /*
1144 * Decrement an interval timer by a specified number
1145 * of microseconds, which must be less than a second,
1146 * i.e. < 1000000. If the timer expires, then reload
1147 * it. In this case, carry over (usec - old value) to
1148 * reduce the value reloaded into the timer so that
1149 * the timer does not drift. This routine assumes
1150 * that it is called in a context where the timers
1151 * on which it is operating cannot change in value.
1152 */
1153 int
1154 itimerdecr(struct ptimer *pt, int usec)
1155 {
1156 struct itimerval *itp;
1157
1158 itp = &pt->pt_time;
1159 if (itp->it_value.tv_usec < usec) {
1160 if (itp->it_value.tv_sec == 0) {
1161 /* expired, and already in next interval */
1162 usec -= itp->it_value.tv_usec;
1163 goto expire;
1164 }
1165 itp->it_value.tv_usec += 1000000;
1166 itp->it_value.tv_sec--;
1167 }
1168 itp->it_value.tv_usec -= usec;
1169 usec = 0;
1170 if (timerisset(&itp->it_value))
1171 return (1);
1172 /* expired, exactly at end of interval */
1173 expire:
1174 if (timerisset(&itp->it_interval)) {
1175 itp->it_value = itp->it_interval;
1176 itp->it_value.tv_usec -= usec;
1177 if (itp->it_value.tv_usec < 0) {
1178 itp->it_value.tv_usec += 1000000;
1179 itp->it_value.tv_sec--;
1180 }
1181 timer_settime(pt);
1182 } else
1183 itp->it_value.tv_usec = 0; /* sec is already 0 */
1184 return (0);
1185 }
1186
1187 void
1188 itimerfire(struct ptimer *pt)
1189 {
1190 struct proc *p = pt->pt_proc;
1191 int s;
1192
1193 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1194 /*
1195 * No RT signal infrastructure exists at this time;
1196 * just post the signal number and throw away the
1197 * value.
1198 */
1199 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1200 pt->pt_overruns++;
1201 else {
1202 pt->pt_poverruns = pt->pt_overruns;
1203 pt->pt_overruns = 0;
1204 psignal(p, pt->pt_ev.sigev_signo);
1205 }
1206 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1207 /* Cause the process to generate an upcall when it returns. */
1208 struct sadata *sa = p->p_sa;
1209 unsigned int i;
1210
1211 if (p->p_userret == NULL) {
1212 /*
1213 * XXX stop signals can be processed inside tsleep,
1214 * which can be inside sa_yield's inner loop, which
1215 * makes testing for sa_idle alone insuffucent to
1216 * determine if we really should call setrunnable.
1217 */
1218 if ((sa->sa_idle) && (p->p_stat != SSTOP)) {
1219 SCHED_LOCK(s);
1220 setrunnable(sa->sa_idle);
1221 SCHED_UNLOCK(s);
1222 }
1223 pt->pt_poverruns = pt->pt_overruns;
1224 pt->pt_overruns = 0;
1225 i = 1 << pt->pt_entry;
1226 p->p_timers->pts_fired = i;
1227 p->p_userret = timerupcall;
1228 p->p_userret_arg = p->p_timers;
1229 } else if (p->p_userret == timerupcall) {
1230 i = 1 << pt->pt_entry;
1231 if ((p->p_timers->pts_fired & i) == 0) {
1232 pt->pt_poverruns = pt->pt_overruns;
1233 pt->pt_overruns = 0;
1234 p->p_timers->pts_fired |= i;
1235 } else
1236 pt->pt_overruns++;
1237 } else {
1238 pt->pt_overruns++;
1239 printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1240 p->p_pid, pt->pt_overruns,
1241 pt->pt_ev.sigev_value.sival_int,
1242 p->p_userret);
1243 }
1244 }
1245
1246 }
1247
1248 /*
1249 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1250 * for usage and rationale.
1251 */
1252 int
1253 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1254 {
1255 struct timeval tv, delta;
1256 int s, rv = 0;
1257
1258 s = splclock();
1259 tv = mono_time;
1260 splx(s);
1261
1262 timersub(&tv, lasttime, &delta);
1263
1264 /*
1265 * check for 0,0 is so that the message will be seen at least once,
1266 * even if interval is huge.
1267 */
1268 if (timercmp(&delta, mininterval, >=) ||
1269 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1270 *lasttime = tv;
1271 rv = 1;
1272 }
1273
1274 return (rv);
1275 }
1276
1277 /*
1278 * ppsratecheck(): packets (or events) per second limitation.
1279 */
1280 int
1281 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1282 {
1283 struct timeval tv, delta;
1284 int s, rv;
1285
1286 s = splclock();
1287 tv = mono_time;
1288 splx(s);
1289
1290 timersub(&tv, lasttime, &delta);
1291
1292 /*
1293 * check for 0,0 is so that the message will be seen at least once.
1294 * if more than one second have passed since the last update of
1295 * lasttime, reset the counter.
1296 *
1297 * we do increment *curpps even in *curpps < maxpps case, as some may
1298 * try to use *curpps for stat purposes as well.
1299 */
1300 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1301 delta.tv_sec >= 1) {
1302 *lasttime = tv;
1303 *curpps = 0;
1304 }
1305 if (maxpps < 0)
1306 rv = 1;
1307 else if (*curpps < maxpps)
1308 rv = 1;
1309 else
1310 rv = 0;
1311
1312 #if 1 /*DIAGNOSTIC?*/
1313 /* be careful about wrap-around */
1314 if (*curpps + 1 > *curpps)
1315 *curpps = *curpps + 1;
1316 #else
1317 /*
1318 * assume that there's not too many calls to this function.
1319 * not sure if the assumption holds, as it depends on *caller's*
1320 * behavior, not the behavior of this function.
1321 * IMHO it is wrong to make assumption on the caller's behavior,
1322 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1323 */
1324 *curpps = *curpps + 1;
1325 #endif
1326
1327 return (rv);
1328 }
1329