Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.73
      1 /*	$NetBSD: kern_time.c,v 1.73 2003/09/06 22:03:10 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.73 2003/09/06 22:03:10 christos Exp $");
     72 
     73 #include "fs_nfs.h"
     74 #include "opt_nfs.h"
     75 #include "opt_nfsserver.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/kernel.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/proc.h>
     83 #include <sys/sa.h>
     84 #include <sys/savar.h>
     85 #include <sys/vnode.h>
     86 #include <sys/signalvar.h>
     87 #include <sys/syslog.h>
     88 
     89 #include <sys/mount.h>
     90 #include <sys/syscallargs.h>
     91 
     92 #include <uvm/uvm_extern.h>
     93 
     94 #if defined(NFS) || defined(NFSSERVER)
     95 #include <nfs/rpcv2.h>
     96 #include <nfs/nfsproto.h>
     97 #include <nfs/nfs_var.h>
     98 #endif
     99 
    100 #include <machine/cpu.h>
    101 
    102 static void timerupcall(struct lwp *, void *);
    103 
    104 
    105 /* Time of day and interval timer support.
    106  *
    107  * These routines provide the kernel entry points to get and set
    108  * the time-of-day and per-process interval timers.  Subroutines
    109  * here provide support for adding and subtracting timeval structures
    110  * and decrementing interval timers, optionally reloading the interval
    111  * timers when they expire.
    112  */
    113 
    114 /* This function is used by clock_settime and settimeofday */
    115 int
    116 settime(struct timeval *tv)
    117 {
    118 	struct timeval delta;
    119 	struct cpu_info *ci;
    120 	int s;
    121 
    122 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    123 	s = splclock();
    124 	timersub(tv, &time, &delta);
    125 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    126 		splx(s);
    127 		return (EPERM);
    128 	}
    129 #ifdef notyet
    130 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    131 		splx(s);
    132 		return (EPERM);
    133 	}
    134 #endif
    135 	time = *tv;
    136 	(void) spllowersoftclock();
    137 	timeradd(&boottime, &delta, &boottime);
    138 	/*
    139 	 * XXXSMP
    140 	 * This is wrong.  We should traverse a list of all
    141 	 * CPUs and add the delta to the runtime of those
    142 	 * CPUs which have a process on them.
    143 	 */
    144 	ci = curcpu();
    145 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    146 	    &ci->ci_schedstate.spc_runtime);
    147 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    148 		nqnfs_lease_updatetime(delta.tv_sec);
    149 #	endif
    150 	splx(s);
    151 	resettodr();
    152 	return (0);
    153 }
    154 
    155 /* ARGSUSED */
    156 int
    157 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    158 {
    159 	struct sys_clock_gettime_args /* {
    160 		syscallarg(clockid_t) clock_id;
    161 		syscallarg(struct timespec *) tp;
    162 	} */ *uap = v;
    163 	clockid_t clock_id;
    164 	struct timeval atv;
    165 	struct timespec ats;
    166 	int s;
    167 
    168 	clock_id = SCARG(uap, clock_id);
    169 	switch (clock_id) {
    170 	case CLOCK_REALTIME:
    171 		microtime(&atv);
    172 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    173 		break;
    174 	case CLOCK_MONOTONIC:
    175 		/* XXX "hz" granularity */
    176 		s = splclock();
    177 		atv = mono_time;
    178 		splx(s);
    179 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    180 		break;
    181 	default:
    182 		return (EINVAL);
    183 	}
    184 
    185 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    186 }
    187 
    188 /* ARGSUSED */
    189 int
    190 sys_clock_settime(l, v, retval)
    191 	struct lwp *l;
    192 	void *v;
    193 	register_t *retval;
    194 {
    195 	struct sys_clock_settime_args /* {
    196 		syscallarg(clockid_t) clock_id;
    197 		syscallarg(const struct timespec *) tp;
    198 	} */ *uap = v;
    199 	struct proc *p = l->l_proc;
    200 	int error;
    201 
    202 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    203 		return (error);
    204 
    205 	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
    206 }
    207 
    208 
    209 int
    210 clock_settime1(clock_id, tp)
    211 	clockid_t clock_id;
    212 	const struct timespec *tp;
    213 {
    214 	struct timespec ats;
    215 	struct timeval atv;
    216 	int error;
    217 
    218 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    219 		return (error);
    220 
    221 	switch (clock_id) {
    222 	case CLOCK_REALTIME:
    223 		TIMESPEC_TO_TIMEVAL(&atv, &ats);
    224 		if ((error = settime(&atv)) != 0)
    225 			return (error);
    226 		break;
    227 	case CLOCK_MONOTONIC:
    228 		return (EINVAL);	/* read-only clock */
    229 	default:
    230 		return (EINVAL);
    231 	}
    232 
    233 	return 0;
    234 }
    235 
    236 int
    237 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    238 {
    239 	struct sys_clock_getres_args /* {
    240 		syscallarg(clockid_t) clock_id;
    241 		syscallarg(struct timespec *) tp;
    242 	} */ *uap = v;
    243 	clockid_t clock_id;
    244 	struct timespec ts;
    245 	int error = 0;
    246 
    247 	clock_id = SCARG(uap, clock_id);
    248 	switch (clock_id) {
    249 	case CLOCK_REALTIME:
    250 	case CLOCK_MONOTONIC:
    251 		ts.tv_sec = 0;
    252 		ts.tv_nsec = 1000000000 / hz;
    253 		break;
    254 	default:
    255 		return (EINVAL);
    256 	}
    257 
    258 	if (SCARG(uap, tp))
    259 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    260 
    261 	return error;
    262 }
    263 
    264 /* ARGSUSED */
    265 int
    266 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    267 {
    268 	static int nanowait;
    269 	struct sys_nanosleep_args/* {
    270 		syscallarg(struct timespec *) rqtp;
    271 		syscallarg(struct timespec *) rmtp;
    272 	} */ *uap = v;
    273 	struct timespec rqt;
    274 	struct timespec rmt;
    275 	struct timeval atv, utv;
    276 	int error, s, timo;
    277 
    278 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    279 		       sizeof(struct timespec));
    280 	if (error)
    281 		return (error);
    282 
    283 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    284 	if (itimerfix(&atv) || atv.tv_sec > 1000000000)
    285 		return (EINVAL);
    286 
    287 	s = splclock();
    288 	timeradd(&atv,&time,&atv);
    289 	timo = hzto(&atv);
    290 	/*
    291 	 * Avoid inadvertantly sleeping forever
    292 	 */
    293 	if (timo == 0)
    294 		timo = 1;
    295 	splx(s);
    296 
    297 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    298 	if (error == ERESTART)
    299 		error = EINTR;
    300 	if (error == EWOULDBLOCK)
    301 		error = 0;
    302 
    303 	if (SCARG(uap, rmtp)) {
    304 		int error;
    305 
    306 		s = splclock();
    307 		utv = time;
    308 		splx(s);
    309 
    310 		timersub(&atv, &utv, &utv);
    311 		if (utv.tv_sec < 0)
    312 			timerclear(&utv);
    313 
    314 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    315 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    316 			sizeof(rmt));
    317 		if (error)
    318 			return (error);
    319 	}
    320 
    321 	return error;
    322 }
    323 
    324 /* ARGSUSED */
    325 int
    326 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    327 {
    328 	struct sys_gettimeofday_args /* {
    329 		syscallarg(struct timeval *) tp;
    330 		syscallarg(struct timezone *) tzp;
    331 	} */ *uap = v;
    332 	struct timeval atv;
    333 	int error = 0;
    334 	struct timezone tzfake;
    335 
    336 	if (SCARG(uap, tp)) {
    337 		microtime(&atv);
    338 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    339 		if (error)
    340 			return (error);
    341 	}
    342 	if (SCARG(uap, tzp)) {
    343 		/*
    344 		 * NetBSD has no kernel notion of time zone, so we just
    345 		 * fake up a timezone struct and return it if demanded.
    346 		 */
    347 		tzfake.tz_minuteswest = 0;
    348 		tzfake.tz_dsttime = 0;
    349 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    350 	}
    351 	return (error);
    352 }
    353 
    354 /* ARGSUSED */
    355 int
    356 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    357 {
    358 	struct sys_settimeofday_args /* {
    359 		syscallarg(const struct timeval *) tv;
    360 		syscallarg(const struct timezone *) tzp;
    361 	} */ *uap = v;
    362 	struct proc *p = l->l_proc;
    363 	int error;
    364 
    365 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    366 		return (error);
    367 
    368 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
    369 }
    370 
    371 int
    372 settimeofday1(utv, utzp, p)
    373 	const struct timeval *utv;
    374 	const struct timezone *utzp;
    375 	struct proc *p;
    376 {
    377 	struct timeval atv;
    378 	struct timezone atz;
    379 	struct timeval *tv = NULL;
    380 	struct timezone *tzp = NULL;
    381 	int error;
    382 
    383 	/* Verify all parameters before changing time. */
    384 	if (utv) {
    385 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    386 			return (error);
    387 		tv = &atv;
    388 	}
    389 	/* XXX since we don't use tz, probably no point in doing copyin. */
    390 	if (utzp) {
    391 		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
    392 			return (error);
    393 		tzp = &atz;
    394 	}
    395 
    396 	if (tv)
    397 		if ((error = settime(tv)) != 0)
    398 			return (error);
    399 	/*
    400 	 * NetBSD has no kernel notion of time zone, and only an
    401 	 * obsolete program would try to set it, so we log a warning.
    402 	 */
    403 	if (tzp)
    404 		log(LOG_WARNING, "pid %d attempted to set the "
    405 		    "(obsolete) kernel time zone\n", p->p_pid);
    406 	return (0);
    407 }
    408 
    409 int	tickdelta;			/* current clock skew, us. per tick */
    410 long	timedelta;			/* unapplied time correction, us. */
    411 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    412 int	time_adjusted;			/* set if an adjustment is made */
    413 
    414 /* ARGSUSED */
    415 int
    416 sys_adjtime(struct lwp *l, void *v, register_t *retval)
    417 {
    418 	struct sys_adjtime_args /* {
    419 		syscallarg(const struct timeval *) delta;
    420 		syscallarg(struct timeval *) olddelta;
    421 	} */ *uap = v;
    422 	struct proc *p = l->l_proc;
    423 	int error;
    424 
    425 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    426 		return (error);
    427 
    428 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
    429 }
    430 
    431 int
    432 adjtime1(delta, olddelta, p)
    433 	const struct timeval *delta;
    434 	struct timeval *olddelta;
    435 	struct proc *p;
    436 {
    437 	struct timeval atv;
    438 	long ndelta, ntickdelta, odelta;
    439 	int error;
    440 	int s;
    441 
    442 	error = copyin(delta, &atv, sizeof(struct timeval));
    443 	if (error)
    444 		return (error);
    445 
    446 	if (olddelta != NULL) {
    447 		if (uvm_useracc((caddr_t)olddelta,
    448 		    sizeof(struct timeval), B_WRITE) == FALSE)
    449 			return (EFAULT);
    450 	}
    451 
    452 	/*
    453 	 * Compute the total correction and the rate at which to apply it.
    454 	 * Round the adjustment down to a whole multiple of the per-tick
    455 	 * delta, so that after some number of incremental changes in
    456 	 * hardclock(), tickdelta will become zero, lest the correction
    457 	 * overshoot and start taking us away from the desired final time.
    458 	 */
    459 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    460 	if (ndelta > bigadj || ndelta < -bigadj)
    461 		ntickdelta = 10 * tickadj;
    462 	else
    463 		ntickdelta = tickadj;
    464 	if (ndelta % ntickdelta)
    465 		ndelta = ndelta / ntickdelta * ntickdelta;
    466 
    467 	/*
    468 	 * To make hardclock()'s job easier, make the per-tick delta negative
    469 	 * if we want time to run slower; then hardclock can simply compute
    470 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    471 	 */
    472 	if (ndelta < 0)
    473 		ntickdelta = -ntickdelta;
    474 	if (ndelta != 0)
    475 		/* We need to save the system clock time during shutdown */
    476 		time_adjusted |= 1;
    477 	s = splclock();
    478 	odelta = timedelta;
    479 	timedelta = ndelta;
    480 	tickdelta = ntickdelta;
    481 	splx(s);
    482 
    483 	if (olddelta) {
    484 		atv.tv_sec = odelta / 1000000;
    485 		atv.tv_usec = odelta % 1000000;
    486 		(void) copyout(&atv, olddelta, sizeof(struct timeval));
    487 	}
    488 	return (0);
    489 }
    490 
    491 /*
    492  * Interval timer support. Both the BSD getitimer() family and the POSIX
    493  * timer_*() family of routines are supported.
    494  *
    495  * All timers are kept in an array pointed to by p_timers, which is
    496  * allocated on demand - many processes don't use timers at all. The
    497  * first three elements in this array are reserved for the BSD timers:
    498  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    499  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    500  * syscall.
    501  *
    502  * Realtime timers are kept in the ptimer structure as an absolute
    503  * time; virtual time timers are kept as a linked list of deltas.
    504  * Virtual time timers are processed in the hardclock() routine of
    505  * kern_clock.c.  The real time timer is processed by a callout
    506  * routine, called from the softclock() routine.  Since a callout may
    507  * be delayed in real time due to interrupt processing in the system,
    508  * it is possible for the real time timeout routine (realtimeexpire,
    509  * given below), to be delayed in real time past when it is supposed
    510  * to occur.  It does not suffice, therefore, to reload the real timer
    511  * .it_value from the real time timers .it_interval.  Rather, we
    512  * compute the next time in absolute time the timer should go off.  */
    513 
    514 /* Allocate a POSIX realtime timer. */
    515 int
    516 sys_timer_create(struct lwp *l, void *v, register_t *retval)
    517 {
    518 	struct sys_timer_create_args /* {
    519 		syscallarg(clockid_t) clock_id;
    520 		syscallarg(struct sigevent *) evp;
    521 		syscallarg(timer_t *) timerid;
    522 	} */ *uap = v;
    523 	struct proc *p = l->l_proc;
    524 	clockid_t id;
    525 	struct sigevent *evp;
    526 	struct ptimer *pt;
    527 	timer_t timerid;
    528 	int error;
    529 
    530 	id = SCARG(uap, clock_id);
    531 	if (id < CLOCK_REALTIME ||
    532 	    id > CLOCK_PROF)
    533 		return (EINVAL);
    534 
    535 	if (p->p_timers == NULL)
    536 		timers_alloc(p);
    537 
    538 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    539 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    540 		if (p->p_timers->pts_timers[timerid] == NULL)
    541 			break;
    542 
    543 	if (timerid == TIMER_MAX)
    544 		return EAGAIN;
    545 
    546 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    547 	evp = SCARG(uap, evp);
    548 	if (evp) {
    549 		if (((error =
    550 		    copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
    551 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    552 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    553 			pool_put(&ptimer_pool, pt);
    554 			return (error ? error : EINVAL);
    555 		}
    556 	} else {
    557 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    558 		switch (id) {
    559 		case CLOCK_REALTIME:
    560 			pt->pt_ev.sigev_signo = SIGALRM;
    561 			break;
    562 		case CLOCK_VIRTUAL:
    563 			pt->pt_ev.sigev_signo = SIGVTALRM;
    564 			break;
    565 		case CLOCK_PROF:
    566 			pt->pt_ev.sigev_signo = SIGPROF;
    567 			break;
    568 		}
    569 		pt->pt_ev.sigev_value.sival_int = timerid;
    570 	}
    571 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    572 	pt->pt_info.ksi_errno = 0;
    573 	pt->pt_info.ksi_code = 0;
    574 	pt->pt_info.ksi_pid = p->p_pid;
    575 	pt->pt_info.ksi_uid = p->p_cred->p_ruid;
    576 	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
    577 
    578 	pt->pt_type = id;
    579 	pt->pt_proc = p;
    580 	pt->pt_overruns = 0;
    581 	pt->pt_poverruns = 0;
    582 	pt->pt_entry = timerid;
    583 	timerclear(&pt->pt_time.it_value);
    584 	if (id == CLOCK_REALTIME)
    585 		callout_init(&pt->pt_ch);
    586 	else
    587 		pt->pt_active = 0;
    588 
    589 	p->p_timers->pts_timers[timerid] = pt;
    590 
    591 	return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
    592 }
    593 
    594 
    595 /* Delete a POSIX realtime timer */
    596 int
    597 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    598 {
    599 	struct sys_timer_delete_args /*  {
    600 		syscallarg(timer_t) timerid;
    601 	} */ *uap = v;
    602 	struct proc *p = l->l_proc;
    603 	timer_t timerid;
    604 	struct ptimer *pt, *ptn;
    605 	int s;
    606 
    607 	timerid = SCARG(uap, timerid);
    608 
    609 	if ((p->p_timers == NULL) ||
    610 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    611 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    612 		return (EINVAL);
    613 
    614 	if (pt->pt_type == CLOCK_REALTIME)
    615 		callout_stop(&pt->pt_ch);
    616 	else if (pt->pt_active) {
    617 		s = splclock();
    618 		ptn = LIST_NEXT(pt, pt_list);
    619 		LIST_REMOVE(pt, pt_list);
    620 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    621 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    622 			    &ptn->pt_time.it_value);
    623 		splx(s);
    624 	}
    625 
    626 	p->p_timers->pts_timers[timerid] = NULL;
    627 	pool_put(&ptimer_pool, pt);
    628 
    629 	return (0);
    630 }
    631 
    632 /*
    633  * Set up the given timer. The value in pt->pt_time.it_value is taken
    634  * to be an absolute time for CLOCK_REALTIME timers and a relative
    635  * time for virtual timers.
    636  * Must be called at splclock().
    637  */
    638 void
    639 timer_settime(struct ptimer *pt)
    640 {
    641 	struct ptimer *ptn, *pptn;
    642 	struct ptlist *ptl;
    643 
    644 	if (pt->pt_type == CLOCK_REALTIME) {
    645 		callout_stop(&pt->pt_ch);
    646 		if (timerisset(&pt->pt_time.it_value)) {
    647 			/*
    648 			 * Don't need to check hzto() return value, here.
    649 			 * callout_reset() does it for us.
    650 			 */
    651 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    652 			    realtimerexpire, pt);
    653 		}
    654 	} else {
    655 		if (pt->pt_active) {
    656 			ptn = LIST_NEXT(pt, pt_list);
    657 			LIST_REMOVE(pt, pt_list);
    658 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    659 				timeradd(&pt->pt_time.it_value,
    660 				    &ptn->pt_time.it_value,
    661 				    &ptn->pt_time.it_value);
    662 		}
    663 		if (timerisset(&pt->pt_time.it_value)) {
    664 			if (pt->pt_type == CLOCK_VIRTUAL)
    665 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    666 			else
    667 				ptl = &pt->pt_proc->p_timers->pts_prof;
    668 
    669 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    670 			     ptn && timercmp(&pt->pt_time.it_value,
    671 				 &ptn->pt_time.it_value, >);
    672 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    673 				timersub(&pt->pt_time.it_value,
    674 				    &ptn->pt_time.it_value,
    675 				    &pt->pt_time.it_value);
    676 
    677 			if (pptn)
    678 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    679 			else
    680 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    681 
    682 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    683 				timersub(&ptn->pt_time.it_value,
    684 				    &pt->pt_time.it_value,
    685 				    &ptn->pt_time.it_value);
    686 
    687 			pt->pt_active = 1;
    688 		} else
    689 			pt->pt_active = 0;
    690 	}
    691 }
    692 
    693 void
    694 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    695 {
    696 	struct ptimer *ptn;
    697 
    698 	*aitv = pt->pt_time;
    699 	if (pt->pt_type == CLOCK_REALTIME) {
    700 		/*
    701 		 * Convert from absolute to relative time in .it_value
    702 		 * part of real time timer.  If time for real time
    703 		 * timer has passed return 0, else return difference
    704 		 * between current time and time for the timer to go
    705 		 * off.
    706 		 */
    707 		if (timerisset(&aitv->it_value)) {
    708 			if (timercmp(&aitv->it_value, &time, <))
    709 				timerclear(&aitv->it_value);
    710 			else
    711 				timersub(&aitv->it_value, &time,
    712 				    &aitv->it_value);
    713 		}
    714 	} else if (pt->pt_active) {
    715 		if (pt->pt_type == CLOCK_VIRTUAL)
    716 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    717 		else
    718 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    719 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    720 			timeradd(&aitv->it_value,
    721 			    &ptn->pt_time.it_value, &aitv->it_value);
    722 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    723 	} else
    724 		timerclear(&aitv->it_value);
    725 }
    726 
    727 
    728 
    729 /* Set and arm a POSIX realtime timer */
    730 int
    731 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    732 {
    733 	struct sys_timer_settime_args /* {
    734 		syscallarg(timer_t) timerid;
    735 		syscallarg(int) flags;
    736 		syscallarg(const struct itimerspec *) value;
    737 		syscallarg(struct itimerspec *) ovalue;
    738 	} */ *uap = v;
    739 	struct proc *p = l->l_proc;
    740 	int error, s, timerid;
    741 	struct itimerval val, oval;
    742 	struct itimerspec value, ovalue;
    743 	struct ptimer *pt;
    744 
    745 	timerid = SCARG(uap, timerid);
    746 
    747 	if ((p->p_timers == NULL) ||
    748 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    749 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    750 		return (EINVAL);
    751 
    752 	if ((error = copyin(SCARG(uap, value), &value,
    753 	    sizeof(struct itimerspec))) != 0)
    754 		return (error);
    755 
    756 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
    757 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
    758 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    759 		return (EINVAL);
    760 
    761 	oval = pt->pt_time;
    762 	pt->pt_time = val;
    763 
    764 	s = splclock();
    765 	/*
    766 	 * If we've been passed a relative time for a realtime timer,
    767 	 * convert it to absolute; if an absolute time for a virtual
    768 	 * timer, convert it to relative and make sure we don't set it
    769 	 * to zero, which would cancel the timer, or let it go
    770 	 * negative, which would confuse the comparison tests.
    771 	 */
    772 	if (timerisset(&pt->pt_time.it_value)) {
    773 		if (pt->pt_type == CLOCK_REALTIME) {
    774 			if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
    775 				timeradd(&pt->pt_time.it_value, &time,
    776 				    &pt->pt_time.it_value);
    777 		} else {
    778 			if ((SCARG(uap, flags) & TIMER_ABSTIME) != 0) {
    779 				timersub(&pt->pt_time.it_value, &time,
    780 				    &pt->pt_time.it_value);
    781 				if (!timerisset(&pt->pt_time.it_value) ||
    782 				    pt->pt_time.it_value.tv_sec < 0) {
    783 					pt->pt_time.it_value.tv_sec = 0;
    784 					pt->pt_time.it_value.tv_usec = 1;
    785 				}
    786 			}
    787 		}
    788 	}
    789 
    790 	timer_settime(pt);
    791 	splx(s);
    792 
    793 	if (SCARG(uap, ovalue)) {
    794 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
    795 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
    796 		return copyout(&ovalue, SCARG(uap, ovalue),
    797 		    sizeof(struct itimerspec));
    798 	}
    799 
    800 	return (0);
    801 }
    802 
    803 /* Return the time remaining until a POSIX timer fires. */
    804 int
    805 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    806 {
    807 	struct sys_timer_gettime_args /* {
    808 		syscallarg(timer_t) timerid;
    809 		syscallarg(struct itimerspec *) value;
    810 	} */ *uap = v;
    811 	struct itimerval aitv;
    812 	struct itimerspec its;
    813 	struct proc *p = l->l_proc;
    814 	int s, timerid;
    815 	struct ptimer *pt;
    816 
    817 	timerid = SCARG(uap, timerid);
    818 
    819 	if ((p->p_timers == NULL) ||
    820 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    821 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    822 		return (EINVAL);
    823 
    824 	s = splclock();
    825 	timer_gettime(pt, &aitv);
    826 	splx(s);
    827 
    828 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
    829 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
    830 
    831 	return copyout(&its, SCARG(uap, value), sizeof(its));
    832 }
    833 
    834 /*
    835  * Return the count of the number of times a periodic timer expired
    836  * while a notification was already pending. The counter is reset when
    837  * a timer expires and a notification can be posted.
    838  */
    839 int
    840 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    841 {
    842 	struct sys_timer_getoverrun_args /* {
    843 		syscallarg(timer_t) timerid;
    844 	} */ *uap = v;
    845 	struct proc *p = l->l_proc;
    846 	int timerid;
    847 	struct ptimer *pt;
    848 
    849 	timerid = SCARG(uap, timerid);
    850 
    851 	if ((p->p_timers == NULL) ||
    852 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    853 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    854 		return (EINVAL);
    855 
    856 	*retval = pt->pt_poverruns;
    857 
    858 	return (0);
    859 }
    860 
    861 /* Glue function that triggers an upcall; called from userret(). */
    862 static void
    863 timerupcall(struct lwp *l, void *arg)
    864 {
    865 	struct ptimers *pt = (struct ptimers *)arg;
    866 	unsigned int i, fired, done;
    867 	KERNEL_PROC_LOCK(l);
    868 
    869 	{
    870 		struct proc	*p = l->l_proc;
    871 		struct sadata *sa = p->p_sa;
    872 
    873 		/* Bail out if we do not own the virtual processor */
    874 		if (sa->sa_vp != l) {
    875 			KERNEL_PROC_UNLOCK(l);
    876 			return ;
    877 		}
    878 	}
    879 
    880 	fired = pt->pts_fired;
    881 	done = 0;
    882 	while ((i = ffs(fired)) != 0) {
    883 		siginfo_t si;
    884 		int mask = 1 << --i;
    885 
    886 		si._info = pt->pts_timers[i]->pt_info;
    887 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    888 		    sizeof(si), &si) == 0)
    889 			done |= mask;
    890 		fired &= ~mask;
    891 	}
    892 	pt->pts_fired &= ~done;
    893 	if (pt->pts_fired == 0)
    894 		l->l_proc->p_userret = NULL;
    895 
    896 	KERNEL_PROC_UNLOCK(l);
    897 }
    898 
    899 
    900 /*
    901  * Real interval timer expired:
    902  * send process whose timer expired an alarm signal.
    903  * If time is not set up to reload, then just return.
    904  * Else compute next time timer should go off which is > current time.
    905  * This is where delay in processing this timeout causes multiple
    906  * SIGALRM calls to be compressed into one.
    907  */
    908 void
    909 realtimerexpire(void *arg)
    910 {
    911 	struct ptimer *pt;
    912 	int s;
    913 
    914 	pt = (struct ptimer *)arg;
    915 
    916 	itimerfire(pt);
    917 
    918 	if (!timerisset(&pt->pt_time.it_interval)) {
    919 		timerclear(&pt->pt_time.it_value);
    920 		return;
    921 	}
    922 	for (;;) {
    923 		s = splclock();
    924 		timeradd(&pt->pt_time.it_value,
    925 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    926 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
    927 			/*
    928 			 * Don't need to check hzto() return value, here.
    929 			 * callout_reset() does it for us.
    930 			 */
    931 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    932 			    realtimerexpire, pt);
    933 			splx(s);
    934 			return;
    935 		}
    936 		splx(s);
    937 		pt->pt_overruns++;
    938 	}
    939 }
    940 
    941 /* BSD routine to get the value of an interval timer. */
    942 /* ARGSUSED */
    943 int
    944 sys_getitimer(struct lwp *l, void *v, register_t *retval)
    945 {
    946 	struct sys_getitimer_args /* {
    947 		syscallarg(int) which;
    948 		syscallarg(struct itimerval *) itv;
    949 	} */ *uap = v;
    950 	struct proc *p = l->l_proc;
    951 	struct itimerval aitv;
    952 	int s, which;
    953 
    954 	which = SCARG(uap, which);
    955 
    956 	if ((u_int)which > ITIMER_PROF)
    957 		return (EINVAL);
    958 
    959 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
    960 		timerclear(&aitv.it_value);
    961 		timerclear(&aitv.it_interval);
    962 	} else {
    963 		s = splclock();
    964 		timer_gettime(p->p_timers->pts_timers[which], &aitv);
    965 		splx(s);
    966 	}
    967 
    968 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    969 
    970 }
    971 
    972 /* BSD routine to set/arm an interval timer. */
    973 /* ARGSUSED */
    974 int
    975 sys_setitimer(struct lwp *l, void *v, register_t *retval)
    976 {
    977 	struct sys_setitimer_args /* {
    978 		syscallarg(int) which;
    979 		syscallarg(const struct itimerval *) itv;
    980 		syscallarg(struct itimerval *) oitv;
    981 	} */ *uap = v;
    982 	struct proc *p = l->l_proc;
    983 	int which = SCARG(uap, which);
    984 	struct sys_getitimer_args getargs;
    985 	struct itimerval aitv;
    986 	const struct itimerval *itvp;
    987 	struct ptimer *pt;
    988 	int s, error;
    989 
    990 	if ((u_int)which > ITIMER_PROF)
    991 		return (EINVAL);
    992 	itvp = SCARG(uap, itv);
    993 	if (itvp &&
    994 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    995 		return (error);
    996 	if (SCARG(uap, oitv) != NULL) {
    997 		SCARG(&getargs, which) = which;
    998 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    999 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1000 			return (error);
   1001 	}
   1002 	if (itvp == 0)
   1003 		return (0);
   1004 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
   1005 		return (EINVAL);
   1006 
   1007 	/*
   1008 	 * Don't bother allocating data structures if the process just
   1009 	 * wants to clear the timer.
   1010 	 */
   1011 	if (!timerisset(&aitv.it_value) &&
   1012 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1013 		return (0);
   1014 
   1015 	if (p->p_timers == NULL)
   1016 		timers_alloc(p);
   1017 	if (p->p_timers->pts_timers[which] == NULL) {
   1018 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1019 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1020 		pt->pt_overruns = 0;
   1021 		pt->pt_proc = p;
   1022 		pt->pt_type = which;
   1023 		pt->pt_entry = which;
   1024 		switch (which) {
   1025 		case ITIMER_REAL:
   1026 			callout_init(&pt->pt_ch);
   1027 			pt->pt_ev.sigev_signo = SIGALRM;
   1028 			break;
   1029 		case ITIMER_VIRTUAL:
   1030 			pt->pt_active = 0;
   1031 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1032 			break;
   1033 		case ITIMER_PROF:
   1034 			pt->pt_active = 0;
   1035 			pt->pt_ev.sigev_signo = SIGPROF;
   1036 			break;
   1037 		}
   1038 	} else
   1039 		pt = p->p_timers->pts_timers[which];
   1040 
   1041 	pt->pt_time = aitv;
   1042 	p->p_timers->pts_timers[which] = pt;
   1043 
   1044 	s = splclock();
   1045 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1046 		/* Convert to absolute time */
   1047 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1048 	}
   1049 	timer_settime(pt);
   1050 	splx(s);
   1051 
   1052 	return (0);
   1053 }
   1054 
   1055 /* Utility routines to manage the array of pointers to timers. */
   1056 void
   1057 timers_alloc(struct proc *p)
   1058 {
   1059 	int i;
   1060 	struct ptimers *pts;
   1061 
   1062 	pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
   1063 	LIST_INIT(&pts->pts_virtual);
   1064 	LIST_INIT(&pts->pts_prof);
   1065 	for (i = 0; i < TIMER_MAX; i++)
   1066 		pts->pts_timers[i] = NULL;
   1067 	pts->pts_fired = 0;
   1068 	p->p_timers = pts;
   1069 }
   1070 
   1071 /*
   1072  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1073  * then clean up all timers and free all the data structures. If
   1074  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1075  * by timer_create(), not the BSD setitimer() timers, and only free the
   1076  * structure if none of those remain.
   1077  */
   1078 void
   1079 timers_free(struct proc *p, int which)
   1080 {
   1081 	int i, s;
   1082 	struct ptimers *pts;
   1083 	struct ptimer *pt, *ptn;
   1084 	struct timeval tv;
   1085 
   1086 	if (p->p_timers) {
   1087 		pts = p->p_timers;
   1088 		if (which == TIMERS_ALL)
   1089 			i = 0;
   1090 		else {
   1091 			s = splclock();
   1092 			timerclear(&tv);
   1093 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1094 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1095 			     ptn = LIST_NEXT(ptn, pt_list))
   1096 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1097 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1098 			if (ptn) {
   1099 				timeradd(&tv, &ptn->pt_time.it_value,
   1100 				    &ptn->pt_time.it_value);
   1101 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1102 				    ptn, pt_list);
   1103 			}
   1104 
   1105 			timerclear(&tv);
   1106 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1107 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1108 			     ptn = LIST_NEXT(ptn, pt_list))
   1109 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1110 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1111 			if (ptn) {
   1112 				timeradd(&tv, &ptn->pt_time.it_value,
   1113 				    &ptn->pt_time.it_value);
   1114 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1115 				    pt_list);
   1116 			}
   1117 			splx(s);
   1118 			i = 3;
   1119 		}
   1120 		for ( ; i < TIMER_MAX; i++)
   1121 			if ((pt = pts->pts_timers[i]) != NULL) {
   1122 				if (pt->pt_type == CLOCK_REALTIME)
   1123 					callout_stop(&pt->pt_ch);
   1124 				pts->pts_timers[i] = NULL;
   1125 				pool_put(&ptimer_pool, pt);
   1126 			}
   1127 		if ((pts->pts_timers[0] == NULL) &&
   1128 		    (pts->pts_timers[1] == NULL) &&
   1129 		    (pts->pts_timers[2] == NULL)) {
   1130 			p->p_timers = NULL;
   1131 			free(pts, M_SUBPROC);
   1132 		}
   1133 	}
   1134 }
   1135 
   1136 /*
   1137  * Check that a proposed value to load into the .it_value or
   1138  * .it_interval part of an interval timer is acceptable, and
   1139  * fix it to have at least minimal value (i.e. if it is less
   1140  * than the resolution of the clock, round it up.)
   1141  */
   1142 int
   1143 itimerfix(struct timeval *tv)
   1144 {
   1145 
   1146 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1147 		return (EINVAL);
   1148 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1149 		tv->tv_usec = tick;
   1150 	return (0);
   1151 }
   1152 
   1153 /*
   1154  * Decrement an interval timer by a specified number
   1155  * of microseconds, which must be less than a second,
   1156  * i.e. < 1000000.  If the timer expires, then reload
   1157  * it.  In this case, carry over (usec - old value) to
   1158  * reduce the value reloaded into the timer so that
   1159  * the timer does not drift.  This routine assumes
   1160  * that it is called in a context where the timers
   1161  * on which it is operating cannot change in value.
   1162  */
   1163 int
   1164 itimerdecr(struct ptimer *pt, int usec)
   1165 {
   1166 	struct itimerval *itp;
   1167 
   1168 	itp = &pt->pt_time;
   1169 	if (itp->it_value.tv_usec < usec) {
   1170 		if (itp->it_value.tv_sec == 0) {
   1171 			/* expired, and already in next interval */
   1172 			usec -= itp->it_value.tv_usec;
   1173 			goto expire;
   1174 		}
   1175 		itp->it_value.tv_usec += 1000000;
   1176 		itp->it_value.tv_sec--;
   1177 	}
   1178 	itp->it_value.tv_usec -= usec;
   1179 	usec = 0;
   1180 	if (timerisset(&itp->it_value))
   1181 		return (1);
   1182 	/* expired, exactly at end of interval */
   1183 expire:
   1184 	if (timerisset(&itp->it_interval)) {
   1185 		itp->it_value = itp->it_interval;
   1186 		itp->it_value.tv_usec -= usec;
   1187 		if (itp->it_value.tv_usec < 0) {
   1188 			itp->it_value.tv_usec += 1000000;
   1189 			itp->it_value.tv_sec--;
   1190 		}
   1191 		timer_settime(pt);
   1192 	} else
   1193 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1194 	return (0);
   1195 }
   1196 
   1197 void
   1198 itimerfire(struct ptimer *pt)
   1199 {
   1200 	struct proc *p = pt->pt_proc;
   1201 #if 0
   1202 	int s;
   1203 #endif
   1204 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1205 		/*
   1206 		 * No RT signal infrastructure exists at this time;
   1207 		 * just post the signal number and throw away the
   1208 		 * value.
   1209 		 */
   1210 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
   1211 			pt->pt_overruns++;
   1212 		else {
   1213 			pt->pt_poverruns = pt->pt_overruns;
   1214 			pt->pt_overruns = 0;
   1215 			psignal(p, pt->pt_ev.sigev_signo);
   1216 		}
   1217 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
   1218 		/* Cause the process to generate an upcall when it returns. */
   1219 		struct sadata *sa = p->p_sa;
   1220 		unsigned int i;
   1221 
   1222 		if (p->p_userret == NULL) {
   1223 			/*
   1224 			 * XXX stop signals can be processed inside tsleep,
   1225 			 * which can be inside sa_yield's inner loop, which
   1226 			 * makes testing for sa_idle alone insuffucent to
   1227 			 * determine if we really should call setrunnable.
   1228 			 */
   1229 #if 0
   1230 
   1231 		        if ((sa->sa_idle) && (p->p_stat != SSTOP)) {
   1232 				SCHED_LOCK(s);
   1233 				setrunnable(sa->sa_idle);
   1234 				SCHED_UNLOCK(s);
   1235 			}
   1236 #endif
   1237 			pt->pt_poverruns = pt->pt_overruns;
   1238 			pt->pt_overruns = 0;
   1239 			i = 1 << pt->pt_entry;
   1240 			p->p_timers->pts_fired = i;
   1241 			p->p_userret = timerupcall;
   1242 			p->p_userret_arg = p->p_timers;
   1243 
   1244 			if (sa->sa_idle)
   1245 				wakeup(sa->sa_idle);
   1246 
   1247 		} else if (p->p_userret == timerupcall) {
   1248 			i = 1 << pt->pt_entry;
   1249 			if ((p->p_timers->pts_fired & i) == 0) {
   1250 				pt->pt_poverruns = pt->pt_overruns;
   1251 				pt->pt_overruns = 0;
   1252 				p->p_timers->pts_fired |= i;
   1253 			} else
   1254 				pt->pt_overruns++;
   1255 		} else {
   1256 			pt->pt_overruns++;
   1257 			printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
   1258 			    p->p_pid, pt->pt_overruns,
   1259 			    pt->pt_ev.sigev_value.sival_int,
   1260 			    p->p_userret);
   1261 		}
   1262 	}
   1263 
   1264 }
   1265 
   1266 /*
   1267  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1268  * for usage and rationale.
   1269  */
   1270 int
   1271 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1272 {
   1273 	struct timeval tv, delta;
   1274 	int s, rv = 0;
   1275 
   1276 	s = splclock();
   1277 	tv = mono_time;
   1278 	splx(s);
   1279 
   1280 	timersub(&tv, lasttime, &delta);
   1281 
   1282 	/*
   1283 	 * check for 0,0 is so that the message will be seen at least once,
   1284 	 * even if interval is huge.
   1285 	 */
   1286 	if (timercmp(&delta, mininterval, >=) ||
   1287 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1288 		*lasttime = tv;
   1289 		rv = 1;
   1290 	}
   1291 
   1292 	return (rv);
   1293 }
   1294 
   1295 /*
   1296  * ppsratecheck(): packets (or events) per second limitation.
   1297  */
   1298 int
   1299 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1300 {
   1301 	struct timeval tv, delta;
   1302 	int s, rv;
   1303 
   1304 	s = splclock();
   1305 	tv = mono_time;
   1306 	splx(s);
   1307 
   1308 	timersub(&tv, lasttime, &delta);
   1309 
   1310 	/*
   1311 	 * check for 0,0 is so that the message will be seen at least once.
   1312 	 * if more than one second have passed since the last update of
   1313 	 * lasttime, reset the counter.
   1314 	 *
   1315 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1316 	 * try to use *curpps for stat purposes as well.
   1317 	 */
   1318 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1319 	    delta.tv_sec >= 1) {
   1320 		*lasttime = tv;
   1321 		*curpps = 0;
   1322 	}
   1323 	if (maxpps < 0)
   1324 		rv = 1;
   1325 	else if (*curpps < maxpps)
   1326 		rv = 1;
   1327 	else
   1328 		rv = 0;
   1329 
   1330 #if 1 /*DIAGNOSTIC?*/
   1331 	/* be careful about wrap-around */
   1332 	if (*curpps + 1 > *curpps)
   1333 		*curpps = *curpps + 1;
   1334 #else
   1335 	/*
   1336 	 * assume that there's not too many calls to this function.
   1337 	 * not sure if the assumption holds, as it depends on *caller's*
   1338 	 * behavior, not the behavior of this function.
   1339 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1340 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1341 	 */
   1342 	*curpps = *curpps + 1;
   1343 #endif
   1344 
   1345 	return (rv);
   1346 }
   1347