kern_time.c revision 1.74 1 /* $NetBSD: kern_time.c,v 1.74 2003/09/09 15:16:30 cl Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.74 2003/09/09 15:16:30 cl Exp $");
72
73 #include "fs_nfs.h"
74 #include "opt_nfs.h"
75 #include "opt_nfsserver.h"
76
77 #include <sys/param.h>
78 #include <sys/resourcevar.h>
79 #include <sys/kernel.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/proc.h>
83 #include <sys/sa.h>
84 #include <sys/savar.h>
85 #include <sys/vnode.h>
86 #include <sys/signalvar.h>
87 #include <sys/syslog.h>
88
89 #include <sys/mount.h>
90 #include <sys/syscallargs.h>
91
92 #include <uvm/uvm_extern.h>
93
94 #if defined(NFS) || defined(NFSSERVER)
95 #include <nfs/rpcv2.h>
96 #include <nfs/nfsproto.h>
97 #include <nfs/nfs_var.h>
98 #endif
99
100 #include <machine/cpu.h>
101
102 static void timerupcall(struct lwp *, void *);
103
104
105 /* Time of day and interval timer support.
106 *
107 * These routines provide the kernel entry points to get and set
108 * the time-of-day and per-process interval timers. Subroutines
109 * here provide support for adding and subtracting timeval structures
110 * and decrementing interval timers, optionally reloading the interval
111 * timers when they expire.
112 */
113
114 /* This function is used by clock_settime and settimeofday */
115 int
116 settime(struct timeval *tv)
117 {
118 struct timeval delta;
119 struct cpu_info *ci;
120 int s;
121
122 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123 s = splclock();
124 timersub(tv, &time, &delta);
125 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126 splx(s);
127 return (EPERM);
128 }
129 #ifdef notyet
130 if ((delta.tv_sec < 86400) && securelevel > 0) {
131 splx(s);
132 return (EPERM);
133 }
134 #endif
135 time = *tv;
136 (void) spllowersoftclock();
137 timeradd(&boottime, &delta, &boottime);
138 /*
139 * XXXSMP
140 * This is wrong. We should traverse a list of all
141 * CPUs and add the delta to the runtime of those
142 * CPUs which have a process on them.
143 */
144 ci = curcpu();
145 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146 &ci->ci_schedstate.spc_runtime);
147 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148 nqnfs_lease_updatetime(delta.tv_sec);
149 # endif
150 splx(s);
151 resettodr();
152 return (0);
153 }
154
155 /* ARGSUSED */
156 int
157 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
158 {
159 struct sys_clock_gettime_args /* {
160 syscallarg(clockid_t) clock_id;
161 syscallarg(struct timespec *) tp;
162 } */ *uap = v;
163 clockid_t clock_id;
164 struct timeval atv;
165 struct timespec ats;
166 int s;
167
168 clock_id = SCARG(uap, clock_id);
169 switch (clock_id) {
170 case CLOCK_REALTIME:
171 microtime(&atv);
172 TIMEVAL_TO_TIMESPEC(&atv,&ats);
173 break;
174 case CLOCK_MONOTONIC:
175 /* XXX "hz" granularity */
176 s = splclock();
177 atv = mono_time;
178 splx(s);
179 TIMEVAL_TO_TIMESPEC(&atv,&ats);
180 break;
181 default:
182 return (EINVAL);
183 }
184
185 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
186 }
187
188 /* ARGSUSED */
189 int
190 sys_clock_settime(l, v, retval)
191 struct lwp *l;
192 void *v;
193 register_t *retval;
194 {
195 struct sys_clock_settime_args /* {
196 syscallarg(clockid_t) clock_id;
197 syscallarg(const struct timespec *) tp;
198 } */ *uap = v;
199 struct proc *p = l->l_proc;
200 int error;
201
202 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
203 return (error);
204
205 return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
206 }
207
208
209 int
210 clock_settime1(clock_id, tp)
211 clockid_t clock_id;
212 const struct timespec *tp;
213 {
214 struct timespec ats;
215 struct timeval atv;
216 int error;
217
218 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
219 return (error);
220
221 switch (clock_id) {
222 case CLOCK_REALTIME:
223 TIMESPEC_TO_TIMEVAL(&atv, &ats);
224 if ((error = settime(&atv)) != 0)
225 return (error);
226 break;
227 case CLOCK_MONOTONIC:
228 return (EINVAL); /* read-only clock */
229 default:
230 return (EINVAL);
231 }
232
233 return 0;
234 }
235
236 int
237 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
238 {
239 struct sys_clock_getres_args /* {
240 syscallarg(clockid_t) clock_id;
241 syscallarg(struct timespec *) tp;
242 } */ *uap = v;
243 clockid_t clock_id;
244 struct timespec ts;
245 int error = 0;
246
247 clock_id = SCARG(uap, clock_id);
248 switch (clock_id) {
249 case CLOCK_REALTIME:
250 case CLOCK_MONOTONIC:
251 ts.tv_sec = 0;
252 ts.tv_nsec = 1000000000 / hz;
253 break;
254 default:
255 return (EINVAL);
256 }
257
258 if (SCARG(uap, tp))
259 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
260
261 return error;
262 }
263
264 /* ARGSUSED */
265 int
266 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
267 {
268 static int nanowait;
269 struct sys_nanosleep_args/* {
270 syscallarg(struct timespec *) rqtp;
271 syscallarg(struct timespec *) rmtp;
272 } */ *uap = v;
273 struct timespec rqt;
274 struct timespec rmt;
275 struct timeval atv, utv;
276 int error, s, timo;
277
278 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
279 sizeof(struct timespec));
280 if (error)
281 return (error);
282
283 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
284 if (itimerfix(&atv) || atv.tv_sec > 1000000000)
285 return (EINVAL);
286
287 s = splclock();
288 timeradd(&atv,&time,&atv);
289 timo = hzto(&atv);
290 /*
291 * Avoid inadvertantly sleeping forever
292 */
293 if (timo == 0)
294 timo = 1;
295 splx(s);
296
297 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
298 if (error == ERESTART)
299 error = EINTR;
300 if (error == EWOULDBLOCK)
301 error = 0;
302
303 if (SCARG(uap, rmtp)) {
304 int error;
305
306 s = splclock();
307 utv = time;
308 splx(s);
309
310 timersub(&atv, &utv, &utv);
311 if (utv.tv_sec < 0)
312 timerclear(&utv);
313
314 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
315 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
316 sizeof(rmt));
317 if (error)
318 return (error);
319 }
320
321 return error;
322 }
323
324 /* ARGSUSED */
325 int
326 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
327 {
328 struct sys_gettimeofday_args /* {
329 syscallarg(struct timeval *) tp;
330 syscallarg(struct timezone *) tzp;
331 } */ *uap = v;
332 struct timeval atv;
333 int error = 0;
334 struct timezone tzfake;
335
336 if (SCARG(uap, tp)) {
337 microtime(&atv);
338 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
339 if (error)
340 return (error);
341 }
342 if (SCARG(uap, tzp)) {
343 /*
344 * NetBSD has no kernel notion of time zone, so we just
345 * fake up a timezone struct and return it if demanded.
346 */
347 tzfake.tz_minuteswest = 0;
348 tzfake.tz_dsttime = 0;
349 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
350 }
351 return (error);
352 }
353
354 /* ARGSUSED */
355 int
356 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
357 {
358 struct sys_settimeofday_args /* {
359 syscallarg(const struct timeval *) tv;
360 syscallarg(const struct timezone *) tzp;
361 } */ *uap = v;
362 struct proc *p = l->l_proc;
363 int error;
364
365 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
366 return (error);
367
368 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
369 }
370
371 int
372 settimeofday1(utv, utzp, p)
373 const struct timeval *utv;
374 const struct timezone *utzp;
375 struct proc *p;
376 {
377 struct timeval atv;
378 struct timezone atz;
379 struct timeval *tv = NULL;
380 struct timezone *tzp = NULL;
381 int error;
382
383 /* Verify all parameters before changing time. */
384 if (utv) {
385 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
386 return (error);
387 tv = &atv;
388 }
389 /* XXX since we don't use tz, probably no point in doing copyin. */
390 if (utzp) {
391 if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
392 return (error);
393 tzp = &atz;
394 }
395
396 if (tv)
397 if ((error = settime(tv)) != 0)
398 return (error);
399 /*
400 * NetBSD has no kernel notion of time zone, and only an
401 * obsolete program would try to set it, so we log a warning.
402 */
403 if (tzp)
404 log(LOG_WARNING, "pid %d attempted to set the "
405 "(obsolete) kernel time zone\n", p->p_pid);
406 return (0);
407 }
408
409 int tickdelta; /* current clock skew, us. per tick */
410 long timedelta; /* unapplied time correction, us. */
411 long bigadj = 1000000; /* use 10x skew above bigadj us. */
412 int time_adjusted; /* set if an adjustment is made */
413
414 /* ARGSUSED */
415 int
416 sys_adjtime(struct lwp *l, void *v, register_t *retval)
417 {
418 struct sys_adjtime_args /* {
419 syscallarg(const struct timeval *) delta;
420 syscallarg(struct timeval *) olddelta;
421 } */ *uap = v;
422 struct proc *p = l->l_proc;
423 int error;
424
425 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
426 return (error);
427
428 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
429 }
430
431 int
432 adjtime1(delta, olddelta, p)
433 const struct timeval *delta;
434 struct timeval *olddelta;
435 struct proc *p;
436 {
437 struct timeval atv;
438 long ndelta, ntickdelta, odelta;
439 int error;
440 int s;
441
442 error = copyin(delta, &atv, sizeof(struct timeval));
443 if (error)
444 return (error);
445
446 if (olddelta != NULL) {
447 if (uvm_useracc((caddr_t)olddelta,
448 sizeof(struct timeval), B_WRITE) == FALSE)
449 return (EFAULT);
450 }
451
452 /*
453 * Compute the total correction and the rate at which to apply it.
454 * Round the adjustment down to a whole multiple of the per-tick
455 * delta, so that after some number of incremental changes in
456 * hardclock(), tickdelta will become zero, lest the correction
457 * overshoot and start taking us away from the desired final time.
458 */
459 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
460 if (ndelta > bigadj || ndelta < -bigadj)
461 ntickdelta = 10 * tickadj;
462 else
463 ntickdelta = tickadj;
464 if (ndelta % ntickdelta)
465 ndelta = ndelta / ntickdelta * ntickdelta;
466
467 /*
468 * To make hardclock()'s job easier, make the per-tick delta negative
469 * if we want time to run slower; then hardclock can simply compute
470 * tick + tickdelta, and subtract tickdelta from timedelta.
471 */
472 if (ndelta < 0)
473 ntickdelta = -ntickdelta;
474 if (ndelta != 0)
475 /* We need to save the system clock time during shutdown */
476 time_adjusted |= 1;
477 s = splclock();
478 odelta = timedelta;
479 timedelta = ndelta;
480 tickdelta = ntickdelta;
481 splx(s);
482
483 if (olddelta) {
484 atv.tv_sec = odelta / 1000000;
485 atv.tv_usec = odelta % 1000000;
486 (void) copyout(&atv, olddelta, sizeof(struct timeval));
487 }
488 return (0);
489 }
490
491 /*
492 * Interval timer support. Both the BSD getitimer() family and the POSIX
493 * timer_*() family of routines are supported.
494 *
495 * All timers are kept in an array pointed to by p_timers, which is
496 * allocated on demand - many processes don't use timers at all. The
497 * first three elements in this array are reserved for the BSD timers:
498 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
499 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
500 * syscall.
501 *
502 * Realtime timers are kept in the ptimer structure as an absolute
503 * time; virtual time timers are kept as a linked list of deltas.
504 * Virtual time timers are processed in the hardclock() routine of
505 * kern_clock.c. The real time timer is processed by a callout
506 * routine, called from the softclock() routine. Since a callout may
507 * be delayed in real time due to interrupt processing in the system,
508 * it is possible for the real time timeout routine (realtimeexpire,
509 * given below), to be delayed in real time past when it is supposed
510 * to occur. It does not suffice, therefore, to reload the real timer
511 * .it_value from the real time timers .it_interval. Rather, we
512 * compute the next time in absolute time the timer should go off. */
513
514 /* Allocate a POSIX realtime timer. */
515 int
516 sys_timer_create(struct lwp *l, void *v, register_t *retval)
517 {
518 struct sys_timer_create_args /* {
519 syscallarg(clockid_t) clock_id;
520 syscallarg(struct sigevent *) evp;
521 syscallarg(timer_t *) timerid;
522 } */ *uap = v;
523 struct proc *p = l->l_proc;
524 clockid_t id;
525 struct sigevent *evp;
526 struct ptimer *pt;
527 timer_t timerid;
528 int error;
529
530 id = SCARG(uap, clock_id);
531 if (id < CLOCK_REALTIME ||
532 id > CLOCK_PROF)
533 return (EINVAL);
534
535 if (p->p_timers == NULL)
536 timers_alloc(p);
537
538 /* Find a free timer slot, skipping those reserved for setitimer(). */
539 for (timerid = 3; timerid < TIMER_MAX; timerid++)
540 if (p->p_timers->pts_timers[timerid] == NULL)
541 break;
542
543 if (timerid == TIMER_MAX)
544 return EAGAIN;
545
546 pt = pool_get(&ptimer_pool, PR_WAITOK);
547 evp = SCARG(uap, evp);
548 if (evp) {
549 if (((error =
550 copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
551 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
552 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
553 pool_put(&ptimer_pool, pt);
554 return (error ? error : EINVAL);
555 }
556 } else {
557 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
558 switch (id) {
559 case CLOCK_REALTIME:
560 pt->pt_ev.sigev_signo = SIGALRM;
561 break;
562 case CLOCK_VIRTUAL:
563 pt->pt_ev.sigev_signo = SIGVTALRM;
564 break;
565 case CLOCK_PROF:
566 pt->pt_ev.sigev_signo = SIGPROF;
567 break;
568 }
569 pt->pt_ev.sigev_value.sival_int = timerid;
570 }
571 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
572 pt->pt_info.ksi_errno = 0;
573 pt->pt_info.ksi_code = 0;
574 pt->pt_info.ksi_pid = p->p_pid;
575 pt->pt_info.ksi_uid = p->p_cred->p_ruid;
576 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
577
578 pt->pt_type = id;
579 pt->pt_proc = p;
580 pt->pt_overruns = 0;
581 pt->pt_poverruns = 0;
582 pt->pt_entry = timerid;
583 timerclear(&pt->pt_time.it_value);
584 if (id == CLOCK_REALTIME)
585 callout_init(&pt->pt_ch);
586 else
587 pt->pt_active = 0;
588
589 p->p_timers->pts_timers[timerid] = pt;
590
591 return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
592 }
593
594
595 /* Delete a POSIX realtime timer */
596 int
597 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
598 {
599 struct sys_timer_delete_args /* {
600 syscallarg(timer_t) timerid;
601 } */ *uap = v;
602 struct proc *p = l->l_proc;
603 timer_t timerid;
604 struct ptimer *pt, *ptn;
605 int s;
606
607 timerid = SCARG(uap, timerid);
608
609 if ((p->p_timers == NULL) ||
610 (timerid < 2) || (timerid >= TIMER_MAX) ||
611 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
612 return (EINVAL);
613
614 if (pt->pt_type == CLOCK_REALTIME)
615 callout_stop(&pt->pt_ch);
616 else if (pt->pt_active) {
617 s = splclock();
618 ptn = LIST_NEXT(pt, pt_list);
619 LIST_REMOVE(pt, pt_list);
620 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
621 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
622 &ptn->pt_time.it_value);
623 splx(s);
624 }
625
626 p->p_timers->pts_timers[timerid] = NULL;
627 pool_put(&ptimer_pool, pt);
628
629 return (0);
630 }
631
632 /*
633 * Set up the given timer. The value in pt->pt_time.it_value is taken
634 * to be an absolute time for CLOCK_REALTIME timers and a relative
635 * time for virtual timers.
636 * Must be called at splclock().
637 */
638 void
639 timer_settime(struct ptimer *pt)
640 {
641 struct ptimer *ptn, *pptn;
642 struct ptlist *ptl;
643
644 if (pt->pt_type == CLOCK_REALTIME) {
645 callout_stop(&pt->pt_ch);
646 if (timerisset(&pt->pt_time.it_value)) {
647 /*
648 * Don't need to check hzto() return value, here.
649 * callout_reset() does it for us.
650 */
651 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
652 realtimerexpire, pt);
653 }
654 } else {
655 if (pt->pt_active) {
656 ptn = LIST_NEXT(pt, pt_list);
657 LIST_REMOVE(pt, pt_list);
658 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
659 timeradd(&pt->pt_time.it_value,
660 &ptn->pt_time.it_value,
661 &ptn->pt_time.it_value);
662 }
663 if (timerisset(&pt->pt_time.it_value)) {
664 if (pt->pt_type == CLOCK_VIRTUAL)
665 ptl = &pt->pt_proc->p_timers->pts_virtual;
666 else
667 ptl = &pt->pt_proc->p_timers->pts_prof;
668
669 for (ptn = LIST_FIRST(ptl), pptn = NULL;
670 ptn && timercmp(&pt->pt_time.it_value,
671 &ptn->pt_time.it_value, >);
672 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
673 timersub(&pt->pt_time.it_value,
674 &ptn->pt_time.it_value,
675 &pt->pt_time.it_value);
676
677 if (pptn)
678 LIST_INSERT_AFTER(pptn, pt, pt_list);
679 else
680 LIST_INSERT_HEAD(ptl, pt, pt_list);
681
682 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
683 timersub(&ptn->pt_time.it_value,
684 &pt->pt_time.it_value,
685 &ptn->pt_time.it_value);
686
687 pt->pt_active = 1;
688 } else
689 pt->pt_active = 0;
690 }
691 }
692
693 void
694 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
695 {
696 struct ptimer *ptn;
697
698 *aitv = pt->pt_time;
699 if (pt->pt_type == CLOCK_REALTIME) {
700 /*
701 * Convert from absolute to relative time in .it_value
702 * part of real time timer. If time for real time
703 * timer has passed return 0, else return difference
704 * between current time and time for the timer to go
705 * off.
706 */
707 if (timerisset(&aitv->it_value)) {
708 if (timercmp(&aitv->it_value, &time, <))
709 timerclear(&aitv->it_value);
710 else
711 timersub(&aitv->it_value, &time,
712 &aitv->it_value);
713 }
714 } else if (pt->pt_active) {
715 if (pt->pt_type == CLOCK_VIRTUAL)
716 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
717 else
718 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
719 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
720 timeradd(&aitv->it_value,
721 &ptn->pt_time.it_value, &aitv->it_value);
722 KASSERT(ptn != NULL); /* pt should be findable on the list */
723 } else
724 timerclear(&aitv->it_value);
725 }
726
727
728
729 /* Set and arm a POSIX realtime timer */
730 int
731 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
732 {
733 struct sys_timer_settime_args /* {
734 syscallarg(timer_t) timerid;
735 syscallarg(int) flags;
736 syscallarg(const struct itimerspec *) value;
737 syscallarg(struct itimerspec *) ovalue;
738 } */ *uap = v;
739 struct proc *p = l->l_proc;
740 int error, s, timerid;
741 struct itimerval val, oval;
742 struct itimerspec value, ovalue;
743 struct ptimer *pt;
744
745 timerid = SCARG(uap, timerid);
746
747 if ((p->p_timers == NULL) ||
748 (timerid < 2) || (timerid >= TIMER_MAX) ||
749 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
750 return (EINVAL);
751
752 if ((error = copyin(SCARG(uap, value), &value,
753 sizeof(struct itimerspec))) != 0)
754 return (error);
755
756 TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
757 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
758 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
759 return (EINVAL);
760
761 oval = pt->pt_time;
762 pt->pt_time = val;
763
764 s = splclock();
765 /*
766 * If we've been passed a relative time for a realtime timer,
767 * convert it to absolute; if an absolute time for a virtual
768 * timer, convert it to relative and make sure we don't set it
769 * to zero, which would cancel the timer, or let it go
770 * negative, which would confuse the comparison tests.
771 */
772 if (timerisset(&pt->pt_time.it_value)) {
773 if (pt->pt_type == CLOCK_REALTIME) {
774 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
775 timeradd(&pt->pt_time.it_value, &time,
776 &pt->pt_time.it_value);
777 } else {
778 if ((SCARG(uap, flags) & TIMER_ABSTIME) != 0) {
779 timersub(&pt->pt_time.it_value, &time,
780 &pt->pt_time.it_value);
781 if (!timerisset(&pt->pt_time.it_value) ||
782 pt->pt_time.it_value.tv_sec < 0) {
783 pt->pt_time.it_value.tv_sec = 0;
784 pt->pt_time.it_value.tv_usec = 1;
785 }
786 }
787 }
788 }
789
790 timer_settime(pt);
791 splx(s);
792
793 if (SCARG(uap, ovalue)) {
794 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
795 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
796 return copyout(&ovalue, SCARG(uap, ovalue),
797 sizeof(struct itimerspec));
798 }
799
800 return (0);
801 }
802
803 /* Return the time remaining until a POSIX timer fires. */
804 int
805 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
806 {
807 struct sys_timer_gettime_args /* {
808 syscallarg(timer_t) timerid;
809 syscallarg(struct itimerspec *) value;
810 } */ *uap = v;
811 struct itimerval aitv;
812 struct itimerspec its;
813 struct proc *p = l->l_proc;
814 int s, timerid;
815 struct ptimer *pt;
816
817 timerid = SCARG(uap, timerid);
818
819 if ((p->p_timers == NULL) ||
820 (timerid < 2) || (timerid >= TIMER_MAX) ||
821 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
822 return (EINVAL);
823
824 s = splclock();
825 timer_gettime(pt, &aitv);
826 splx(s);
827
828 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
829 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
830
831 return copyout(&its, SCARG(uap, value), sizeof(its));
832 }
833
834 /*
835 * Return the count of the number of times a periodic timer expired
836 * while a notification was already pending. The counter is reset when
837 * a timer expires and a notification can be posted.
838 */
839 int
840 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
841 {
842 struct sys_timer_getoverrun_args /* {
843 syscallarg(timer_t) timerid;
844 } */ *uap = v;
845 struct proc *p = l->l_proc;
846 int timerid;
847 struct ptimer *pt;
848
849 timerid = SCARG(uap, timerid);
850
851 if ((p->p_timers == NULL) ||
852 (timerid < 2) || (timerid >= TIMER_MAX) ||
853 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
854 return (EINVAL);
855
856 *retval = pt->pt_poverruns;
857
858 return (0);
859 }
860
861 /* Glue function that triggers an upcall; called from userret(). */
862 static void
863 timerupcall(struct lwp *l, void *arg)
864 {
865 struct ptimers *pt = (struct ptimers *)arg;
866 unsigned int i, fired, done;
867 extern struct pool siginfo_pool; /* XXX Ew. */
868
869 KERNEL_PROC_LOCK(l);
870
871 {
872 struct proc *p = l->l_proc;
873 struct sadata *sa = p->p_sa;
874
875 /* Bail out if we do not own the virtual processor */
876 if (sa->sa_vp != l) {
877 KERNEL_PROC_UNLOCK(l);
878 return ;
879 }
880 }
881
882 fired = pt->pts_fired;
883 done = 0;
884 while ((i = ffs(fired)) != 0) {
885 siginfo_t *si;
886 int mask = 1 << --i;
887 int f;
888
889 f = l->l_flag & L_SA;
890 l->l_flag &= ~L_SA;
891 si = pool_get(&siginfo_pool, PR_WAITOK);
892 si->_info = pt->pts_timers[i]->pt_info;
893 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
894 sizeof(*si), si) == 0)
895 done |= mask;
896 fired &= ~mask;
897 l->l_flag |= f;
898 }
899 pt->pts_fired &= ~done;
900 if (pt->pts_fired == 0)
901 l->l_proc->p_userret = NULL;
902
903 KERNEL_PROC_UNLOCK(l);
904 }
905
906
907 /*
908 * Real interval timer expired:
909 * send process whose timer expired an alarm signal.
910 * If time is not set up to reload, then just return.
911 * Else compute next time timer should go off which is > current time.
912 * This is where delay in processing this timeout causes multiple
913 * SIGALRM calls to be compressed into one.
914 */
915 void
916 realtimerexpire(void *arg)
917 {
918 struct ptimer *pt;
919 int s;
920
921 pt = (struct ptimer *)arg;
922
923 itimerfire(pt);
924
925 if (!timerisset(&pt->pt_time.it_interval)) {
926 timerclear(&pt->pt_time.it_value);
927 return;
928 }
929 for (;;) {
930 s = splclock();
931 timeradd(&pt->pt_time.it_value,
932 &pt->pt_time.it_interval, &pt->pt_time.it_value);
933 if (timercmp(&pt->pt_time.it_value, &time, >)) {
934 /*
935 * Don't need to check hzto() return value, here.
936 * callout_reset() does it for us.
937 */
938 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
939 realtimerexpire, pt);
940 splx(s);
941 return;
942 }
943 splx(s);
944 pt->pt_overruns++;
945 }
946 }
947
948 /* BSD routine to get the value of an interval timer. */
949 /* ARGSUSED */
950 int
951 sys_getitimer(struct lwp *l, void *v, register_t *retval)
952 {
953 struct sys_getitimer_args /* {
954 syscallarg(int) which;
955 syscallarg(struct itimerval *) itv;
956 } */ *uap = v;
957 struct proc *p = l->l_proc;
958 struct itimerval aitv;
959 int s, which;
960
961 which = SCARG(uap, which);
962
963 if ((u_int)which > ITIMER_PROF)
964 return (EINVAL);
965
966 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
967 timerclear(&aitv.it_value);
968 timerclear(&aitv.it_interval);
969 } else {
970 s = splclock();
971 timer_gettime(p->p_timers->pts_timers[which], &aitv);
972 splx(s);
973 }
974
975 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
976
977 }
978
979 /* BSD routine to set/arm an interval timer. */
980 /* ARGSUSED */
981 int
982 sys_setitimer(struct lwp *l, void *v, register_t *retval)
983 {
984 struct sys_setitimer_args /* {
985 syscallarg(int) which;
986 syscallarg(const struct itimerval *) itv;
987 syscallarg(struct itimerval *) oitv;
988 } */ *uap = v;
989 struct proc *p = l->l_proc;
990 int which = SCARG(uap, which);
991 struct sys_getitimer_args getargs;
992 struct itimerval aitv;
993 const struct itimerval *itvp;
994 struct ptimer *pt;
995 int s, error;
996
997 if ((u_int)which > ITIMER_PROF)
998 return (EINVAL);
999 itvp = SCARG(uap, itv);
1000 if (itvp &&
1001 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1002 return (error);
1003 if (SCARG(uap, oitv) != NULL) {
1004 SCARG(&getargs, which) = which;
1005 SCARG(&getargs, itv) = SCARG(uap, oitv);
1006 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1007 return (error);
1008 }
1009 if (itvp == 0)
1010 return (0);
1011 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
1012 return (EINVAL);
1013
1014 /*
1015 * Don't bother allocating data structures if the process just
1016 * wants to clear the timer.
1017 */
1018 if (!timerisset(&aitv.it_value) &&
1019 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1020 return (0);
1021
1022 if (p->p_timers == NULL)
1023 timers_alloc(p);
1024 if (p->p_timers->pts_timers[which] == NULL) {
1025 pt = pool_get(&ptimer_pool, PR_WAITOK);
1026 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1027 pt->pt_overruns = 0;
1028 pt->pt_proc = p;
1029 pt->pt_type = which;
1030 pt->pt_entry = which;
1031 switch (which) {
1032 case ITIMER_REAL:
1033 callout_init(&pt->pt_ch);
1034 pt->pt_ev.sigev_signo = SIGALRM;
1035 break;
1036 case ITIMER_VIRTUAL:
1037 pt->pt_active = 0;
1038 pt->pt_ev.sigev_signo = SIGVTALRM;
1039 break;
1040 case ITIMER_PROF:
1041 pt->pt_active = 0;
1042 pt->pt_ev.sigev_signo = SIGPROF;
1043 break;
1044 }
1045 } else
1046 pt = p->p_timers->pts_timers[which];
1047
1048 pt->pt_time = aitv;
1049 p->p_timers->pts_timers[which] = pt;
1050
1051 s = splclock();
1052 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1053 /* Convert to absolute time */
1054 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1055 }
1056 timer_settime(pt);
1057 splx(s);
1058
1059 return (0);
1060 }
1061
1062 /* Utility routines to manage the array of pointers to timers. */
1063 void
1064 timers_alloc(struct proc *p)
1065 {
1066 int i;
1067 struct ptimers *pts;
1068
1069 pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1070 LIST_INIT(&pts->pts_virtual);
1071 LIST_INIT(&pts->pts_prof);
1072 for (i = 0; i < TIMER_MAX; i++)
1073 pts->pts_timers[i] = NULL;
1074 pts->pts_fired = 0;
1075 p->p_timers = pts;
1076 }
1077
1078 /*
1079 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1080 * then clean up all timers and free all the data structures. If
1081 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1082 * by timer_create(), not the BSD setitimer() timers, and only free the
1083 * structure if none of those remain.
1084 */
1085 void
1086 timers_free(struct proc *p, int which)
1087 {
1088 int i, s;
1089 struct ptimers *pts;
1090 struct ptimer *pt, *ptn;
1091 struct timeval tv;
1092
1093 if (p->p_timers) {
1094 pts = p->p_timers;
1095 if (which == TIMERS_ALL)
1096 i = 0;
1097 else {
1098 s = splclock();
1099 timerclear(&tv);
1100 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1101 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1102 ptn = LIST_NEXT(ptn, pt_list))
1103 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1104 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1105 if (ptn) {
1106 timeradd(&tv, &ptn->pt_time.it_value,
1107 &ptn->pt_time.it_value);
1108 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1109 ptn, pt_list);
1110 }
1111
1112 timerclear(&tv);
1113 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1114 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1115 ptn = LIST_NEXT(ptn, pt_list))
1116 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1117 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1118 if (ptn) {
1119 timeradd(&tv, &ptn->pt_time.it_value,
1120 &ptn->pt_time.it_value);
1121 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1122 pt_list);
1123 }
1124 splx(s);
1125 i = 3;
1126 }
1127 for ( ; i < TIMER_MAX; i++)
1128 if ((pt = pts->pts_timers[i]) != NULL) {
1129 if (pt->pt_type == CLOCK_REALTIME)
1130 callout_stop(&pt->pt_ch);
1131 pts->pts_timers[i] = NULL;
1132 pool_put(&ptimer_pool, pt);
1133 }
1134 if ((pts->pts_timers[0] == NULL) &&
1135 (pts->pts_timers[1] == NULL) &&
1136 (pts->pts_timers[2] == NULL)) {
1137 p->p_timers = NULL;
1138 free(pts, M_SUBPROC);
1139 }
1140 }
1141 }
1142
1143 /*
1144 * Check that a proposed value to load into the .it_value or
1145 * .it_interval part of an interval timer is acceptable, and
1146 * fix it to have at least minimal value (i.e. if it is less
1147 * than the resolution of the clock, round it up.)
1148 */
1149 int
1150 itimerfix(struct timeval *tv)
1151 {
1152
1153 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1154 return (EINVAL);
1155 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1156 tv->tv_usec = tick;
1157 return (0);
1158 }
1159
1160 /*
1161 * Decrement an interval timer by a specified number
1162 * of microseconds, which must be less than a second,
1163 * i.e. < 1000000. If the timer expires, then reload
1164 * it. In this case, carry over (usec - old value) to
1165 * reduce the value reloaded into the timer so that
1166 * the timer does not drift. This routine assumes
1167 * that it is called in a context where the timers
1168 * on which it is operating cannot change in value.
1169 */
1170 int
1171 itimerdecr(struct ptimer *pt, int usec)
1172 {
1173 struct itimerval *itp;
1174
1175 itp = &pt->pt_time;
1176 if (itp->it_value.tv_usec < usec) {
1177 if (itp->it_value.tv_sec == 0) {
1178 /* expired, and already in next interval */
1179 usec -= itp->it_value.tv_usec;
1180 goto expire;
1181 }
1182 itp->it_value.tv_usec += 1000000;
1183 itp->it_value.tv_sec--;
1184 }
1185 itp->it_value.tv_usec -= usec;
1186 usec = 0;
1187 if (timerisset(&itp->it_value))
1188 return (1);
1189 /* expired, exactly at end of interval */
1190 expire:
1191 if (timerisset(&itp->it_interval)) {
1192 itp->it_value = itp->it_interval;
1193 itp->it_value.tv_usec -= usec;
1194 if (itp->it_value.tv_usec < 0) {
1195 itp->it_value.tv_usec += 1000000;
1196 itp->it_value.tv_sec--;
1197 }
1198 timer_settime(pt);
1199 } else
1200 itp->it_value.tv_usec = 0; /* sec is already 0 */
1201 return (0);
1202 }
1203
1204 void
1205 itimerfire(struct ptimer *pt)
1206 {
1207 struct proc *p = pt->pt_proc;
1208 #if 0
1209 int s;
1210 #endif
1211 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1212 /*
1213 * No RT signal infrastructure exists at this time;
1214 * just post the signal number and throw away the
1215 * value.
1216 */
1217 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1218 pt->pt_overruns++;
1219 else {
1220 pt->pt_poverruns = pt->pt_overruns;
1221 pt->pt_overruns = 0;
1222 psignal(p, pt->pt_ev.sigev_signo);
1223 }
1224 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1225 /* Cause the process to generate an upcall when it returns. */
1226 struct sadata *sa = p->p_sa;
1227 unsigned int i;
1228
1229 if (p->p_userret == NULL) {
1230 /*
1231 * XXX stop signals can be processed inside tsleep,
1232 * which can be inside sa_yield's inner loop, which
1233 * makes testing for sa_idle alone insuffucent to
1234 * determine if we really should call setrunnable.
1235 */
1236 #if 0
1237
1238 if ((sa->sa_idle) && (p->p_stat != SSTOP)) {
1239 SCHED_LOCK(s);
1240 setrunnable(sa->sa_idle);
1241 SCHED_UNLOCK(s);
1242 }
1243 #endif
1244 pt->pt_poverruns = pt->pt_overruns;
1245 pt->pt_overruns = 0;
1246 i = 1 << pt->pt_entry;
1247 p->p_timers->pts_fired = i;
1248 p->p_userret = timerupcall;
1249 p->p_userret_arg = p->p_timers;
1250
1251 if (sa->sa_idle)
1252 wakeup(sa->sa_idle);
1253
1254 } else if (p->p_userret == timerupcall) {
1255 i = 1 << pt->pt_entry;
1256 if ((p->p_timers->pts_fired & i) == 0) {
1257 pt->pt_poverruns = pt->pt_overruns;
1258 pt->pt_overruns = 0;
1259 p->p_timers->pts_fired |= i;
1260 } else
1261 pt->pt_overruns++;
1262 } else {
1263 pt->pt_overruns++;
1264 printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1265 p->p_pid, pt->pt_overruns,
1266 pt->pt_ev.sigev_value.sival_int,
1267 p->p_userret);
1268 }
1269 }
1270
1271 }
1272
1273 /*
1274 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1275 * for usage and rationale.
1276 */
1277 int
1278 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1279 {
1280 struct timeval tv, delta;
1281 int s, rv = 0;
1282
1283 s = splclock();
1284 tv = mono_time;
1285 splx(s);
1286
1287 timersub(&tv, lasttime, &delta);
1288
1289 /*
1290 * check for 0,0 is so that the message will be seen at least once,
1291 * even if interval is huge.
1292 */
1293 if (timercmp(&delta, mininterval, >=) ||
1294 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1295 *lasttime = tv;
1296 rv = 1;
1297 }
1298
1299 return (rv);
1300 }
1301
1302 /*
1303 * ppsratecheck(): packets (or events) per second limitation.
1304 */
1305 int
1306 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1307 {
1308 struct timeval tv, delta;
1309 int s, rv;
1310
1311 s = splclock();
1312 tv = mono_time;
1313 splx(s);
1314
1315 timersub(&tv, lasttime, &delta);
1316
1317 /*
1318 * check for 0,0 is so that the message will be seen at least once.
1319 * if more than one second have passed since the last update of
1320 * lasttime, reset the counter.
1321 *
1322 * we do increment *curpps even in *curpps < maxpps case, as some may
1323 * try to use *curpps for stat purposes as well.
1324 */
1325 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1326 delta.tv_sec >= 1) {
1327 *lasttime = tv;
1328 *curpps = 0;
1329 }
1330 if (maxpps < 0)
1331 rv = 1;
1332 else if (*curpps < maxpps)
1333 rv = 1;
1334 else
1335 rv = 0;
1336
1337 #if 1 /*DIAGNOSTIC?*/
1338 /* be careful about wrap-around */
1339 if (*curpps + 1 > *curpps)
1340 *curpps = *curpps + 1;
1341 #else
1342 /*
1343 * assume that there's not too many calls to this function.
1344 * not sure if the assumption holds, as it depends on *caller's*
1345 * behavior, not the behavior of this function.
1346 * IMHO it is wrong to make assumption on the caller's behavior,
1347 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1348 */
1349 *curpps = *curpps + 1;
1350 #endif
1351
1352 return (rv);
1353 }
1354