Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.8
      1 /*
      2  * Copyright (c) 1982, 1986, 1989, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Berkeley and its contributors.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  *	from: @(#)kern_time.c	8.1 (Berkeley) 6/10/93
     34  *	$Id: kern_time.c,v 1.8 1994/05/20 07:24:51 cgd Exp $
     35  */
     36 
     37 #include <sys/param.h>
     38 #include <sys/resourcevar.h>
     39 #include <sys/kernel.h>
     40 #include <sys/systm.h>
     41 #include <sys/proc.h>
     42 #include <sys/vnode.h>
     43 
     44 #include <machine/cpu.h>
     45 
     46 /*
     47  * Time of day and interval timer support.
     48  *
     49  * These routines provide the kernel entry points to get and set
     50  * the time-of-day and per-process interval timers.  Subroutines
     51  * here provide support for adding and subtracting timeval structures
     52  * and decrementing interval timers, optionally reloading the interval
     53  * timers when they expire.
     54  */
     55 
     56 struct gettimeofday_args {
     57 	struct	timeval *tp;
     58 	struct	timezone *tzp;
     59 };
     60 /* ARGSUSED */
     61 int
     62 gettimeofday(p, uap, retval)
     63 	struct proc *p;
     64 	register struct gettimeofday_args *uap;
     65 	int *retval;
     66 {
     67 	struct timeval atv;
     68 	int error = 0;
     69 
     70 	if (uap->tp) {
     71 		microtime(&atv);
     72 		if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
     73 		    sizeof (atv)))
     74 			return (error);
     75 	}
     76 	if (uap->tzp)
     77 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
     78 		    sizeof (tz));
     79 	return (error);
     80 }
     81 
     82 struct settimeofday_args {
     83 	struct	timeval *tv;
     84 	struct	timezone *tzp;
     85 };
     86 /* ARGSUSED */
     87 int
     88 settimeofday(p, uap, retval)
     89 	struct proc *p;
     90 	struct settimeofday_args *uap;
     91 	int *retval;
     92 {
     93 	struct timeval atv, delta;
     94 	struct timezone atz;
     95 	int error, s;
     96 
     97 	if (error = suser(p->p_ucred, &p->p_acflag))
     98 		return (error);
     99 	/* Verify all parameters before changing time. */
    100 	if (uap->tv &&
    101 	    (error = copyin((caddr_t)uap->tv, (caddr_t)&atv, sizeof(atv))))
    102 		return (error);
    103 	if (uap->tzp &&
    104 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
    105 		return (error);
    106 	if (uap->tv) {
    107 		/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    108 		s = splclock();
    109 		/* nb. delta.tv_usec may be < 0, but this is OK here */
    110 		delta.tv_sec = atv.tv_sec - time.tv_sec;
    111 		delta.tv_usec = atv.tv_usec - time.tv_usec;
    112 		time = atv;
    113 		(void) splsoftclock();
    114 		timevaladd(&boottime, &delta);
    115 		timevalfix(&boottime);
    116 		timevaladd(&runtime, &delta);
    117 		timevalfix(&runtime);
    118 		LEASE_UPDATETIME(delta.tv_sec);
    119 		splx(s);
    120 		resettodr();
    121 	}
    122 	if (uap->tzp)
    123 		tz = atz;
    124 	return (0);
    125 }
    126 
    127 extern	int tickadj;			/* "standard" clock skew, us./tick */
    128 int	tickdelta;			/* current clock skew, us. per tick */
    129 long	timedelta;			/* unapplied time correction, us. */
    130 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    131 
    132 struct adjtime_args {
    133 	struct timeval *delta;
    134 	struct timeval *olddelta;
    135 };
    136 /* ARGSUSED */
    137 int
    138 adjtime(p, uap, retval)
    139 	struct proc *p;
    140 	register struct adjtime_args *uap;
    141 	int *retval;
    142 {
    143 	struct timeval atv;
    144 	register long ndelta, ntickdelta, odelta;
    145 	int s, error;
    146 
    147 	if (error = suser(p->p_ucred, &p->p_acflag))
    148 		return (error);
    149 	if (error =
    150 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval)))
    151 		return (error);
    152 
    153 	/*
    154 	 * Compute the total correction and the rate at which to apply it.
    155 	 * Round the adjustment down to a whole multiple of the per-tick
    156 	 * delta, so that after some number of incremental changes in
    157 	 * hardclock(), tickdelta will become zero, lest the correction
    158 	 * overshoot and start taking us away from the desired final time.
    159 	 */
    160 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    161 	if (ndelta > bigadj)
    162 		ntickdelta = 10 * tickadj;
    163 	else
    164 		ntickdelta = tickadj;
    165 	if (ndelta % ntickdelta)
    166 		ndelta = ndelta / ntickdelta * ntickdelta;
    167 
    168 	/*
    169 	 * To make hardclock()'s job easier, make the per-tick delta negative
    170 	 * if we want time to run slower; then hardclock can simply compute
    171 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    172 	 */
    173 	if (ndelta < 0)
    174 		ntickdelta = -ntickdelta;
    175 	s = splclock();
    176 	odelta = timedelta;
    177 	timedelta = ndelta;
    178 	tickdelta = ntickdelta;
    179 	splx(s);
    180 
    181 	if (uap->olddelta) {
    182 		atv.tv_sec = odelta / 1000000;
    183 		atv.tv_usec = odelta % 1000000;
    184 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
    185 		    sizeof(struct timeval));
    186 	}
    187 	return (0);
    188 }
    189 
    190 /*
    191  * Get value of an interval timer.  The process virtual and
    192  * profiling virtual time timers are kept in the p_stats area, since
    193  * they can be swapped out.  These are kept internally in the
    194  * way they are specified externally: in time until they expire.
    195  *
    196  * The real time interval timer is kept in the process table slot
    197  * for the process, and its value (it_value) is kept as an
    198  * absolute time rather than as a delta, so that it is easy to keep
    199  * periodic real-time signals from drifting.
    200  *
    201  * Virtual time timers are processed in the hardclock() routine of
    202  * kern_clock.c.  The real time timer is processed by a timeout
    203  * routine, called from the softclock() routine.  Since a callout
    204  * may be delayed in real time due to interrupt processing in the system,
    205  * it is possible for the real time timeout routine (realitexpire, given below),
    206  * to be delayed in real time past when it is supposed to occur.  It
    207  * does not suffice, therefore, to reload the real timer .it_value from the
    208  * real time timers .it_interval.  Rather, we compute the next time in
    209  * absolute time the timer should go off.
    210  */
    211 struct getitimer_args {
    212 	u_int	which;
    213 	struct	itimerval *itv;
    214 };
    215 /* ARGSUSED */
    216 int
    217 getitimer(p, uap, retval)
    218 	struct proc *p;
    219 	register struct getitimer_args *uap;
    220 	int *retval;
    221 {
    222 	struct itimerval aitv;
    223 	int s;
    224 
    225 	if (uap->which > ITIMER_PROF)
    226 		return (EINVAL);
    227 	s = splclock();
    228 	if (uap->which == ITIMER_REAL) {
    229 		/*
    230 		 * Convert from absoulte to relative time in .it_value
    231 		 * part of real time timer.  If time for real time timer
    232 		 * has passed return 0, else return difference between
    233 		 * current time and time for the timer to go off.
    234 		 */
    235 		aitv = p->p_realtimer;
    236 		if (timerisset(&aitv.it_value))
    237 			if (timercmp(&aitv.it_value, &time, <))
    238 				timerclear(&aitv.it_value);
    239 			else
    240 				timevalsub(&aitv.it_value,
    241 				    (struct timeval *)&time);
    242 	} else
    243 		aitv = p->p_stats->p_timer[uap->which];
    244 	splx(s);
    245 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
    246 	    sizeof (struct itimerval)));
    247 }
    248 
    249 struct setitimer_args {
    250 	u_int	which;
    251 	struct	itimerval *itv, *oitv;
    252 };
    253 /* ARGSUSED */
    254 int
    255 setitimer(p, uap, retval)
    256 	struct proc *p;
    257 	register struct setitimer_args *uap;
    258 	int *retval;
    259 {
    260 	struct itimerval aitv;
    261 	register struct itimerval *itvp;
    262 	int s, error;
    263 
    264 	if (uap->which > ITIMER_PROF)
    265 		return (EINVAL);
    266 	itvp = uap->itv;
    267 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
    268 	    sizeof(struct itimerval))))
    269 		return (error);
    270 	if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
    271 		return (error);
    272 	if (itvp == 0)
    273 		return (0);
    274 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    275 		return (EINVAL);
    276 	s = splclock();
    277 	if (uap->which == ITIMER_REAL) {
    278 		untimeout(realitexpire, p);
    279 		if (timerisset(&aitv.it_value)) {
    280 			timevaladd(&aitv.it_value, (struct timeval *)&time);
    281 			timeout(realitexpire, p, hzto(&aitv.it_value));
    282 		}
    283 		p->p_realtimer = aitv;
    284 	} else
    285 		p->p_stats->p_timer[uap->which] = aitv;
    286 	splx(s);
    287 	return (0);
    288 }
    289 
    290 /*
    291  * Real interval timer expired:
    292  * send process whose timer expired an alarm signal.
    293  * If time is not set up to reload, then just return.
    294  * Else compute next time timer should go off which is > current time.
    295  * This is where delay in processing this timeout causes multiple
    296  * SIGALRM calls to be compressed into one.
    297  */
    298 void
    299 realitexpire(arg)
    300 	void *arg;
    301 {
    302 	register struct proc *p;
    303 	int s;
    304 
    305 	p = (struct proc *)arg;
    306 	psignal(p, SIGALRM);
    307 	if (!timerisset(&p->p_realtimer.it_interval)) {
    308 		timerclear(&p->p_realtimer.it_value);
    309 		return;
    310 	}
    311 	for (;;) {
    312 		s = splclock();
    313 		timevaladd(&p->p_realtimer.it_value,
    314 		    &p->p_realtimer.it_interval);
    315 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    316 			timeout(realitexpire, p,
    317 			    hzto(&p->p_realtimer.it_value));
    318 			splx(s);
    319 			return;
    320 		}
    321 		splx(s);
    322 	}
    323 }
    324 
    325 /*
    326  * Check that a proposed value to load into the .it_value or
    327  * .it_interval part of an interval timer is acceptable, and
    328  * fix it to have at least minimal value (i.e. if it is less
    329  * than the resolution of the clock, round it up.)
    330  */
    331 int
    332 itimerfix(tv)
    333 	struct timeval *tv;
    334 {
    335 
    336 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    337 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    338 		return (EINVAL);
    339 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    340 		tv->tv_usec = tick;
    341 	return (0);
    342 }
    343 
    344 /*
    345  * Decrement an interval timer by a specified number
    346  * of microseconds, which must be less than a second,
    347  * i.e. < 1000000.  If the timer expires, then reload
    348  * it.  In this case, carry over (usec - old value) to
    349  * reduce the value reloaded into the timer so that
    350  * the timer does not drift.  This routine assumes
    351  * that it is called in a context where the timers
    352  * on which it is operating cannot change in value.
    353  */
    354 int
    355 itimerdecr(itp, usec)
    356 	register struct itimerval *itp;
    357 	int usec;
    358 {
    359 
    360 	if (itp->it_value.tv_usec < usec) {
    361 		if (itp->it_value.tv_sec == 0) {
    362 			/* expired, and already in next interval */
    363 			usec -= itp->it_value.tv_usec;
    364 			goto expire;
    365 		}
    366 		itp->it_value.tv_usec += 1000000;
    367 		itp->it_value.tv_sec--;
    368 	}
    369 	itp->it_value.tv_usec -= usec;
    370 	usec = 0;
    371 	if (timerisset(&itp->it_value))
    372 		return (1);
    373 	/* expired, exactly at end of interval */
    374 expire:
    375 	if (timerisset(&itp->it_interval)) {
    376 		itp->it_value = itp->it_interval;
    377 		itp->it_value.tv_usec -= usec;
    378 		if (itp->it_value.tv_usec < 0) {
    379 			itp->it_value.tv_usec += 1000000;
    380 			itp->it_value.tv_sec--;
    381 		}
    382 	} else
    383 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    384 	return (0);
    385 }
    386 
    387 /*
    388  * Add and subtract routines for timevals.
    389  * N.B.: subtract routine doesn't deal with
    390  * results which are before the beginning,
    391  * it just gets very confused in this case.
    392  * Caveat emptor.
    393  */
    394 void
    395 timevaladd(t1, t2)
    396 	struct timeval *t1, *t2;
    397 {
    398 
    399 	t1->tv_sec += t2->tv_sec;
    400 	t1->tv_usec += t2->tv_usec;
    401 	timevalfix(t1);
    402 }
    403 
    404 void
    405 timevalsub(t1, t2)
    406 	struct timeval *t1, *t2;
    407 {
    408 
    409 	t1->tv_sec -= t2->tv_sec;
    410 	t1->tv_usec -= t2->tv_usec;
    411 	timevalfix(t1);
    412 }
    413 
    414 void
    415 timevalfix(t1)
    416 	struct timeval *t1;
    417 {
    418 
    419 	if (t1->tv_usec < 0) {
    420 		t1->tv_sec--;
    421 		t1->tv_usec += 1000000;
    422 	}
    423 	if (t1->tv_usec >= 1000000) {
    424 		t1->tv_sec++;
    425 		t1->tv_usec -= 1000000;
    426 	}
    427 }
    428