kern_time.c revision 1.80 1 /* $NetBSD: kern_time.c,v 1.80 2003/12/02 01:34:30 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.80 2003/12/02 01:34:30 christos Exp $");
72
73 #include "fs_nfs.h"
74 #include "opt_nfs.h"
75 #include "opt_nfsserver.h"
76
77 #include <sys/param.h>
78 #include <sys/resourcevar.h>
79 #include <sys/kernel.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/proc.h>
83 #include <sys/sa.h>
84 #include <sys/savar.h>
85 #include <sys/vnode.h>
86 #include <sys/signalvar.h>
87 #include <sys/syslog.h>
88
89 #include <sys/mount.h>
90 #include <sys/syscallargs.h>
91
92 #include <uvm/uvm_extern.h>
93
94 #if defined(NFS) || defined(NFSSERVER)
95 #include <nfs/rpcv2.h>
96 #include <nfs/nfsproto.h>
97 #include <nfs/nfs_var.h>
98 #endif
99
100 #include <machine/cpu.h>
101
102 static void timerupcall(struct lwp *, void *);
103
104
105 /* Time of day and interval timer support.
106 *
107 * These routines provide the kernel entry points to get and set
108 * the time-of-day and per-process interval timers. Subroutines
109 * here provide support for adding and subtracting timeval structures
110 * and decrementing interval timers, optionally reloading the interval
111 * timers when they expire.
112 */
113
114 /* This function is used by clock_settime and settimeofday */
115 int
116 settime(struct timeval *tv)
117 {
118 struct timeval delta;
119 struct cpu_info *ci;
120 int s;
121
122 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123 s = splclock();
124 timersub(tv, &time, &delta);
125 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126 splx(s);
127 return (EPERM);
128 }
129 #ifdef notyet
130 if ((delta.tv_sec < 86400) && securelevel > 0) {
131 splx(s);
132 return (EPERM);
133 }
134 #endif
135 time = *tv;
136 (void) spllowersoftclock();
137 timeradd(&boottime, &delta, &boottime);
138 /*
139 * XXXSMP
140 * This is wrong. We should traverse a list of all
141 * CPUs and add the delta to the runtime of those
142 * CPUs which have a process on them.
143 */
144 ci = curcpu();
145 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146 &ci->ci_schedstate.spc_runtime);
147 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148 nqnfs_lease_updatetime(delta.tv_sec);
149 # endif
150 splx(s);
151 resettodr();
152 return (0);
153 }
154
155 /* ARGSUSED */
156 int
157 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
158 {
159 struct sys_clock_gettime_args /* {
160 syscallarg(clockid_t) clock_id;
161 syscallarg(struct timespec *) tp;
162 } */ *uap = v;
163 clockid_t clock_id;
164 struct timeval atv;
165 struct timespec ats;
166 int s;
167
168 clock_id = SCARG(uap, clock_id);
169 switch (clock_id) {
170 case CLOCK_REALTIME:
171 microtime(&atv);
172 TIMEVAL_TO_TIMESPEC(&atv,&ats);
173 break;
174 case CLOCK_MONOTONIC:
175 /* XXX "hz" granularity */
176 s = splclock();
177 atv = mono_time;
178 splx(s);
179 TIMEVAL_TO_TIMESPEC(&atv,&ats);
180 break;
181 default:
182 return (EINVAL);
183 }
184
185 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
186 }
187
188 /* ARGSUSED */
189 int
190 sys_clock_settime(l, v, retval)
191 struct lwp *l;
192 void *v;
193 register_t *retval;
194 {
195 struct sys_clock_settime_args /* {
196 syscallarg(clockid_t) clock_id;
197 syscallarg(const struct timespec *) tp;
198 } */ *uap = v;
199 struct proc *p = l->l_proc;
200 int error;
201
202 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
203 return (error);
204
205 return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
206 }
207
208
209 int
210 clock_settime1(clock_id, tp)
211 clockid_t clock_id;
212 const struct timespec *tp;
213 {
214 struct timespec ats;
215 struct timeval atv;
216 int error;
217
218 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
219 return (error);
220
221 switch (clock_id) {
222 case CLOCK_REALTIME:
223 TIMESPEC_TO_TIMEVAL(&atv, &ats);
224 if ((error = settime(&atv)) != 0)
225 return (error);
226 break;
227 case CLOCK_MONOTONIC:
228 return (EINVAL); /* read-only clock */
229 default:
230 return (EINVAL);
231 }
232
233 return 0;
234 }
235
236 int
237 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
238 {
239 struct sys_clock_getres_args /* {
240 syscallarg(clockid_t) clock_id;
241 syscallarg(struct timespec *) tp;
242 } */ *uap = v;
243 clockid_t clock_id;
244 struct timespec ts;
245 int error = 0;
246
247 clock_id = SCARG(uap, clock_id);
248 switch (clock_id) {
249 case CLOCK_REALTIME:
250 case CLOCK_MONOTONIC:
251 ts.tv_sec = 0;
252 ts.tv_nsec = 1000000000 / hz;
253 break;
254 default:
255 return (EINVAL);
256 }
257
258 if (SCARG(uap, tp))
259 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
260
261 return error;
262 }
263
264 /* ARGSUSED */
265 int
266 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
267 {
268 static int nanowait;
269 struct sys_nanosleep_args/* {
270 syscallarg(struct timespec *) rqtp;
271 syscallarg(struct timespec *) rmtp;
272 } */ *uap = v;
273 struct timespec rqt;
274 struct timespec rmt;
275 struct timeval atv, utv;
276 int error, s, timo;
277
278 error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
279 sizeof(struct timespec));
280 if (error)
281 return (error);
282
283 TIMESPEC_TO_TIMEVAL(&atv,&rqt)
284 if (itimerfix(&atv))
285 return (EINVAL);
286
287 s = splclock();
288 timeradd(&atv,&time,&atv);
289 timo = hzto(&atv);
290 /*
291 * Avoid inadvertantly sleeping forever
292 */
293 if (timo == 0)
294 timo = 1;
295 splx(s);
296
297 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
298 if (error == ERESTART)
299 error = EINTR;
300 if (error == EWOULDBLOCK)
301 error = 0;
302
303 if (SCARG(uap, rmtp)) {
304 int error;
305
306 s = splclock();
307 utv = time;
308 splx(s);
309
310 timersub(&atv, &utv, &utv);
311 if (utv.tv_sec < 0)
312 timerclear(&utv);
313
314 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
315 error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
316 sizeof(rmt));
317 if (error)
318 return (error);
319 }
320
321 return error;
322 }
323
324 /* ARGSUSED */
325 int
326 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
327 {
328 struct sys_gettimeofday_args /* {
329 syscallarg(struct timeval *) tp;
330 syscallarg(struct timezone *) tzp;
331 } */ *uap = v;
332 struct timeval atv;
333 int error = 0;
334 struct timezone tzfake;
335
336 if (SCARG(uap, tp)) {
337 microtime(&atv);
338 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
339 if (error)
340 return (error);
341 }
342 if (SCARG(uap, tzp)) {
343 /*
344 * NetBSD has no kernel notion of time zone, so we just
345 * fake up a timezone struct and return it if demanded.
346 */
347 tzfake.tz_minuteswest = 0;
348 tzfake.tz_dsttime = 0;
349 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
350 }
351 return (error);
352 }
353
354 /* ARGSUSED */
355 int
356 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
357 {
358 struct sys_settimeofday_args /* {
359 syscallarg(const struct timeval *) tv;
360 syscallarg(const struct timezone *) tzp;
361 } */ *uap = v;
362 struct proc *p = l->l_proc;
363 int error;
364
365 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
366 return (error);
367
368 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
369 }
370
371 int
372 settimeofday1(utv, utzp, p)
373 const struct timeval *utv;
374 const struct timezone *utzp;
375 struct proc *p;
376 {
377 struct timeval atv;
378 struct timezone atz;
379 struct timeval *tv = NULL;
380 struct timezone *tzp = NULL;
381 int error;
382
383 /* Verify all parameters before changing time. */
384 if (utv) {
385 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
386 return (error);
387 tv = &atv;
388 }
389 /* XXX since we don't use tz, probably no point in doing copyin. */
390 if (utzp) {
391 if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
392 return (error);
393 tzp = &atz;
394 }
395
396 if (tv)
397 if ((error = settime(tv)) != 0)
398 return (error);
399 /*
400 * NetBSD has no kernel notion of time zone, and only an
401 * obsolete program would try to set it, so we log a warning.
402 */
403 if (tzp)
404 log(LOG_WARNING, "pid %d attempted to set the "
405 "(obsolete) kernel time zone\n", p->p_pid);
406 return (0);
407 }
408
409 int tickdelta; /* current clock skew, us. per tick */
410 long timedelta; /* unapplied time correction, us. */
411 long bigadj = 1000000; /* use 10x skew above bigadj us. */
412 int time_adjusted; /* set if an adjustment is made */
413
414 /* ARGSUSED */
415 int
416 sys_adjtime(struct lwp *l, void *v, register_t *retval)
417 {
418 struct sys_adjtime_args /* {
419 syscallarg(const struct timeval *) delta;
420 syscallarg(struct timeval *) olddelta;
421 } */ *uap = v;
422 struct proc *p = l->l_proc;
423 int error;
424
425 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
426 return (error);
427
428 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
429 }
430
431 int
432 adjtime1(delta, olddelta, p)
433 const struct timeval *delta;
434 struct timeval *olddelta;
435 struct proc *p;
436 {
437 struct timeval atv;
438 long ndelta, ntickdelta, odelta;
439 int error;
440 int s;
441
442 error = copyin(delta, &atv, sizeof(struct timeval));
443 if (error)
444 return (error);
445
446 /*
447 * Compute the total correction and the rate at which to apply it.
448 * Round the adjustment down to a whole multiple of the per-tick
449 * delta, so that after some number of incremental changes in
450 * hardclock(), tickdelta will become zero, lest the correction
451 * overshoot and start taking us away from the desired final time.
452 */
453 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
454 if (ndelta > bigadj || ndelta < -bigadj)
455 ntickdelta = 10 * tickadj;
456 else
457 ntickdelta = tickadj;
458 if (ndelta % ntickdelta)
459 ndelta = ndelta / ntickdelta * ntickdelta;
460
461 /*
462 * To make hardclock()'s job easier, make the per-tick delta negative
463 * if we want time to run slower; then hardclock can simply compute
464 * tick + tickdelta, and subtract tickdelta from timedelta.
465 */
466 if (ndelta < 0)
467 ntickdelta = -ntickdelta;
468 if (ndelta != 0)
469 /* We need to save the system clock time during shutdown */
470 time_adjusted |= 1;
471 s = splclock();
472 odelta = timedelta;
473 timedelta = ndelta;
474 tickdelta = ntickdelta;
475 splx(s);
476
477 if (olddelta) {
478 atv.tv_sec = odelta / 1000000;
479 atv.tv_usec = odelta % 1000000;
480 error = copyout(&atv, olddelta, sizeof(struct timeval));
481 }
482 return error;
483 }
484
485 /*
486 * Interval timer support. Both the BSD getitimer() family and the POSIX
487 * timer_*() family of routines are supported.
488 *
489 * All timers are kept in an array pointed to by p_timers, which is
490 * allocated on demand - many processes don't use timers at all. The
491 * first three elements in this array are reserved for the BSD timers:
492 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
493 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
494 * syscall.
495 *
496 * Realtime timers are kept in the ptimer structure as an absolute
497 * time; virtual time timers are kept as a linked list of deltas.
498 * Virtual time timers are processed in the hardclock() routine of
499 * kern_clock.c. The real time timer is processed by a callout
500 * routine, called from the softclock() routine. Since a callout may
501 * be delayed in real time due to interrupt processing in the system,
502 * it is possible for the real time timeout routine (realtimeexpire,
503 * given below), to be delayed in real time past when it is supposed
504 * to occur. It does not suffice, therefore, to reload the real timer
505 * .it_value from the real time timers .it_interval. Rather, we
506 * compute the next time in absolute time the timer should go off. */
507
508 /* Allocate a POSIX realtime timer. */
509 int
510 sys_timer_create(struct lwp *l, void *v, register_t *retval)
511 {
512 struct sys_timer_create_args /* {
513 syscallarg(clockid_t) clock_id;
514 syscallarg(struct sigevent *) evp;
515 syscallarg(timer_t *) timerid;
516 } */ *uap = v;
517 struct proc *p = l->l_proc;
518 clockid_t id;
519 struct sigevent *evp;
520 struct ptimer *pt;
521 timer_t timerid;
522 int error;
523
524 id = SCARG(uap, clock_id);
525 if (id < CLOCK_REALTIME ||
526 id > CLOCK_PROF)
527 return (EINVAL);
528
529 if (p->p_timers == NULL)
530 timers_alloc(p);
531
532 /* Find a free timer slot, skipping those reserved for setitimer(). */
533 for (timerid = 3; timerid < TIMER_MAX; timerid++)
534 if (p->p_timers->pts_timers[timerid] == NULL)
535 break;
536
537 if (timerid == TIMER_MAX)
538 return EAGAIN;
539
540 pt = pool_get(&ptimer_pool, PR_WAITOK);
541 evp = SCARG(uap, evp);
542 if (evp) {
543 if (((error =
544 copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
545 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
546 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
547 pool_put(&ptimer_pool, pt);
548 return (error ? error : EINVAL);
549 }
550 } else {
551 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
552 switch (id) {
553 case CLOCK_REALTIME:
554 pt->pt_ev.sigev_signo = SIGALRM;
555 break;
556 case CLOCK_VIRTUAL:
557 pt->pt_ev.sigev_signo = SIGVTALRM;
558 break;
559 case CLOCK_PROF:
560 pt->pt_ev.sigev_signo = SIGPROF;
561 break;
562 }
563 pt->pt_ev.sigev_value.sival_int = timerid;
564 }
565 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
566 pt->pt_info.ksi_errno = 0;
567 pt->pt_info.ksi_code = 0;
568 pt->pt_info.ksi_pid = p->p_pid;
569 pt->pt_info.ksi_uid = p->p_cred->p_ruid;
570 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
571
572 pt->pt_type = id;
573 pt->pt_proc = p;
574 pt->pt_overruns = 0;
575 pt->pt_poverruns = 0;
576 pt->pt_entry = timerid;
577 timerclear(&pt->pt_time.it_value);
578 if (id == CLOCK_REALTIME)
579 callout_init(&pt->pt_ch);
580 else
581 pt->pt_active = 0;
582
583 p->p_timers->pts_timers[timerid] = pt;
584
585 return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
586 }
587
588
589 /* Delete a POSIX realtime timer */
590 int
591 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
592 {
593 struct sys_timer_delete_args /* {
594 syscallarg(timer_t) timerid;
595 } */ *uap = v;
596 struct proc *p = l->l_proc;
597 timer_t timerid;
598 struct ptimer *pt, *ptn;
599 int s;
600
601 timerid = SCARG(uap, timerid);
602
603 if ((p->p_timers == NULL) ||
604 (timerid < 2) || (timerid >= TIMER_MAX) ||
605 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
606 return (EINVAL);
607
608 if (pt->pt_type == CLOCK_REALTIME)
609 callout_stop(&pt->pt_ch);
610 else if (pt->pt_active) {
611 s = splclock();
612 ptn = LIST_NEXT(pt, pt_list);
613 LIST_REMOVE(pt, pt_list);
614 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
615 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
616 &ptn->pt_time.it_value);
617 splx(s);
618 }
619
620 p->p_timers->pts_timers[timerid] = NULL;
621 pool_put(&ptimer_pool, pt);
622
623 return (0);
624 }
625
626 /*
627 * Set up the given timer. The value in pt->pt_time.it_value is taken
628 * to be an absolute time for CLOCK_REALTIME timers and a relative
629 * time for virtual timers.
630 * Must be called at splclock().
631 */
632 void
633 timer_settime(struct ptimer *pt)
634 {
635 struct ptimer *ptn, *pptn;
636 struct ptlist *ptl;
637
638 if (pt->pt_type == CLOCK_REALTIME) {
639 callout_stop(&pt->pt_ch);
640 if (timerisset(&pt->pt_time.it_value)) {
641 /*
642 * Don't need to check hzto() return value, here.
643 * callout_reset() does it for us.
644 */
645 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
646 realtimerexpire, pt);
647 }
648 } else {
649 if (pt->pt_active) {
650 ptn = LIST_NEXT(pt, pt_list);
651 LIST_REMOVE(pt, pt_list);
652 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
653 timeradd(&pt->pt_time.it_value,
654 &ptn->pt_time.it_value,
655 &ptn->pt_time.it_value);
656 }
657 if (timerisset(&pt->pt_time.it_value)) {
658 if (pt->pt_type == CLOCK_VIRTUAL)
659 ptl = &pt->pt_proc->p_timers->pts_virtual;
660 else
661 ptl = &pt->pt_proc->p_timers->pts_prof;
662
663 for (ptn = LIST_FIRST(ptl), pptn = NULL;
664 ptn && timercmp(&pt->pt_time.it_value,
665 &ptn->pt_time.it_value, >);
666 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
667 timersub(&pt->pt_time.it_value,
668 &ptn->pt_time.it_value,
669 &pt->pt_time.it_value);
670
671 if (pptn)
672 LIST_INSERT_AFTER(pptn, pt, pt_list);
673 else
674 LIST_INSERT_HEAD(ptl, pt, pt_list);
675
676 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
677 timersub(&ptn->pt_time.it_value,
678 &pt->pt_time.it_value,
679 &ptn->pt_time.it_value);
680
681 pt->pt_active = 1;
682 } else
683 pt->pt_active = 0;
684 }
685 }
686
687 void
688 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
689 {
690 struct ptimer *ptn;
691
692 *aitv = pt->pt_time;
693 if (pt->pt_type == CLOCK_REALTIME) {
694 /*
695 * Convert from absolute to relative time in .it_value
696 * part of real time timer. If time for real time
697 * timer has passed return 0, else return difference
698 * between current time and time for the timer to go
699 * off.
700 */
701 if (timerisset(&aitv->it_value)) {
702 if (timercmp(&aitv->it_value, &time, <))
703 timerclear(&aitv->it_value);
704 else
705 timersub(&aitv->it_value, &time,
706 &aitv->it_value);
707 }
708 } else if (pt->pt_active) {
709 if (pt->pt_type == CLOCK_VIRTUAL)
710 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
711 else
712 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
713 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
714 timeradd(&aitv->it_value,
715 &ptn->pt_time.it_value, &aitv->it_value);
716 KASSERT(ptn != NULL); /* pt should be findable on the list */
717 } else
718 timerclear(&aitv->it_value);
719 }
720
721
722
723 /* Set and arm a POSIX realtime timer */
724 int
725 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
726 {
727 struct sys_timer_settime_args /* {
728 syscallarg(timer_t) timerid;
729 syscallarg(int) flags;
730 syscallarg(const struct itimerspec *) value;
731 syscallarg(struct itimerspec *) ovalue;
732 } */ *uap = v;
733 struct proc *p = l->l_proc;
734 int error, s, timerid;
735 struct itimerval val, oval;
736 struct itimerspec value, ovalue;
737 struct ptimer *pt;
738
739 timerid = SCARG(uap, timerid);
740
741 if ((p->p_timers == NULL) ||
742 (timerid < 2) || (timerid >= TIMER_MAX) ||
743 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
744 return (EINVAL);
745
746 if ((error = copyin(SCARG(uap, value), &value,
747 sizeof(struct itimerspec))) != 0)
748 return (error);
749
750 TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
751 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
752 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
753 return (EINVAL);
754
755 oval = pt->pt_time;
756 pt->pt_time = val;
757
758 s = splclock();
759 /*
760 * If we've been passed a relative time for a realtime timer,
761 * convert it to absolute; if an absolute time for a virtual
762 * timer, convert it to relative and make sure we don't set it
763 * to zero, which would cancel the timer, or let it go
764 * negative, which would confuse the comparison tests.
765 */
766 if (timerisset(&pt->pt_time.it_value)) {
767 if (pt->pt_type == CLOCK_REALTIME) {
768 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
769 timeradd(&pt->pt_time.it_value, &time,
770 &pt->pt_time.it_value);
771 } else {
772 if ((SCARG(uap, flags) & TIMER_ABSTIME) != 0) {
773 timersub(&pt->pt_time.it_value, &time,
774 &pt->pt_time.it_value);
775 if (!timerisset(&pt->pt_time.it_value) ||
776 pt->pt_time.it_value.tv_sec < 0) {
777 pt->pt_time.it_value.tv_sec = 0;
778 pt->pt_time.it_value.tv_usec = 1;
779 }
780 }
781 }
782 }
783
784 timer_settime(pt);
785 splx(s);
786
787 if (SCARG(uap, ovalue)) {
788 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
789 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
790 return copyout(&ovalue, SCARG(uap, ovalue),
791 sizeof(struct itimerspec));
792 }
793
794 return (0);
795 }
796
797 /* Return the time remaining until a POSIX timer fires. */
798 int
799 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
800 {
801 struct sys_timer_gettime_args /* {
802 syscallarg(timer_t) timerid;
803 syscallarg(struct itimerspec *) value;
804 } */ *uap = v;
805 struct itimerval aitv;
806 struct itimerspec its;
807 struct proc *p = l->l_proc;
808 int s, timerid;
809 struct ptimer *pt;
810
811 timerid = SCARG(uap, timerid);
812
813 if ((p->p_timers == NULL) ||
814 (timerid < 2) || (timerid >= TIMER_MAX) ||
815 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
816 return (EINVAL);
817
818 s = splclock();
819 timer_gettime(pt, &aitv);
820 splx(s);
821
822 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
823 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
824
825 return copyout(&its, SCARG(uap, value), sizeof(its));
826 }
827
828 /*
829 * Return the count of the number of times a periodic timer expired
830 * while a notification was already pending. The counter is reset when
831 * a timer expires and a notification can be posted.
832 */
833 int
834 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
835 {
836 struct sys_timer_getoverrun_args /* {
837 syscallarg(timer_t) timerid;
838 } */ *uap = v;
839 struct proc *p = l->l_proc;
840 int timerid;
841 struct ptimer *pt;
842
843 timerid = SCARG(uap, timerid);
844
845 if ((p->p_timers == NULL) ||
846 (timerid < 2) || (timerid >= TIMER_MAX) ||
847 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
848 return (EINVAL);
849
850 *retval = pt->pt_poverruns;
851
852 return (0);
853 }
854
855 /* Glue function that triggers an upcall; called from userret(). */
856 static void
857 timerupcall(struct lwp *l, void *arg)
858 {
859 struct ptimers *pt = (struct ptimers *)arg;
860 unsigned int i, fired, done;
861 extern struct pool siginfo_pool; /* XXX Ew. */
862
863 KERNEL_PROC_LOCK(l);
864
865 {
866 struct proc *p = l->l_proc;
867 struct sadata *sa = p->p_sa;
868
869 /* Bail out if we do not own the virtual processor */
870 if (sa->sa_vp != l) {
871 KERNEL_PROC_UNLOCK(l);
872 return ;
873 }
874 }
875
876 fired = pt->pts_fired;
877 done = 0;
878 while ((i = ffs(fired)) != 0) {
879 siginfo_t *si;
880 int mask = 1 << --i;
881 int f;
882
883 f = l->l_flag & L_SA;
884 l->l_flag &= ~L_SA;
885 si = pool_get(&siginfo_pool, PR_WAITOK);
886 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
887 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
888 sizeof(*si), si) == 0)
889 done |= mask;
890 fired &= ~mask;
891 l->l_flag |= f;
892 }
893 pt->pts_fired &= ~done;
894 if (pt->pts_fired == 0)
895 l->l_proc->p_userret = NULL;
896
897 KERNEL_PROC_UNLOCK(l);
898 }
899
900
901 /*
902 * Real interval timer expired:
903 * send process whose timer expired an alarm signal.
904 * If time is not set up to reload, then just return.
905 * Else compute next time timer should go off which is > current time.
906 * This is where delay in processing this timeout causes multiple
907 * SIGALRM calls to be compressed into one.
908 */
909 void
910 realtimerexpire(void *arg)
911 {
912 struct ptimer *pt;
913 int s;
914
915 pt = (struct ptimer *)arg;
916
917 itimerfire(pt);
918
919 if (!timerisset(&pt->pt_time.it_interval)) {
920 timerclear(&pt->pt_time.it_value);
921 return;
922 }
923 for (;;) {
924 s = splclock();
925 timeradd(&pt->pt_time.it_value,
926 &pt->pt_time.it_interval, &pt->pt_time.it_value);
927 if (timercmp(&pt->pt_time.it_value, &time, >)) {
928 /*
929 * Don't need to check hzto() return value, here.
930 * callout_reset() does it for us.
931 */
932 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
933 realtimerexpire, pt);
934 splx(s);
935 return;
936 }
937 splx(s);
938 pt->pt_overruns++;
939 }
940 }
941
942 /* BSD routine to get the value of an interval timer. */
943 /* ARGSUSED */
944 int
945 sys_getitimer(struct lwp *l, void *v, register_t *retval)
946 {
947 struct sys_getitimer_args /* {
948 syscallarg(int) which;
949 syscallarg(struct itimerval *) itv;
950 } */ *uap = v;
951 struct proc *p = l->l_proc;
952 struct itimerval aitv;
953 int s, which;
954
955 which = SCARG(uap, which);
956
957 if ((u_int)which > ITIMER_PROF)
958 return (EINVAL);
959
960 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
961 timerclear(&aitv.it_value);
962 timerclear(&aitv.it_interval);
963 } else {
964 s = splclock();
965 timer_gettime(p->p_timers->pts_timers[which], &aitv);
966 splx(s);
967 }
968
969 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
970
971 }
972
973 /* BSD routine to set/arm an interval timer. */
974 /* ARGSUSED */
975 int
976 sys_setitimer(struct lwp *l, void *v, register_t *retval)
977 {
978 struct sys_setitimer_args /* {
979 syscallarg(int) which;
980 syscallarg(const struct itimerval *) itv;
981 syscallarg(struct itimerval *) oitv;
982 } */ *uap = v;
983 struct proc *p = l->l_proc;
984 int which = SCARG(uap, which);
985 struct sys_getitimer_args getargs;
986 struct itimerval aitv;
987 const struct itimerval *itvp;
988 struct ptimer *pt;
989 int s, error;
990
991 if ((u_int)which > ITIMER_PROF)
992 return (EINVAL);
993 itvp = SCARG(uap, itv);
994 if (itvp &&
995 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
996 return (error);
997 if (SCARG(uap, oitv) != NULL) {
998 SCARG(&getargs, which) = which;
999 SCARG(&getargs, itv) = SCARG(uap, oitv);
1000 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1001 return (error);
1002 }
1003 if (itvp == 0)
1004 return (0);
1005 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
1006 return (EINVAL);
1007
1008 /*
1009 * Don't bother allocating data structures if the process just
1010 * wants to clear the timer.
1011 */
1012 if (!timerisset(&aitv.it_value) &&
1013 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1014 return (0);
1015
1016 if (p->p_timers == NULL)
1017 timers_alloc(p);
1018 if (p->p_timers->pts_timers[which] == NULL) {
1019 pt = pool_get(&ptimer_pool, PR_WAITOK);
1020 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1021 pt->pt_ev.sigev_value.sival_int = which;
1022 pt->pt_overruns = 0;
1023 pt->pt_proc = p;
1024 pt->pt_type = which;
1025 pt->pt_entry = which;
1026 switch (which) {
1027 case ITIMER_REAL:
1028 callout_init(&pt->pt_ch);
1029 pt->pt_ev.sigev_signo = SIGALRM;
1030 break;
1031 case ITIMER_VIRTUAL:
1032 pt->pt_active = 0;
1033 pt->pt_ev.sigev_signo = SIGVTALRM;
1034 break;
1035 case ITIMER_PROF:
1036 pt->pt_active = 0;
1037 pt->pt_ev.sigev_signo = SIGPROF;
1038 break;
1039 }
1040 } else
1041 pt = p->p_timers->pts_timers[which];
1042
1043 pt->pt_time = aitv;
1044 p->p_timers->pts_timers[which] = pt;
1045
1046 s = splclock();
1047 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1048 /* Convert to absolute time */
1049 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1050 }
1051 timer_settime(pt);
1052 splx(s);
1053
1054 return (0);
1055 }
1056
1057 /* Utility routines to manage the array of pointers to timers. */
1058 void
1059 timers_alloc(struct proc *p)
1060 {
1061 int i;
1062 struct ptimers *pts;
1063
1064 pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1065 LIST_INIT(&pts->pts_virtual);
1066 LIST_INIT(&pts->pts_prof);
1067 for (i = 0; i < TIMER_MAX; i++)
1068 pts->pts_timers[i] = NULL;
1069 pts->pts_fired = 0;
1070 p->p_timers = pts;
1071 }
1072
1073 /*
1074 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1075 * then clean up all timers and free all the data structures. If
1076 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1077 * by timer_create(), not the BSD setitimer() timers, and only free the
1078 * structure if none of those remain.
1079 */
1080 void
1081 timers_free(struct proc *p, int which)
1082 {
1083 int i, s;
1084 struct ptimers *pts;
1085 struct ptimer *pt, *ptn;
1086 struct timeval tv;
1087
1088 if (p->p_timers) {
1089 pts = p->p_timers;
1090 if (which == TIMERS_ALL)
1091 i = 0;
1092 else {
1093 s = splclock();
1094 timerclear(&tv);
1095 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1096 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1097 ptn = LIST_NEXT(ptn, pt_list))
1098 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1099 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1100 if (ptn) {
1101 timeradd(&tv, &ptn->pt_time.it_value,
1102 &ptn->pt_time.it_value);
1103 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1104 ptn, pt_list);
1105 }
1106
1107 timerclear(&tv);
1108 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1109 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1110 ptn = LIST_NEXT(ptn, pt_list))
1111 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1112 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1113 if (ptn) {
1114 timeradd(&tv, &ptn->pt_time.it_value,
1115 &ptn->pt_time.it_value);
1116 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1117 pt_list);
1118 }
1119 splx(s);
1120 i = 3;
1121 }
1122 for ( ; i < TIMER_MAX; i++)
1123 if ((pt = pts->pts_timers[i]) != NULL) {
1124 if (pt->pt_type == CLOCK_REALTIME)
1125 callout_stop(&pt->pt_ch);
1126 pts->pts_timers[i] = NULL;
1127 pool_put(&ptimer_pool, pt);
1128 }
1129 if ((pts->pts_timers[0] == NULL) &&
1130 (pts->pts_timers[1] == NULL) &&
1131 (pts->pts_timers[2] == NULL)) {
1132 p->p_timers = NULL;
1133 free(pts, M_SUBPROC);
1134 }
1135 }
1136 }
1137
1138 /*
1139 * Check that a proposed value to load into the .it_value or
1140 * .it_interval part of an interval timer is acceptable, and
1141 * fix it to have at least minimal value (i.e. if it is less
1142 * than the resolution of the clock, round it up.)
1143 */
1144 int
1145 itimerfix(struct timeval *tv)
1146 {
1147
1148 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1149 return (EINVAL);
1150 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1151 tv->tv_usec = tick;
1152 return (0);
1153 }
1154
1155 /*
1156 * Decrement an interval timer by a specified number
1157 * of microseconds, which must be less than a second,
1158 * i.e. < 1000000. If the timer expires, then reload
1159 * it. In this case, carry over (usec - old value) to
1160 * reduce the value reloaded into the timer so that
1161 * the timer does not drift. This routine assumes
1162 * that it is called in a context where the timers
1163 * on which it is operating cannot change in value.
1164 */
1165 int
1166 itimerdecr(struct ptimer *pt, int usec)
1167 {
1168 struct itimerval *itp;
1169
1170 itp = &pt->pt_time;
1171 if (itp->it_value.tv_usec < usec) {
1172 if (itp->it_value.tv_sec == 0) {
1173 /* expired, and already in next interval */
1174 usec -= itp->it_value.tv_usec;
1175 goto expire;
1176 }
1177 itp->it_value.tv_usec += 1000000;
1178 itp->it_value.tv_sec--;
1179 }
1180 itp->it_value.tv_usec -= usec;
1181 usec = 0;
1182 if (timerisset(&itp->it_value))
1183 return (1);
1184 /* expired, exactly at end of interval */
1185 expire:
1186 if (timerisset(&itp->it_interval)) {
1187 itp->it_value = itp->it_interval;
1188 itp->it_value.tv_usec -= usec;
1189 if (itp->it_value.tv_usec < 0) {
1190 itp->it_value.tv_usec += 1000000;
1191 itp->it_value.tv_sec--;
1192 }
1193 timer_settime(pt);
1194 } else
1195 itp->it_value.tv_usec = 0; /* sec is already 0 */
1196 return (0);
1197 }
1198
1199 void
1200 itimerfire(struct ptimer *pt)
1201 {
1202 struct proc *p = pt->pt_proc;
1203 int s;
1204
1205 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1206 /*
1207 * No RT signal infrastructure exists at this time;
1208 * just post the signal number and throw away the
1209 * value.
1210 */
1211 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1212 pt->pt_overruns++;
1213 else {
1214 ksiginfo_t ksi;
1215 (void)memset(&ksi, 0, sizeof(ksi));
1216 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1217 ksi.ksi_code = SI_TIMER;
1218 ksi.ksi_sigval = pt->pt_ev.sigev_value;
1219 pt->pt_poverruns = pt->pt_overruns;
1220 pt->pt_overruns = 0;
1221 kpsignal(p, &ksi, NULL);
1222 }
1223 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1224 /* Cause the process to generate an upcall when it returns. */
1225 struct sadata *sa = p->p_sa;
1226 unsigned int i;
1227
1228 if (p->p_userret == NULL) {
1229 /*
1230 * XXX stop signals can be processed inside tsleep,
1231 * which can be inside sa_yield's inner loop, which
1232 * makes testing for sa_idle alone insuffucent to
1233 * determine if we really should call setrunnable.
1234 */
1235 pt->pt_poverruns = pt->pt_overruns;
1236 pt->pt_overruns = 0;
1237 i = 1 << pt->pt_entry;
1238 p->p_timers->pts_fired = i;
1239 p->p_userret = timerupcall;
1240 p->p_userret_arg = p->p_timers;
1241
1242 SCHED_LOCK(s);
1243 if (sa->sa_vp->l_flag & L_SA_IDLE) {
1244 sa->sa_vp->l_flag &= ~L_SA_IDLE;
1245 sched_wakeup(sa->sa_vp);
1246 }
1247 SCHED_UNLOCK(s);
1248 } else if (p->p_userret == timerupcall) {
1249 i = 1 << pt->pt_entry;
1250 if ((p->p_timers->pts_fired & i) == 0) {
1251 pt->pt_poverruns = pt->pt_overruns;
1252 pt->pt_overruns = 0;
1253 p->p_timers->pts_fired |= i;
1254 } else
1255 pt->pt_overruns++;
1256 } else {
1257 pt->pt_overruns++;
1258 if ((p->p_flag & P_WEXIT) == 0)
1259 printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1260 p->p_pid, pt->pt_overruns,
1261 pt->pt_ev.sigev_value.sival_int,
1262 p->p_userret);
1263 }
1264 }
1265
1266 }
1267
1268 /*
1269 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1270 * for usage and rationale.
1271 */
1272 int
1273 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1274 {
1275 struct timeval tv, delta;
1276 int s, rv = 0;
1277
1278 s = splclock();
1279 tv = mono_time;
1280 splx(s);
1281
1282 timersub(&tv, lasttime, &delta);
1283
1284 /*
1285 * check for 0,0 is so that the message will be seen at least once,
1286 * even if interval is huge.
1287 */
1288 if (timercmp(&delta, mininterval, >=) ||
1289 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1290 *lasttime = tv;
1291 rv = 1;
1292 }
1293
1294 return (rv);
1295 }
1296
1297 /*
1298 * ppsratecheck(): packets (or events) per second limitation.
1299 */
1300 int
1301 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1302 {
1303 struct timeval tv, delta;
1304 int s, rv;
1305
1306 s = splclock();
1307 tv = mono_time;
1308 splx(s);
1309
1310 timersub(&tv, lasttime, &delta);
1311
1312 /*
1313 * check for 0,0 is so that the message will be seen at least once.
1314 * if more than one second have passed since the last update of
1315 * lasttime, reset the counter.
1316 *
1317 * we do increment *curpps even in *curpps < maxpps case, as some may
1318 * try to use *curpps for stat purposes as well.
1319 */
1320 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1321 delta.tv_sec >= 1) {
1322 *lasttime = tv;
1323 *curpps = 0;
1324 }
1325 if (maxpps < 0)
1326 rv = 1;
1327 else if (*curpps < maxpps)
1328 rv = 1;
1329 else
1330 rv = 0;
1331
1332 #if 1 /*DIAGNOSTIC?*/
1333 /* be careful about wrap-around */
1334 if (*curpps + 1 > *curpps)
1335 *curpps = *curpps + 1;
1336 #else
1337 /*
1338 * assume that there's not too many calls to this function.
1339 * not sure if the assumption holds, as it depends on *caller's*
1340 * behavior, not the behavior of this function.
1341 * IMHO it is wrong to make assumption on the caller's behavior,
1342 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1343 */
1344 *curpps = *curpps + 1;
1345 #endif
1346
1347 return (rv);
1348 }
1349