Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.88.2.3
      1 /*	$NetBSD: kern_time.c,v 1.88.2.3 2005/12/07 09:53:55 tron Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.88.2.3 2005/12/07 09:53:55 tron Exp $");
     72 
     73 #include "fs_nfs.h"
     74 #include "opt_nfs.h"
     75 #include "opt_nfsserver.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/kernel.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/proc.h>
     83 #include <sys/sa.h>
     84 #include <sys/savar.h>
     85 #include <sys/vnode.h>
     86 #include <sys/signalvar.h>
     87 #include <sys/syslog.h>
     88 
     89 #include <sys/mount.h>
     90 #include <sys/syscallargs.h>
     91 
     92 #include <uvm/uvm_extern.h>
     93 
     94 #if defined(NFS) || defined(NFSSERVER)
     95 #include <nfs/rpcv2.h>
     96 #include <nfs/nfsproto.h>
     97 #include <nfs/nfs_var.h>
     98 #endif
     99 
    100 #include <machine/cpu.h>
    101 
    102 static void timerupcall(struct lwp *, void *);
    103 
    104 /* Time of day and interval timer support.
    105  *
    106  * These routines provide the kernel entry points to get and set
    107  * the time-of-day and per-process interval timers.  Subroutines
    108  * here provide support for adding and subtracting timeval structures
    109  * and decrementing interval timers, optionally reloading the interval
    110  * timers when they expire.
    111  */
    112 
    113 /* This function is used by clock_settime and settimeofday */
    114 int
    115 settime(struct timeval *tv)
    116 {
    117 	struct timeval delta;
    118 	struct cpu_info *ci;
    119 	int s;
    120 
    121 	/*
    122 	 * Don't allow the time to be set forward so far it will wrap
    123 	 * and become negative, thus allowing an attacker to bypass
    124 	 * the next check below.  The cutoff is 1 year before rollover
    125 	 * occurs, so even if the attacker uses adjtime(2) to move
    126 	 * the time past the cutoff, it will take a very long time
    127 	 * to get to the wrap point.
    128 	 *
    129 	 * XXX: we check against INT_MAX since on 64-bit
    130 	 *	platforms, sizeof(int) != sizeof(long) and
    131 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
    132 	 */
    133 	if (tv->tv_sec > INT_MAX - 365*24*60*60) {
    134 		struct proc *p = curproc;
    135 		struct proc *pp = p->p_pptr;
    136 		log(LOG_WARNING, "pid %d (%s) "
    137 		    "invoked by uid %d ppid %d (%s) "
    138 		    "tried to set clock forward to %ld\n",
    139 		    p->p_pid, p->p_comm, pp->p_ucred->cr_uid,
    140 		    pp->p_pid, pp->p_comm, (long)tv->tv_sec);
    141 		return (EPERM);
    142 	}
    143 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    144 	s = splclock();
    145 	timersub(tv, &time, &delta);
    146 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    147 		splx(s);
    148 		return (EPERM);
    149 	}
    150 #ifdef notyet
    151 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    152 		splx(s);
    153 		return (EPERM);
    154 	}
    155 #endif
    156 	time = *tv;
    157 	(void) spllowersoftclock();
    158 	timeradd(&boottime, &delta, &boottime);
    159 	/*
    160 	 * XXXSMP
    161 	 * This is wrong.  We should traverse a list of all
    162 	 * CPUs and add the delta to the runtime of those
    163 	 * CPUs which have a process on them.
    164 	 */
    165 	ci = curcpu();
    166 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    167 	    &ci->ci_schedstate.spc_runtime);
    168 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    169 		nqnfs_lease_updatetime(delta.tv_sec);
    170 #	endif
    171 	splx(s);
    172 	resettodr();
    173 	return (0);
    174 }
    175 
    176 /* ARGSUSED */
    177 int
    178 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    179 {
    180 	struct sys_clock_gettime_args /* {
    181 		syscallarg(clockid_t) clock_id;
    182 		syscallarg(struct timespec *) tp;
    183 	} */ *uap = v;
    184 	clockid_t clock_id;
    185 	struct timeval atv;
    186 	struct timespec ats;
    187 	int s;
    188 
    189 	clock_id = SCARG(uap, clock_id);
    190 	switch (clock_id) {
    191 	case CLOCK_REALTIME:
    192 		microtime(&atv);
    193 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    194 		break;
    195 	case CLOCK_MONOTONIC:
    196 		/* XXX "hz" granularity */
    197 		s = splclock();
    198 		atv = mono_time;
    199 		splx(s);
    200 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    201 		break;
    202 	default:
    203 		return (EINVAL);
    204 	}
    205 
    206 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    207 }
    208 
    209 /* ARGSUSED */
    210 int
    211 sys_clock_settime(l, v, retval)
    212 	struct lwp *l;
    213 	void *v;
    214 	register_t *retval;
    215 {
    216 	struct sys_clock_settime_args /* {
    217 		syscallarg(clockid_t) clock_id;
    218 		syscallarg(const struct timespec *) tp;
    219 	} */ *uap = v;
    220 	struct proc *p = l->l_proc;
    221 	int error;
    222 
    223 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    224 		return (error);
    225 
    226 	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
    227 }
    228 
    229 
    230 int
    231 clock_settime1(clock_id, tp)
    232 	clockid_t clock_id;
    233 	const struct timespec *tp;
    234 {
    235 	struct timespec ats;
    236 	struct timeval atv;
    237 	int error;
    238 
    239 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    240 		return (error);
    241 
    242 	switch (clock_id) {
    243 	case CLOCK_REALTIME:
    244 		TIMESPEC_TO_TIMEVAL(&atv, &ats);
    245 		if ((error = settime(&atv)) != 0)
    246 			return (error);
    247 		break;
    248 	case CLOCK_MONOTONIC:
    249 		return (EINVAL);	/* read-only clock */
    250 	default:
    251 		return (EINVAL);
    252 	}
    253 
    254 	return 0;
    255 }
    256 
    257 int
    258 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    259 {
    260 	struct sys_clock_getres_args /* {
    261 		syscallarg(clockid_t) clock_id;
    262 		syscallarg(struct timespec *) tp;
    263 	} */ *uap = v;
    264 	clockid_t clock_id;
    265 	struct timespec ts;
    266 	int error = 0;
    267 
    268 	clock_id = SCARG(uap, clock_id);
    269 	switch (clock_id) {
    270 	case CLOCK_REALTIME:
    271 	case CLOCK_MONOTONIC:
    272 		ts.tv_sec = 0;
    273 		ts.tv_nsec = 1000000000 / hz;
    274 		break;
    275 	default:
    276 		return (EINVAL);
    277 	}
    278 
    279 	if (SCARG(uap, tp))
    280 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    281 
    282 	return error;
    283 }
    284 
    285 /* ARGSUSED */
    286 int
    287 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    288 {
    289 	static int nanowait;
    290 	struct sys_nanosleep_args/* {
    291 		syscallarg(struct timespec *) rqtp;
    292 		syscallarg(struct timespec *) rmtp;
    293 	} */ *uap = v;
    294 	struct timespec rqt;
    295 	struct timespec rmt;
    296 	struct timeval atv, utv;
    297 	int error, s, timo;
    298 
    299 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    300 		       sizeof(struct timespec));
    301 	if (error)
    302 		return (error);
    303 
    304 	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
    305 	if (itimerfix(&atv))
    306 		return (EINVAL);
    307 
    308 	s = splclock();
    309 	timeradd(&atv,&time,&atv);
    310 	timo = hzto(&atv);
    311 	/*
    312 	 * Avoid inadvertantly sleeping forever
    313 	 */
    314 	if (timo == 0)
    315 		timo = 1;
    316 	splx(s);
    317 
    318 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    319 	if (error == ERESTART)
    320 		error = EINTR;
    321 	if (error == EWOULDBLOCK)
    322 		error = 0;
    323 
    324 	if (SCARG(uap, rmtp)) {
    325 		int error;
    326 
    327 		s = splclock();
    328 		utv = time;
    329 		splx(s);
    330 
    331 		timersub(&atv, &utv, &utv);
    332 		if (utv.tv_sec < 0)
    333 			timerclear(&utv);
    334 
    335 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    336 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    337 			sizeof(rmt));
    338 		if (error)
    339 			return (error);
    340 	}
    341 
    342 	return error;
    343 }
    344 
    345 /* ARGSUSED */
    346 int
    347 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    348 {
    349 	struct sys_gettimeofday_args /* {
    350 		syscallarg(struct timeval *) tp;
    351 		syscallarg(void *) tzp;		really "struct timezone *"
    352 	} */ *uap = v;
    353 	struct timeval atv;
    354 	int error = 0;
    355 	struct timezone tzfake;
    356 
    357 	if (SCARG(uap, tp)) {
    358 		microtime(&atv);
    359 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    360 		if (error)
    361 			return (error);
    362 	}
    363 	if (SCARG(uap, tzp)) {
    364 		/*
    365 		 * NetBSD has no kernel notion of time zone, so we just
    366 		 * fake up a timezone struct and return it if demanded.
    367 		 */
    368 		tzfake.tz_minuteswest = 0;
    369 		tzfake.tz_dsttime = 0;
    370 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    371 	}
    372 	return (error);
    373 }
    374 
    375 /* ARGSUSED */
    376 int
    377 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    378 {
    379 	struct sys_settimeofday_args /* {
    380 		syscallarg(const struct timeval *) tv;
    381 		syscallarg(const void *) tzp;	really "const struct timezone *"
    382 	} */ *uap = v;
    383 	struct proc *p = l->l_proc;
    384 	int error;
    385 
    386 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    387 		return (error);
    388 
    389 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
    390 }
    391 
    392 int
    393 settimeofday1(utv, utzp, p)
    394 	const struct timeval *utv;
    395 	const struct timezone *utzp;
    396 	struct proc *p;
    397 {
    398 	struct timeval atv;
    399 	struct timezone atz;
    400 	struct timeval *tv = NULL;
    401 	struct timezone *tzp = NULL;
    402 	int error;
    403 
    404 	/* Verify all parameters before changing time. */
    405 	if (utv) {
    406 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    407 			return (error);
    408 		tv = &atv;
    409 	}
    410 	/* XXX since we don't use tz, probably no point in doing copyin. */
    411 	if (utzp) {
    412 		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
    413 			return (error);
    414 		tzp = &atz;
    415 	}
    416 
    417 	if (tv)
    418 		if ((error = settime(tv)) != 0)
    419 			return (error);
    420 	/*
    421 	 * NetBSD has no kernel notion of time zone, and only an
    422 	 * obsolete program would try to set it, so we log a warning.
    423 	 */
    424 	if (tzp)
    425 		log(LOG_WARNING, "pid %d attempted to set the "
    426 		    "(obsolete) kernel time zone\n", p->p_pid);
    427 	return (0);
    428 }
    429 
    430 int	tickdelta;			/* current clock skew, us. per tick */
    431 long	timedelta;			/* unapplied time correction, us. */
    432 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    433 int	time_adjusted;			/* set if an adjustment is made */
    434 
    435 /* ARGSUSED */
    436 int
    437 sys_adjtime(struct lwp *l, void *v, register_t *retval)
    438 {
    439 	struct sys_adjtime_args /* {
    440 		syscallarg(const struct timeval *) delta;
    441 		syscallarg(struct timeval *) olddelta;
    442 	} */ *uap = v;
    443 	struct proc *p = l->l_proc;
    444 	int error;
    445 
    446 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    447 		return (error);
    448 
    449 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
    450 }
    451 
    452 int
    453 adjtime1(delta, olddelta, p)
    454 	const struct timeval *delta;
    455 	struct timeval *olddelta;
    456 	struct proc *p;
    457 {
    458 	struct timeval atv;
    459 	long ndelta, ntickdelta, odelta;
    460 	int error;
    461 	int s;
    462 
    463 	error = copyin(delta, &atv, sizeof(struct timeval));
    464 	if (error)
    465 		return (error);
    466 
    467 	/*
    468 	 * Compute the total correction and the rate at which to apply it.
    469 	 * Round the adjustment down to a whole multiple of the per-tick
    470 	 * delta, so that after some number of incremental changes in
    471 	 * hardclock(), tickdelta will become zero, lest the correction
    472 	 * overshoot and start taking us away from the desired final time.
    473 	 */
    474 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    475 	if (ndelta > bigadj || ndelta < -bigadj)
    476 		ntickdelta = 10 * tickadj;
    477 	else
    478 		ntickdelta = tickadj;
    479 	if (ndelta % ntickdelta)
    480 		ndelta = ndelta / ntickdelta * ntickdelta;
    481 
    482 	/*
    483 	 * To make hardclock()'s job easier, make the per-tick delta negative
    484 	 * if we want time to run slower; then hardclock can simply compute
    485 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    486 	 */
    487 	if (ndelta < 0)
    488 		ntickdelta = -ntickdelta;
    489 	if (ndelta != 0)
    490 		/* We need to save the system clock time during shutdown */
    491 		time_adjusted |= 1;
    492 	s = splclock();
    493 	odelta = timedelta;
    494 	timedelta = ndelta;
    495 	tickdelta = ntickdelta;
    496 	splx(s);
    497 
    498 	if (olddelta) {
    499 		atv.tv_sec = odelta / 1000000;
    500 		atv.tv_usec = odelta % 1000000;
    501 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    502 	}
    503 	return error;
    504 }
    505 
    506 /*
    507  * Interval timer support. Both the BSD getitimer() family and the POSIX
    508  * timer_*() family of routines are supported.
    509  *
    510  * All timers are kept in an array pointed to by p_timers, which is
    511  * allocated on demand - many processes don't use timers at all. The
    512  * first three elements in this array are reserved for the BSD timers:
    513  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    514  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    515  * syscall.
    516  *
    517  * Realtime timers are kept in the ptimer structure as an absolute
    518  * time; virtual time timers are kept as a linked list of deltas.
    519  * Virtual time timers are processed in the hardclock() routine of
    520  * kern_clock.c.  The real time timer is processed by a callout
    521  * routine, called from the softclock() routine.  Since a callout may
    522  * be delayed in real time due to interrupt processing in the system,
    523  * it is possible for the real time timeout routine (realtimeexpire,
    524  * given below), to be delayed in real time past when it is supposed
    525  * to occur.  It does not suffice, therefore, to reload the real timer
    526  * .it_value from the real time timers .it_interval.  Rather, we
    527  * compute the next time in absolute time the timer should go off.  */
    528 
    529 /* Allocate a POSIX realtime timer. */
    530 int
    531 sys_timer_create(struct lwp *l, void *v, register_t *retval)
    532 {
    533 	struct sys_timer_create_args /* {
    534 		syscallarg(clockid_t) clock_id;
    535 		syscallarg(struct sigevent *) evp;
    536 		syscallarg(timer_t *) timerid;
    537 	} */ *uap = v;
    538 	struct proc *p = l->l_proc;
    539 	clockid_t id;
    540 	struct sigevent *evp;
    541 	struct ptimer *pt;
    542 	timer_t timerid;
    543 	int error;
    544 
    545 	id = SCARG(uap, clock_id);
    546 	if (id < CLOCK_REALTIME ||
    547 	    id > CLOCK_PROF)
    548 		return (EINVAL);
    549 
    550 	if (p->p_timers == NULL)
    551 		timers_alloc(p);
    552 
    553 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    554 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    555 		if (p->p_timers->pts_timers[timerid] == NULL)
    556 			break;
    557 
    558 	if (timerid == TIMER_MAX)
    559 		return EAGAIN;
    560 
    561 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    562 	evp = SCARG(uap, evp);
    563 	if (evp) {
    564 		if (((error =
    565 		    copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
    566 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    567 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    568 			pool_put(&ptimer_pool, pt);
    569 			return (error ? error : EINVAL);
    570 		}
    571 	} else {
    572 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    573 		switch (id) {
    574 		case CLOCK_REALTIME:
    575 			pt->pt_ev.sigev_signo = SIGALRM;
    576 			break;
    577 		case CLOCK_VIRTUAL:
    578 			pt->pt_ev.sigev_signo = SIGVTALRM;
    579 			break;
    580 		case CLOCK_PROF:
    581 			pt->pt_ev.sigev_signo = SIGPROF;
    582 			break;
    583 		}
    584 		pt->pt_ev.sigev_value.sival_int = timerid;
    585 	}
    586 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    587 	pt->pt_info.ksi_errno = 0;
    588 	pt->pt_info.ksi_code = 0;
    589 	pt->pt_info.ksi_pid = p->p_pid;
    590 	pt->pt_info.ksi_uid = p->p_cred->p_ruid;
    591 	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
    592 
    593 	pt->pt_type = id;
    594 	pt->pt_proc = p;
    595 	pt->pt_overruns = 0;
    596 	pt->pt_poverruns = 0;
    597 	pt->pt_entry = timerid;
    598 	timerclear(&pt->pt_time.it_value);
    599 	if (id == CLOCK_REALTIME)
    600 		callout_init(&pt->pt_ch);
    601 	else
    602 		pt->pt_active = 0;
    603 
    604 	p->p_timers->pts_timers[timerid] = pt;
    605 
    606 	return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
    607 }
    608 
    609 
    610 /* Delete a POSIX realtime timer */
    611 int
    612 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    613 {
    614 	struct sys_timer_delete_args /*  {
    615 		syscallarg(timer_t) timerid;
    616 	} */ *uap = v;
    617 	struct proc *p = l->l_proc;
    618 	timer_t timerid;
    619 	struct ptimer *pt, *ptn;
    620 	int s;
    621 
    622 	timerid = SCARG(uap, timerid);
    623 
    624 	if ((p->p_timers == NULL) ||
    625 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    626 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    627 		return (EINVAL);
    628 
    629 	if (pt->pt_type == CLOCK_REALTIME)
    630 		callout_stop(&pt->pt_ch);
    631 	else if (pt->pt_active) {
    632 		s = splclock();
    633 		ptn = LIST_NEXT(pt, pt_list);
    634 		LIST_REMOVE(pt, pt_list);
    635 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    636 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    637 			    &ptn->pt_time.it_value);
    638 		splx(s);
    639 	}
    640 
    641 	p->p_timers->pts_timers[timerid] = NULL;
    642 	pool_put(&ptimer_pool, pt);
    643 
    644 	return (0);
    645 }
    646 
    647 /*
    648  * Set up the given timer. The value in pt->pt_time.it_value is taken
    649  * to be an absolute time for CLOCK_REALTIME timers and a relative
    650  * time for virtual timers.
    651  * Must be called at splclock().
    652  */
    653 void
    654 timer_settime(struct ptimer *pt)
    655 {
    656 	struct ptimer *ptn, *pptn;
    657 	struct ptlist *ptl;
    658 
    659 	if (pt->pt_type == CLOCK_REALTIME) {
    660 		callout_stop(&pt->pt_ch);
    661 		if (timerisset(&pt->pt_time.it_value)) {
    662 			/*
    663 			 * Don't need to check hzto() return value, here.
    664 			 * callout_reset() does it for us.
    665 			 */
    666 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    667 			    realtimerexpire, pt);
    668 		}
    669 	} else {
    670 		if (pt->pt_active) {
    671 			ptn = LIST_NEXT(pt, pt_list);
    672 			LIST_REMOVE(pt, pt_list);
    673 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    674 				timeradd(&pt->pt_time.it_value,
    675 				    &ptn->pt_time.it_value,
    676 				    &ptn->pt_time.it_value);
    677 		}
    678 		if (timerisset(&pt->pt_time.it_value)) {
    679 			if (pt->pt_type == CLOCK_VIRTUAL)
    680 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    681 			else
    682 				ptl = &pt->pt_proc->p_timers->pts_prof;
    683 
    684 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    685 			     ptn && timercmp(&pt->pt_time.it_value,
    686 				 &ptn->pt_time.it_value, >);
    687 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    688 				timersub(&pt->pt_time.it_value,
    689 				    &ptn->pt_time.it_value,
    690 				    &pt->pt_time.it_value);
    691 
    692 			if (pptn)
    693 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    694 			else
    695 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    696 
    697 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    698 				timersub(&ptn->pt_time.it_value,
    699 				    &pt->pt_time.it_value,
    700 				    &ptn->pt_time.it_value);
    701 
    702 			pt->pt_active = 1;
    703 		} else
    704 			pt->pt_active = 0;
    705 	}
    706 }
    707 
    708 void
    709 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    710 {
    711 	struct ptimer *ptn;
    712 
    713 	*aitv = pt->pt_time;
    714 	if (pt->pt_type == CLOCK_REALTIME) {
    715 		/*
    716 		 * Convert from absolute to relative time in .it_value
    717 		 * part of real time timer.  If time for real time
    718 		 * timer has passed return 0, else return difference
    719 		 * between current time and time for the timer to go
    720 		 * off.
    721 		 */
    722 		if (timerisset(&aitv->it_value)) {
    723 			if (timercmp(&aitv->it_value, &time, <))
    724 				timerclear(&aitv->it_value);
    725 			else
    726 				timersub(&aitv->it_value, &time,
    727 				    &aitv->it_value);
    728 		}
    729 	} else if (pt->pt_active) {
    730 		if (pt->pt_type == CLOCK_VIRTUAL)
    731 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    732 		else
    733 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    734 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    735 			timeradd(&aitv->it_value,
    736 			    &ptn->pt_time.it_value, &aitv->it_value);
    737 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    738 	} else
    739 		timerclear(&aitv->it_value);
    740 }
    741 
    742 
    743 
    744 /* Set and arm a POSIX realtime timer */
    745 int
    746 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    747 {
    748 	struct sys_timer_settime_args /* {
    749 		syscallarg(timer_t) timerid;
    750 		syscallarg(int) flags;
    751 		syscallarg(const struct itimerspec *) value;
    752 		syscallarg(struct itimerspec *) ovalue;
    753 	} */ *uap = v;
    754 	struct proc *p = l->l_proc;
    755 	int error, s, timerid;
    756 	struct itimerval val, oval;
    757 	struct itimerspec value, ovalue;
    758 	struct ptimer *pt;
    759 
    760 	timerid = SCARG(uap, timerid);
    761 
    762 	if ((p->p_timers == NULL) ||
    763 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    764 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    765 		return (EINVAL);
    766 
    767 	if ((error = copyin(SCARG(uap, value), &value,
    768 	    sizeof(struct itimerspec))) != 0)
    769 		return (error);
    770 
    771 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
    772 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
    773 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    774 		return (EINVAL);
    775 
    776 	oval = pt->pt_time;
    777 	pt->pt_time = val;
    778 
    779 	s = splclock();
    780 	/*
    781 	 * If we've been passed a relative time for a realtime timer,
    782 	 * convert it to absolute; if an absolute time for a virtual
    783 	 * timer, convert it to relative and make sure we don't set it
    784 	 * to zero, which would cancel the timer, or let it go
    785 	 * negative, which would confuse the comparison tests.
    786 	 */
    787 	if (timerisset(&pt->pt_time.it_value)) {
    788 		if (pt->pt_type == CLOCK_REALTIME) {
    789 			if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
    790 				timeradd(&pt->pt_time.it_value, &time,
    791 				    &pt->pt_time.it_value);
    792 		} else {
    793 			if ((SCARG(uap, flags) & TIMER_ABSTIME) != 0) {
    794 				timersub(&pt->pt_time.it_value, &time,
    795 				    &pt->pt_time.it_value);
    796 				if (!timerisset(&pt->pt_time.it_value) ||
    797 				    pt->pt_time.it_value.tv_sec < 0) {
    798 					pt->pt_time.it_value.tv_sec = 0;
    799 					pt->pt_time.it_value.tv_usec = 1;
    800 				}
    801 			}
    802 		}
    803 	}
    804 
    805 	timer_settime(pt);
    806 	splx(s);
    807 
    808 	if (SCARG(uap, ovalue)) {
    809 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
    810 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
    811 		return copyout(&ovalue, SCARG(uap, ovalue),
    812 		    sizeof(struct itimerspec));
    813 	}
    814 
    815 	return (0);
    816 }
    817 
    818 /* Return the time remaining until a POSIX timer fires. */
    819 int
    820 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    821 {
    822 	struct sys_timer_gettime_args /* {
    823 		syscallarg(timer_t) timerid;
    824 		syscallarg(struct itimerspec *) value;
    825 	} */ *uap = v;
    826 	struct itimerval aitv;
    827 	struct itimerspec its;
    828 	struct proc *p = l->l_proc;
    829 	int s, timerid;
    830 	struct ptimer *pt;
    831 
    832 	timerid = SCARG(uap, timerid);
    833 
    834 	if ((p->p_timers == NULL) ||
    835 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    836 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    837 		return (EINVAL);
    838 
    839 	s = splclock();
    840 	timer_gettime(pt, &aitv);
    841 	splx(s);
    842 
    843 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
    844 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
    845 
    846 	return copyout(&its, SCARG(uap, value), sizeof(its));
    847 }
    848 
    849 /*
    850  * Return the count of the number of times a periodic timer expired
    851  * while a notification was already pending. The counter is reset when
    852  * a timer expires and a notification can be posted.
    853  */
    854 int
    855 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    856 {
    857 	struct sys_timer_getoverrun_args /* {
    858 		syscallarg(timer_t) timerid;
    859 	} */ *uap = v;
    860 	struct proc *p = l->l_proc;
    861 	int timerid;
    862 	struct ptimer *pt;
    863 
    864 	timerid = SCARG(uap, timerid);
    865 
    866 	if ((p->p_timers == NULL) ||
    867 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    868 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    869 		return (EINVAL);
    870 
    871 	*retval = pt->pt_poverruns;
    872 
    873 	return (0);
    874 }
    875 
    876 /* Glue function that triggers an upcall; called from userret(). */
    877 static void
    878 timerupcall(struct lwp *l, void *arg)
    879 {
    880 	struct ptimers *pt = (struct ptimers *)arg;
    881 	unsigned int i, fired, done;
    882 
    883 	KDASSERT(l->l_proc->p_sa);
    884 	/* Bail out if we do not own the virtual processor */
    885 	if (l->l_savp->savp_lwp != l)
    886 		return ;
    887 
    888 	KERNEL_PROC_LOCK(l);
    889 
    890 	fired = pt->pts_fired;
    891 	done = 0;
    892 	while ((i = ffs(fired)) != 0) {
    893 		siginfo_t *si;
    894 		int mask = 1 << --i;
    895 		int f;
    896 
    897 		f = l->l_flag & L_SA;
    898 		l->l_flag &= ~L_SA;
    899 		si = siginfo_alloc(PR_WAITOK);
    900 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    901 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    902 		    sizeof(*si), si, siginfo_free) != 0) {
    903 			siginfo_free(si);
    904 			/* XXX What do we do here?? */
    905 		} else
    906 			done |= mask;
    907 		fired &= ~mask;
    908 		l->l_flag |= f;
    909 	}
    910 	pt->pts_fired &= ~done;
    911 	if (pt->pts_fired == 0)
    912 		l->l_proc->p_userret = NULL;
    913 
    914 	KERNEL_PROC_UNLOCK(l);
    915 }
    916 
    917 
    918 /*
    919  * Real interval timer expired:
    920  * send process whose timer expired an alarm signal.
    921  * If time is not set up to reload, then just return.
    922  * Else compute next time timer should go off which is > current time.
    923  * This is where delay in processing this timeout causes multiple
    924  * SIGALRM calls to be compressed into one.
    925  */
    926 void
    927 realtimerexpire(void *arg)
    928 {
    929 	struct ptimer *pt;
    930 	int s;
    931 
    932 	pt = (struct ptimer *)arg;
    933 
    934 	itimerfire(pt);
    935 
    936 	if (!timerisset(&pt->pt_time.it_interval)) {
    937 		timerclear(&pt->pt_time.it_value);
    938 		return;
    939 	}
    940 	for (;;) {
    941 		s = splclock();
    942 		timeradd(&pt->pt_time.it_value,
    943 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    944 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
    945 			/*
    946 			 * Don't need to check hzto() return value, here.
    947 			 * callout_reset() does it for us.
    948 			 */
    949 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    950 			    realtimerexpire, pt);
    951 			splx(s);
    952 			return;
    953 		}
    954 		splx(s);
    955 		pt->pt_overruns++;
    956 	}
    957 }
    958 
    959 /* BSD routine to get the value of an interval timer. */
    960 /* ARGSUSED */
    961 int
    962 sys_getitimer(struct lwp *l, void *v, register_t *retval)
    963 {
    964 	struct sys_getitimer_args /* {
    965 		syscallarg(int) which;
    966 		syscallarg(struct itimerval *) itv;
    967 	} */ *uap = v;
    968 	struct proc *p = l->l_proc;
    969 	struct itimerval aitv;
    970 	int s, which;
    971 
    972 	which = SCARG(uap, which);
    973 
    974 	if ((u_int)which > ITIMER_PROF)
    975 		return (EINVAL);
    976 
    977 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
    978 		timerclear(&aitv.it_value);
    979 		timerclear(&aitv.it_interval);
    980 	} else {
    981 		s = splclock();
    982 		timer_gettime(p->p_timers->pts_timers[which], &aitv);
    983 		splx(s);
    984 	}
    985 
    986 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    987 
    988 }
    989 
    990 /* BSD routine to set/arm an interval timer. */
    991 /* ARGSUSED */
    992 int
    993 sys_setitimer(struct lwp *l, void *v, register_t *retval)
    994 {
    995 	struct sys_setitimer_args /* {
    996 		syscallarg(int) which;
    997 		syscallarg(const struct itimerval *) itv;
    998 		syscallarg(struct itimerval *) oitv;
    999 	} */ *uap = v;
   1000 	struct proc *p = l->l_proc;
   1001 	int which = SCARG(uap, which);
   1002 	struct sys_getitimer_args getargs;
   1003 	struct itimerval aitv;
   1004 	const struct itimerval *itvp;
   1005 	struct ptimer *pt;
   1006 	int s, error;
   1007 
   1008 	if ((u_int)which > ITIMER_PROF)
   1009 		return (EINVAL);
   1010 	itvp = SCARG(uap, itv);
   1011 	if (itvp &&
   1012 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1013 		return (error);
   1014 	if (SCARG(uap, oitv) != NULL) {
   1015 		SCARG(&getargs, which) = which;
   1016 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1017 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1018 			return (error);
   1019 	}
   1020 	if (itvp == 0)
   1021 		return (0);
   1022 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
   1023 		return (EINVAL);
   1024 
   1025 	/*
   1026 	 * Don't bother allocating data structures if the process just
   1027 	 * wants to clear the timer.
   1028 	 */
   1029 	if (!timerisset(&aitv.it_value) &&
   1030 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1031 		return (0);
   1032 
   1033 	if (p->p_timers == NULL)
   1034 		timers_alloc(p);
   1035 	if (p->p_timers->pts_timers[which] == NULL) {
   1036 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1037 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1038 		pt->pt_ev.sigev_value.sival_int = which;
   1039 		pt->pt_overruns = 0;
   1040 		pt->pt_proc = p;
   1041 		pt->pt_type = which;
   1042 		pt->pt_entry = which;
   1043 		switch (which) {
   1044 		case ITIMER_REAL:
   1045 			callout_init(&pt->pt_ch);
   1046 			pt->pt_ev.sigev_signo = SIGALRM;
   1047 			break;
   1048 		case ITIMER_VIRTUAL:
   1049 			pt->pt_active = 0;
   1050 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1051 			break;
   1052 		case ITIMER_PROF:
   1053 			pt->pt_active = 0;
   1054 			pt->pt_ev.sigev_signo = SIGPROF;
   1055 			break;
   1056 		}
   1057 	} else
   1058 		pt = p->p_timers->pts_timers[which];
   1059 
   1060 	pt->pt_time = aitv;
   1061 	p->p_timers->pts_timers[which] = pt;
   1062 
   1063 	s = splclock();
   1064 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1065 		/* Convert to absolute time */
   1066 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1067 	}
   1068 	timer_settime(pt);
   1069 	splx(s);
   1070 
   1071 	return (0);
   1072 }
   1073 
   1074 /* Utility routines to manage the array of pointers to timers. */
   1075 void
   1076 timers_alloc(struct proc *p)
   1077 {
   1078 	int i;
   1079 	struct ptimers *pts;
   1080 
   1081 	pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
   1082 	LIST_INIT(&pts->pts_virtual);
   1083 	LIST_INIT(&pts->pts_prof);
   1084 	for (i = 0; i < TIMER_MAX; i++)
   1085 		pts->pts_timers[i] = NULL;
   1086 	pts->pts_fired = 0;
   1087 	p->p_timers = pts;
   1088 }
   1089 
   1090 /*
   1091  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1092  * then clean up all timers and free all the data structures. If
   1093  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1094  * by timer_create(), not the BSD setitimer() timers, and only free the
   1095  * structure if none of those remain.
   1096  */
   1097 void
   1098 timers_free(struct proc *p, int which)
   1099 {
   1100 	int i, s;
   1101 	struct ptimers *pts;
   1102 	struct ptimer *pt, *ptn;
   1103 	struct timeval tv;
   1104 
   1105 	if (p->p_timers) {
   1106 		pts = p->p_timers;
   1107 		if (which == TIMERS_ALL)
   1108 			i = 0;
   1109 		else {
   1110 			s = splclock();
   1111 			timerclear(&tv);
   1112 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1113 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1114 			     ptn = LIST_NEXT(ptn, pt_list))
   1115 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1116 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1117 			if (ptn) {
   1118 				timeradd(&tv, &ptn->pt_time.it_value,
   1119 				    &ptn->pt_time.it_value);
   1120 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1121 				    ptn, pt_list);
   1122 			}
   1123 
   1124 			timerclear(&tv);
   1125 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1126 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1127 			     ptn = LIST_NEXT(ptn, pt_list))
   1128 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1129 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1130 			if (ptn) {
   1131 				timeradd(&tv, &ptn->pt_time.it_value,
   1132 				    &ptn->pt_time.it_value);
   1133 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1134 				    pt_list);
   1135 			}
   1136 			splx(s);
   1137 			i = 3;
   1138 		}
   1139 		for ( ; i < TIMER_MAX; i++)
   1140 			if ((pt = pts->pts_timers[i]) != NULL) {
   1141 				if (pt->pt_type == CLOCK_REALTIME)
   1142 					callout_stop(&pt->pt_ch);
   1143 				pts->pts_timers[i] = NULL;
   1144 				pool_put(&ptimer_pool, pt);
   1145 			}
   1146 		if ((pts->pts_timers[0] == NULL) &&
   1147 		    (pts->pts_timers[1] == NULL) &&
   1148 		    (pts->pts_timers[2] == NULL)) {
   1149 			p->p_timers = NULL;
   1150 			free(pts, M_SUBPROC);
   1151 		}
   1152 	}
   1153 }
   1154 
   1155 /*
   1156  * Check that a proposed value to load into the .it_value or
   1157  * .it_interval part of an interval timer is acceptable, and
   1158  * fix it to have at least minimal value (i.e. if it is less
   1159  * than the resolution of the clock, round it up.)
   1160  */
   1161 int
   1162 itimerfix(struct timeval *tv)
   1163 {
   1164 
   1165 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1166 		return (EINVAL);
   1167 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1168 		tv->tv_usec = tick;
   1169 	return (0);
   1170 }
   1171 
   1172 /*
   1173  * Decrement an interval timer by a specified number
   1174  * of microseconds, which must be less than a second,
   1175  * i.e. < 1000000.  If the timer expires, then reload
   1176  * it.  In this case, carry over (usec - old value) to
   1177  * reduce the value reloaded into the timer so that
   1178  * the timer does not drift.  This routine assumes
   1179  * that it is called in a context where the timers
   1180  * on which it is operating cannot change in value.
   1181  */
   1182 int
   1183 itimerdecr(struct ptimer *pt, int usec)
   1184 {
   1185 	struct itimerval *itp;
   1186 
   1187 	itp = &pt->pt_time;
   1188 	if (itp->it_value.tv_usec < usec) {
   1189 		if (itp->it_value.tv_sec == 0) {
   1190 			/* expired, and already in next interval */
   1191 			usec -= itp->it_value.tv_usec;
   1192 			goto expire;
   1193 		}
   1194 		itp->it_value.tv_usec += 1000000;
   1195 		itp->it_value.tv_sec--;
   1196 	}
   1197 	itp->it_value.tv_usec -= usec;
   1198 	usec = 0;
   1199 	if (timerisset(&itp->it_value))
   1200 		return (1);
   1201 	/* expired, exactly at end of interval */
   1202 expire:
   1203 	if (timerisset(&itp->it_interval)) {
   1204 		itp->it_value = itp->it_interval;
   1205 		itp->it_value.tv_usec -= usec;
   1206 		if (itp->it_value.tv_usec < 0) {
   1207 			itp->it_value.tv_usec += 1000000;
   1208 			itp->it_value.tv_sec--;
   1209 		}
   1210 		timer_settime(pt);
   1211 	} else
   1212 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1213 	return (0);
   1214 }
   1215 
   1216 void
   1217 itimerfire(struct ptimer *pt)
   1218 {
   1219 	struct proc *p = pt->pt_proc;
   1220 	struct sadata_vp *vp;
   1221 	int s;
   1222 	unsigned int i;
   1223 
   1224 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1225 		/*
   1226 		 * No RT signal infrastructure exists at this time;
   1227 		 * just post the signal number and throw away the
   1228 		 * value.
   1229 		 */
   1230 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
   1231 			pt->pt_overruns++;
   1232 		else {
   1233 			ksiginfo_t ksi;
   1234 			(void)memset(&ksi, 0, sizeof(ksi));
   1235 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1236 			ksi.ksi_code = SI_TIMER;
   1237 			ksi.ksi_sigval = pt->pt_ev.sigev_value;
   1238 			pt->pt_poverruns = pt->pt_overruns;
   1239 			pt->pt_overruns = 0;
   1240 			kpsignal(p, &ksi, NULL);
   1241 		}
   1242 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
   1243 		/* Cause the process to generate an upcall when it returns. */
   1244 
   1245 		if (p->p_userret == NULL) {
   1246 			/*
   1247 			 * XXX stop signals can be processed inside tsleep,
   1248 			 * which can be inside sa_yield's inner loop, which
   1249 			 * makes testing for sa_idle alone insuffucent to
   1250 			 * determine if we really should call setrunnable.
   1251 			 */
   1252 			pt->pt_poverruns = pt->pt_overruns;
   1253 			pt->pt_overruns = 0;
   1254 			i = 1 << pt->pt_entry;
   1255 			p->p_timers->pts_fired = i;
   1256 			p->p_userret = timerupcall;
   1257 			p->p_userret_arg = p->p_timers;
   1258 
   1259 			SCHED_LOCK(s);
   1260 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1261 				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
   1262 					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
   1263 					sched_wakeup(vp->savp_lwp);
   1264 					break;
   1265 				}
   1266 			}
   1267 			SCHED_UNLOCK(s);
   1268 		} else if (p->p_userret == timerupcall) {
   1269 			i = 1 << pt->pt_entry;
   1270 			if ((p->p_timers->pts_fired & i) == 0) {
   1271 				pt->pt_poverruns = pt->pt_overruns;
   1272 				pt->pt_overruns = 0;
   1273 				p->p_timers->pts_fired |= i;
   1274 			} else
   1275 				pt->pt_overruns++;
   1276 		} else {
   1277 			pt->pt_overruns++;
   1278 			if ((p->p_flag & P_WEXIT) == 0)
   1279 				printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
   1280 				    p->p_pid, pt->pt_overruns,
   1281 				    pt->pt_ev.sigev_value.sival_int,
   1282 				    p->p_userret);
   1283 		}
   1284 	}
   1285 
   1286 }
   1287 
   1288 /*
   1289  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1290  * for usage and rationale.
   1291  */
   1292 int
   1293 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1294 {
   1295 	struct timeval tv, delta;
   1296 	int s, rv = 0;
   1297 
   1298 	s = splclock();
   1299 	tv = mono_time;
   1300 	splx(s);
   1301 
   1302 	timersub(&tv, lasttime, &delta);
   1303 
   1304 	/*
   1305 	 * check for 0,0 is so that the message will be seen at least once,
   1306 	 * even if interval is huge.
   1307 	 */
   1308 	if (timercmp(&delta, mininterval, >=) ||
   1309 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1310 		*lasttime = tv;
   1311 		rv = 1;
   1312 	}
   1313 
   1314 	return (rv);
   1315 }
   1316 
   1317 /*
   1318  * ppsratecheck(): packets (or events) per second limitation.
   1319  */
   1320 int
   1321 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1322 {
   1323 	struct timeval tv, delta;
   1324 	int s, rv;
   1325 
   1326 	s = splclock();
   1327 	tv = mono_time;
   1328 	splx(s);
   1329 
   1330 	timersub(&tv, lasttime, &delta);
   1331 
   1332 	/*
   1333 	 * check for 0,0 is so that the message will be seen at least once.
   1334 	 * if more than one second have passed since the last update of
   1335 	 * lasttime, reset the counter.
   1336 	 *
   1337 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1338 	 * try to use *curpps for stat purposes as well.
   1339 	 */
   1340 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1341 	    delta.tv_sec >= 1) {
   1342 		*lasttime = tv;
   1343 		*curpps = 0;
   1344 	}
   1345 	if (maxpps < 0)
   1346 		rv = 1;
   1347 	else if (*curpps < maxpps)
   1348 		rv = 1;
   1349 	else
   1350 		rv = 0;
   1351 
   1352 #if 1 /*DIAGNOSTIC?*/
   1353 	/* be careful about wrap-around */
   1354 	if (*curpps + 1 > *curpps)
   1355 		*curpps = *curpps + 1;
   1356 #else
   1357 	/*
   1358 	 * assume that there's not too many calls to this function.
   1359 	 * not sure if the assumption holds, as it depends on *caller's*
   1360 	 * behavior, not the behavior of this function.
   1361 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1362 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1363 	 */
   1364 	*curpps = *curpps + 1;
   1365 #endif
   1366 
   1367 	return (rv);
   1368 }
   1369