Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.9
      1 /*	$NetBSD: kern_time.c,v 1.9 1994/06/29 06:32:48 cgd Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/resourcevar.h>
     40 #include <sys/kernel.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/vnode.h>
     44 
     45 #include <machine/cpu.h>
     46 
     47 /*
     48  * Time of day and interval timer support.
     49  *
     50  * These routines provide the kernel entry points to get and set
     51  * the time-of-day and per-process interval timers.  Subroutines
     52  * here provide support for adding and subtracting timeval structures
     53  * and decrementing interval timers, optionally reloading the interval
     54  * timers when they expire.
     55  */
     56 
     57 struct gettimeofday_args {
     58 	struct	timeval *tp;
     59 	struct	timezone *tzp;
     60 };
     61 /* ARGSUSED */
     62 int
     63 gettimeofday(p, uap, retval)
     64 	struct proc *p;
     65 	register struct gettimeofday_args *uap;
     66 	int *retval;
     67 {
     68 	struct timeval atv;
     69 	int error = 0;
     70 
     71 	if (uap->tp) {
     72 		microtime(&atv);
     73 		if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
     74 		    sizeof (atv)))
     75 			return (error);
     76 	}
     77 	if (uap->tzp)
     78 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
     79 		    sizeof (tz));
     80 	return (error);
     81 }
     82 
     83 struct settimeofday_args {
     84 	struct	timeval *tv;
     85 	struct	timezone *tzp;
     86 };
     87 /* ARGSUSED */
     88 int
     89 settimeofday(p, uap, retval)
     90 	struct proc *p;
     91 	struct settimeofday_args *uap;
     92 	int *retval;
     93 {
     94 	struct timeval atv, delta;
     95 	struct timezone atz;
     96 	int error, s;
     97 
     98 	if (error = suser(p->p_ucred, &p->p_acflag))
     99 		return (error);
    100 	/* Verify all parameters before changing time. */
    101 	if (uap->tv &&
    102 	    (error = copyin((caddr_t)uap->tv, (caddr_t)&atv, sizeof(atv))))
    103 		return (error);
    104 	if (uap->tzp &&
    105 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
    106 		return (error);
    107 	if (uap->tv) {
    108 		/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    109 		s = splclock();
    110 		/* nb. delta.tv_usec may be < 0, but this is OK here */
    111 		delta.tv_sec = atv.tv_sec - time.tv_sec;
    112 		delta.tv_usec = atv.tv_usec - time.tv_usec;
    113 		time = atv;
    114 		(void) splsoftclock();
    115 		timevaladd(&boottime, &delta);
    116 		timevalfix(&boottime);
    117 		timevaladd(&runtime, &delta);
    118 		timevalfix(&runtime);
    119 		LEASE_UPDATETIME(delta.tv_sec);
    120 		splx(s);
    121 		resettodr();
    122 	}
    123 	if (uap->tzp)
    124 		tz = atz;
    125 	return (0);
    126 }
    127 
    128 extern	int tickadj;			/* "standard" clock skew, us./tick */
    129 int	tickdelta;			/* current clock skew, us. per tick */
    130 long	timedelta;			/* unapplied time correction, us. */
    131 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    132 
    133 struct adjtime_args {
    134 	struct timeval *delta;
    135 	struct timeval *olddelta;
    136 };
    137 /* ARGSUSED */
    138 int
    139 adjtime(p, uap, retval)
    140 	struct proc *p;
    141 	register struct adjtime_args *uap;
    142 	int *retval;
    143 {
    144 	struct timeval atv;
    145 	register long ndelta, ntickdelta, odelta;
    146 	int s, error;
    147 
    148 	if (error = suser(p->p_ucred, &p->p_acflag))
    149 		return (error);
    150 	if (error =
    151 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval)))
    152 		return (error);
    153 
    154 	/*
    155 	 * Compute the total correction and the rate at which to apply it.
    156 	 * Round the adjustment down to a whole multiple of the per-tick
    157 	 * delta, so that after some number of incremental changes in
    158 	 * hardclock(), tickdelta will become zero, lest the correction
    159 	 * overshoot and start taking us away from the desired final time.
    160 	 */
    161 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    162 	if (ndelta > bigadj)
    163 		ntickdelta = 10 * tickadj;
    164 	else
    165 		ntickdelta = tickadj;
    166 	if (ndelta % ntickdelta)
    167 		ndelta = ndelta / ntickdelta * ntickdelta;
    168 
    169 	/*
    170 	 * To make hardclock()'s job easier, make the per-tick delta negative
    171 	 * if we want time to run slower; then hardclock can simply compute
    172 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    173 	 */
    174 	if (ndelta < 0)
    175 		ntickdelta = -ntickdelta;
    176 	s = splclock();
    177 	odelta = timedelta;
    178 	timedelta = ndelta;
    179 	tickdelta = ntickdelta;
    180 	splx(s);
    181 
    182 	if (uap->olddelta) {
    183 		atv.tv_sec = odelta / 1000000;
    184 		atv.tv_usec = odelta % 1000000;
    185 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
    186 		    sizeof(struct timeval));
    187 	}
    188 	return (0);
    189 }
    190 
    191 /*
    192  * Get value of an interval timer.  The process virtual and
    193  * profiling virtual time timers are kept in the p_stats area, since
    194  * they can be swapped out.  These are kept internally in the
    195  * way they are specified externally: in time until they expire.
    196  *
    197  * The real time interval timer is kept in the process table slot
    198  * for the process, and its value (it_value) is kept as an
    199  * absolute time rather than as a delta, so that it is easy to keep
    200  * periodic real-time signals from drifting.
    201  *
    202  * Virtual time timers are processed in the hardclock() routine of
    203  * kern_clock.c.  The real time timer is processed by a timeout
    204  * routine, called from the softclock() routine.  Since a callout
    205  * may be delayed in real time due to interrupt processing in the system,
    206  * it is possible for the real time timeout routine (realitexpire, given below),
    207  * to be delayed in real time past when it is supposed to occur.  It
    208  * does not suffice, therefore, to reload the real timer .it_value from the
    209  * real time timers .it_interval.  Rather, we compute the next time in
    210  * absolute time the timer should go off.
    211  */
    212 struct getitimer_args {
    213 	u_int	which;
    214 	struct	itimerval *itv;
    215 };
    216 /* ARGSUSED */
    217 int
    218 getitimer(p, uap, retval)
    219 	struct proc *p;
    220 	register struct getitimer_args *uap;
    221 	int *retval;
    222 {
    223 	struct itimerval aitv;
    224 	int s;
    225 
    226 	if (uap->which > ITIMER_PROF)
    227 		return (EINVAL);
    228 	s = splclock();
    229 	if (uap->which == ITIMER_REAL) {
    230 		/*
    231 		 * Convert from absoulte to relative time in .it_value
    232 		 * part of real time timer.  If time for real time timer
    233 		 * has passed return 0, else return difference between
    234 		 * current time and time for the timer to go off.
    235 		 */
    236 		aitv = p->p_realtimer;
    237 		if (timerisset(&aitv.it_value))
    238 			if (timercmp(&aitv.it_value, &time, <))
    239 				timerclear(&aitv.it_value);
    240 			else
    241 				timevalsub(&aitv.it_value,
    242 				    (struct timeval *)&time);
    243 	} else
    244 		aitv = p->p_stats->p_timer[uap->which];
    245 	splx(s);
    246 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
    247 	    sizeof (struct itimerval)));
    248 }
    249 
    250 struct setitimer_args {
    251 	u_int	which;
    252 	struct	itimerval *itv, *oitv;
    253 };
    254 /* ARGSUSED */
    255 int
    256 setitimer(p, uap, retval)
    257 	struct proc *p;
    258 	register struct setitimer_args *uap;
    259 	int *retval;
    260 {
    261 	struct itimerval aitv;
    262 	register struct itimerval *itvp;
    263 	int s, error;
    264 
    265 	if (uap->which > ITIMER_PROF)
    266 		return (EINVAL);
    267 	itvp = uap->itv;
    268 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
    269 	    sizeof(struct itimerval))))
    270 		return (error);
    271 	if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
    272 		return (error);
    273 	if (itvp == 0)
    274 		return (0);
    275 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    276 		return (EINVAL);
    277 	s = splclock();
    278 	if (uap->which == ITIMER_REAL) {
    279 		untimeout(realitexpire, p);
    280 		if (timerisset(&aitv.it_value)) {
    281 			timevaladd(&aitv.it_value, (struct timeval *)&time);
    282 			timeout(realitexpire, p, hzto(&aitv.it_value));
    283 		}
    284 		p->p_realtimer = aitv;
    285 	} else
    286 		p->p_stats->p_timer[uap->which] = aitv;
    287 	splx(s);
    288 	return (0);
    289 }
    290 
    291 /*
    292  * Real interval timer expired:
    293  * send process whose timer expired an alarm signal.
    294  * If time is not set up to reload, then just return.
    295  * Else compute next time timer should go off which is > current time.
    296  * This is where delay in processing this timeout causes multiple
    297  * SIGALRM calls to be compressed into one.
    298  */
    299 void
    300 realitexpire(arg)
    301 	void *arg;
    302 {
    303 	register struct proc *p;
    304 	int s;
    305 
    306 	p = (struct proc *)arg;
    307 	psignal(p, SIGALRM);
    308 	if (!timerisset(&p->p_realtimer.it_interval)) {
    309 		timerclear(&p->p_realtimer.it_value);
    310 		return;
    311 	}
    312 	for (;;) {
    313 		s = splclock();
    314 		timevaladd(&p->p_realtimer.it_value,
    315 		    &p->p_realtimer.it_interval);
    316 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    317 			timeout(realitexpire, p,
    318 			    hzto(&p->p_realtimer.it_value));
    319 			splx(s);
    320 			return;
    321 		}
    322 		splx(s);
    323 	}
    324 }
    325 
    326 /*
    327  * Check that a proposed value to load into the .it_value or
    328  * .it_interval part of an interval timer is acceptable, and
    329  * fix it to have at least minimal value (i.e. if it is less
    330  * than the resolution of the clock, round it up.)
    331  */
    332 int
    333 itimerfix(tv)
    334 	struct timeval *tv;
    335 {
    336 
    337 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    338 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    339 		return (EINVAL);
    340 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    341 		tv->tv_usec = tick;
    342 	return (0);
    343 }
    344 
    345 /*
    346  * Decrement an interval timer by a specified number
    347  * of microseconds, which must be less than a second,
    348  * i.e. < 1000000.  If the timer expires, then reload
    349  * it.  In this case, carry over (usec - old value) to
    350  * reduce the value reloaded into the timer so that
    351  * the timer does not drift.  This routine assumes
    352  * that it is called in a context where the timers
    353  * on which it is operating cannot change in value.
    354  */
    355 int
    356 itimerdecr(itp, usec)
    357 	register struct itimerval *itp;
    358 	int usec;
    359 {
    360 
    361 	if (itp->it_value.tv_usec < usec) {
    362 		if (itp->it_value.tv_sec == 0) {
    363 			/* expired, and already in next interval */
    364 			usec -= itp->it_value.tv_usec;
    365 			goto expire;
    366 		}
    367 		itp->it_value.tv_usec += 1000000;
    368 		itp->it_value.tv_sec--;
    369 	}
    370 	itp->it_value.tv_usec -= usec;
    371 	usec = 0;
    372 	if (timerisset(&itp->it_value))
    373 		return (1);
    374 	/* expired, exactly at end of interval */
    375 expire:
    376 	if (timerisset(&itp->it_interval)) {
    377 		itp->it_value = itp->it_interval;
    378 		itp->it_value.tv_usec -= usec;
    379 		if (itp->it_value.tv_usec < 0) {
    380 			itp->it_value.tv_usec += 1000000;
    381 			itp->it_value.tv_sec--;
    382 		}
    383 	} else
    384 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    385 	return (0);
    386 }
    387 
    388 /*
    389  * Add and subtract routines for timevals.
    390  * N.B.: subtract routine doesn't deal with
    391  * results which are before the beginning,
    392  * it just gets very confused in this case.
    393  * Caveat emptor.
    394  */
    395 void
    396 timevaladd(t1, t2)
    397 	struct timeval *t1, *t2;
    398 {
    399 
    400 	t1->tv_sec += t2->tv_sec;
    401 	t1->tv_usec += t2->tv_usec;
    402 	timevalfix(t1);
    403 }
    404 
    405 void
    406 timevalsub(t1, t2)
    407 	struct timeval *t1, *t2;
    408 {
    409 
    410 	t1->tv_sec -= t2->tv_sec;
    411 	t1->tv_usec -= t2->tv_usec;
    412 	timevalfix(t1);
    413 }
    414 
    415 void
    416 timevalfix(t1)
    417 	struct timeval *t1;
    418 {
    419 
    420 	if (t1->tv_usec < 0) {
    421 		t1->tv_sec--;
    422 		t1->tv_usec += 1000000;
    423 	}
    424 	if (t1->tv_usec >= 1000000) {
    425 		t1->tv_sec++;
    426 		t1->tv_usec -= 1000000;
    427 	}
    428 }
    429