Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.90.2.4
      1 /*	$NetBSD: kern_time.c,v 1.90.2.4 2007/09/03 14:40:58 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.90.2.4 2007/09/03 14:40:58 yamt Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/resourcevar.h>
     75 #include <sys/kernel.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/vnode.h>
     79 #include <sys/signalvar.h>
     80 #include <sys/syslog.h>
     81 #include <sys/timetc.h>
     82 #ifndef __HAVE_TIMECOUNTER
     83 #include <sys/timevar.h>
     84 #endif /* !__HAVE_TIMECOUNTER */
     85 #include <sys/kauth.h>
     86 
     87 #include <sys/mount.h>
     88 #include <sys/syscallargs.h>
     89 
     90 #include <uvm/uvm_extern.h>
     91 
     92 #include <machine/cpu.h>
     93 
     94 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     95     &pool_allocator_nointr, IPL_NONE);
     96 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     97     &pool_allocator_nointr, IPL_NONE);
     98 
     99 /* Time of day and interval timer support.
    100  *
    101  * These routines provide the kernel entry points to get and set
    102  * the time-of-day and per-process interval timers.  Subroutines
    103  * here provide support for adding and subtracting timeval structures
    104  * and decrementing interval timers, optionally reloading the interval
    105  * timers when they expire.
    106  */
    107 
    108 /* This function is used by clock_settime and settimeofday */
    109 int
    110 settime(struct proc *p, struct timespec *ts)
    111 {
    112 	struct timeval delta, tv;
    113 #ifdef __HAVE_TIMECOUNTER
    114 	struct timeval now;
    115 	struct timespec ts1;
    116 #endif /* !__HAVE_TIMECOUNTER */
    117 	struct cpu_info *ci;
    118 	int s1, s2;
    119 
    120 	/*
    121 	 * Don't allow the time to be set forward so far it will wrap
    122 	 * and become negative, thus allowing an attacker to bypass
    123 	 * the next check below.  The cutoff is 1 year before rollover
    124 	 * occurs, so even if the attacker uses adjtime(2) to move
    125 	 * the time past the cutoff, it will take a very long time
    126 	 * to get to the wrap point.
    127 	 *
    128 	 * XXX: we check against INT_MAX since on 64-bit
    129 	 *	platforms, sizeof(int) != sizeof(long) and
    130 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
    131 	 */
    132 	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
    133 		struct proc *pp;
    134 
    135 		mutex_enter(&proclist_lock);
    136 		pp = p->p_pptr;
    137 		mutex_enter(&pp->p_mutex);
    138 		log(LOG_WARNING, "pid %d (%s) "
    139 		    "invoked by uid %d ppid %d (%s) "
    140 		    "tried to set clock forward to %ld\n",
    141 		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
    142 		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
    143 		mutex_exit(&pp->p_mutex);
    144 		mutex_exit(&proclist_lock);
    145 		return (EPERM);
    146 	}
    147 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    148 
    149 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    150 	s1 = splsoftclock();
    151 	s2 = splclock();
    152 #ifdef __HAVE_TIMECOUNTER
    153 	microtime(&now);
    154 	timersub(&tv, &now, &delta);
    155 #else /* !__HAVE_TIMECOUNTER */
    156 	timersub(&tv, &time, &delta);
    157 #endif /* !__HAVE_TIMECOUNTER */
    158 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
    159 	    kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
    160 	    KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
    161 		splx(s1);
    162 		return (EPERM);
    163 	}
    164 #ifdef notyet
    165 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    166 		splx(s1);
    167 		return (EPERM);
    168 	}
    169 #endif
    170 
    171 #ifdef __HAVE_TIMECOUNTER
    172 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    173 	tc_setclock(&ts1);
    174 #else /* !__HAVE_TIMECOUNTER */
    175 	time = tv;
    176 #endif /* !__HAVE_TIMECOUNTER */
    177 
    178 	splx(s2);
    179 
    180 	timeradd(&boottime, &delta, &boottime);
    181 
    182 	/*
    183 	 * XXXSMP
    184 	 * This is wrong.  We should traverse a list of all
    185 	 * CPUs and add the delta to the runtime of those
    186 	 * CPUs which have a process on them.
    187 	 */
    188 	ci = curcpu();
    189 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    190 	    &ci->ci_schedstate.spc_runtime);
    191 	splx(s1);
    192 	resettodr();
    193 	return (0);
    194 }
    195 
    196 /* ARGSUSED */
    197 int
    198 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    199 {
    200 	struct sys_clock_gettime_args /* {
    201 		syscallarg(clockid_t) clock_id;
    202 		syscallarg(struct timespec *) tp;
    203 	} */ *uap = v;
    204 	clockid_t clock_id;
    205 	struct timespec ats;
    206 
    207 	clock_id = SCARG(uap, clock_id);
    208 	switch (clock_id) {
    209 	case CLOCK_REALTIME:
    210 		nanotime(&ats);
    211 		break;
    212 	case CLOCK_MONOTONIC:
    213 		nanouptime(&ats);
    214 		break;
    215 	default:
    216 		return (EINVAL);
    217 	}
    218 
    219 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    220 }
    221 
    222 /* ARGSUSED */
    223 int
    224 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
    225 {
    226 	struct sys_clock_settime_args /* {
    227 		syscallarg(clockid_t) clock_id;
    228 		syscallarg(const struct timespec *) tp;
    229 	} */ *uap = v;
    230 	int error;
    231 
    232 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    233 	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
    234 		return (error);
    235 
    236 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
    237 }
    238 
    239 
    240 int
    241 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
    242 {
    243 	struct timespec ats;
    244 	int error;
    245 
    246 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    247 		return (error);
    248 
    249 	switch (clock_id) {
    250 	case CLOCK_REALTIME:
    251 		if ((error = settime(p, &ats)) != 0)
    252 			return (error);
    253 		break;
    254 	case CLOCK_MONOTONIC:
    255 		return (EINVAL);	/* read-only clock */
    256 	default:
    257 		return (EINVAL);
    258 	}
    259 
    260 	return 0;
    261 }
    262 
    263 int
    264 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    265 {
    266 	struct sys_clock_getres_args /* {
    267 		syscallarg(clockid_t) clock_id;
    268 		syscallarg(struct timespec *) tp;
    269 	} */ *uap = v;
    270 	clockid_t clock_id;
    271 	struct timespec ts;
    272 	int error = 0;
    273 
    274 	clock_id = SCARG(uap, clock_id);
    275 	switch (clock_id) {
    276 	case CLOCK_REALTIME:
    277 	case CLOCK_MONOTONIC:
    278 		ts.tv_sec = 0;
    279 		if (tc_getfrequency() > 1000000000)
    280 			ts.tv_nsec = 1;
    281 		else
    282 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    283 		break;
    284 	default:
    285 		return (EINVAL);
    286 	}
    287 
    288 	if (SCARG(uap, tp))
    289 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    290 
    291 	return error;
    292 }
    293 
    294 /* ARGSUSED */
    295 int
    296 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    297 {
    298 	struct sys_nanosleep_args/* {
    299 		syscallarg(struct timespec *) rqtp;
    300 		syscallarg(struct timespec *) rmtp;
    301 	} */ *uap = v;
    302 	struct timespec rmt, rqt;
    303 	int error, error1;
    304 
    305 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    306 	if (error)
    307 		return (error);
    308 
    309 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    310 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    311 		return error;
    312 
    313 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    314 	return error1 ? error1 : error;
    315 }
    316 
    317 int
    318 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    319 {
    320 #ifdef __HAVE_TIMECOUNTER
    321 	int error, timo;
    322 
    323 	if (itimespecfix(rqt))
    324 		return (EINVAL);
    325 
    326 	timo = tstohz(rqt);
    327 	/*
    328 	 * Avoid inadvertantly sleeping forever
    329 	 */
    330 	if (timo == 0)
    331 		timo = 1;
    332 
    333 	if (rmt != NULL)
    334 		getnanouptime(rmt);
    335 
    336 	error = kpause("nanoslp", true, timo, NULL);
    337 	if (error == ERESTART)
    338 		error = EINTR;
    339 	if (error == EWOULDBLOCK)
    340 		error = 0;
    341 
    342 	if (rmt!= NULL) {
    343 		struct timespec rmtend;
    344 
    345 		getnanouptime(&rmtend);
    346 
    347 		timespecsub(&rmtend, rmt, rmt);
    348 		timespecsub(rqt, rmt, rmt);
    349 		if (rmt->tv_sec < 0)
    350 			timespecclear(rmt);
    351 	}
    352 
    353 	return error;
    354 #else /* !__HAVE_TIMECOUNTER */
    355 	struct timeval atv, utv;
    356 	int error, s, timo;
    357 
    358 	TIMESPEC_TO_TIMEVAL(&atv, rqt);
    359 	if (itimerfix(&atv))
    360 		return (EINVAL);
    361 
    362 	s = splclock();
    363 	timeradd(&atv,&time,&atv);
    364 	timo = hzto(&atv);
    365 	/*
    366 	 * Avoid inadvertantly sleeping forever
    367 	 */
    368 	if (timo == 0)
    369 		timo = 1;
    370 	splx(s);
    371 
    372 	error = kpause("nanoslp", true, timo, NULL);
    373 	if (error == ERESTART)
    374 		error = EINTR;
    375 	if (error == EWOULDBLOCK)
    376 		error = 0;
    377 
    378 	if (rmt != NULL) {
    379 		s = splclock();
    380 		utv = time;
    381 		splx(s);
    382 
    383 		timersub(&atv, &utv, &utv);
    384 		if (utv.tv_sec < 0)
    385 			timerclear(&utv);
    386 
    387 		TIMEVAL_TO_TIMESPEC(&utv, rmt);
    388 	}
    389 
    390 	return error;
    391 #endif /* !__HAVE_TIMECOUNTER */
    392 }
    393 
    394 /* ARGSUSED */
    395 int
    396 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    397 {
    398 	struct sys_gettimeofday_args /* {
    399 		syscallarg(struct timeval *) tp;
    400 		syscallarg(void *) tzp;		really "struct timezone *"
    401 	} */ *uap = v;
    402 	struct timeval atv;
    403 	int error = 0;
    404 	struct timezone tzfake;
    405 
    406 	if (SCARG(uap, tp)) {
    407 		microtime(&atv);
    408 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    409 		if (error)
    410 			return (error);
    411 	}
    412 	if (SCARG(uap, tzp)) {
    413 		/*
    414 		 * NetBSD has no kernel notion of time zone, so we just
    415 		 * fake up a timezone struct and return it if demanded.
    416 		 */
    417 		tzfake.tz_minuteswest = 0;
    418 		tzfake.tz_dsttime = 0;
    419 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    420 	}
    421 	return (error);
    422 }
    423 
    424 /* ARGSUSED */
    425 int
    426 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    427 {
    428 	struct sys_settimeofday_args /* {
    429 		syscallarg(const struct timeval *) tv;
    430 		syscallarg(const void *) tzp;	really "const struct timezone *"
    431 	} */ *uap = v;
    432 
    433 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    434 }
    435 
    436 int
    437 settimeofday1(const struct timeval *utv, bool userspace,
    438     const void *utzp, struct lwp *l, bool check_kauth)
    439 {
    440 	struct timeval atv;
    441 	struct timespec ts;
    442 	int error;
    443 
    444 	/* Verify all parameters before changing time. */
    445 
    446 	if (check_kauth) {
    447 		error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    448 		    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
    449 		if (error != 0)
    450 			return (error);
    451 	}
    452 
    453 	/*
    454 	 * NetBSD has no kernel notion of time zone, and only an
    455 	 * obsolete program would try to set it, so we log a warning.
    456 	 */
    457 	if (utzp)
    458 		log(LOG_WARNING, "pid %d attempted to set the "
    459 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    460 
    461 	if (utv == NULL)
    462 		return 0;
    463 
    464 	if (userspace) {
    465 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    466 			return error;
    467 		utv = &atv;
    468 	}
    469 
    470 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    471 	return settime(l->l_proc, &ts);
    472 }
    473 
    474 #ifndef __HAVE_TIMECOUNTER
    475 int	tickdelta;			/* current clock skew, us. per tick */
    476 long	timedelta;			/* unapplied time correction, us. */
    477 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    478 #endif
    479 
    480 int	time_adjusted;			/* set if an adjustment is made */
    481 
    482 /* ARGSUSED */
    483 int
    484 sys_adjtime(struct lwp *l, void *v, register_t *retval)
    485 {
    486 	struct sys_adjtime_args /* {
    487 		syscallarg(const struct timeval *) delta;
    488 		syscallarg(struct timeval *) olddelta;
    489 	} */ *uap = v;
    490 	int error;
    491 
    492 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    493 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    494 		return (error);
    495 
    496 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    497 }
    498 
    499 int
    500 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    501 {
    502 	struct timeval atv;
    503 	int error = 0;
    504 
    505 #ifdef __HAVE_TIMECOUNTER
    506 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    507 #else /* !__HAVE_TIMECOUNTER */
    508 	long ndelta, ntickdelta, odelta;
    509 	int s;
    510 #endif /* !__HAVE_TIMECOUNTER */
    511 
    512 #ifdef __HAVE_TIMECOUNTER
    513 	if (olddelta) {
    514 		atv.tv_sec = time_adjtime / 1000000;
    515 		atv.tv_usec = time_adjtime % 1000000;
    516 		if (atv.tv_usec < 0) {
    517 			atv.tv_usec += 1000000;
    518 			atv.tv_sec--;
    519 		}
    520 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    521 		if (error)
    522 			return (error);
    523 	}
    524 
    525 	if (delta) {
    526 		error = copyin(delta, &atv, sizeof(struct timeval));
    527 		if (error)
    528 			return (error);
    529 
    530 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    531 			atv.tv_usec;
    532 
    533 		if (time_adjtime)
    534 			/* We need to save the system time during shutdown */
    535 			time_adjusted |= 1;
    536 	}
    537 #else /* !__HAVE_TIMECOUNTER */
    538 	error = copyin(delta, &atv, sizeof(struct timeval));
    539 	if (error)
    540 		return (error);
    541 
    542 	/*
    543 	 * Compute the total correction and the rate at which to apply it.
    544 	 * Round the adjustment down to a whole multiple of the per-tick
    545 	 * delta, so that after some number of incremental changes in
    546 	 * hardclock(), tickdelta will become zero, lest the correction
    547 	 * overshoot and start taking us away from the desired final time.
    548 	 */
    549 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    550 	if (ndelta > bigadj || ndelta < -bigadj)
    551 		ntickdelta = 10 * tickadj;
    552 	else
    553 		ntickdelta = tickadj;
    554 	if (ndelta % ntickdelta)
    555 		ndelta = ndelta / ntickdelta * ntickdelta;
    556 
    557 	/*
    558 	 * To make hardclock()'s job easier, make the per-tick delta negative
    559 	 * if we want time to run slower; then hardclock can simply compute
    560 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    561 	 */
    562 	if (ndelta < 0)
    563 		ntickdelta = -ntickdelta;
    564 	if (ndelta != 0)
    565 		/* We need to save the system clock time during shutdown */
    566 		time_adjusted |= 1;
    567 	s = splclock();
    568 	odelta = timedelta;
    569 	timedelta = ndelta;
    570 	tickdelta = ntickdelta;
    571 	splx(s);
    572 
    573 	if (olddelta) {
    574 		atv.tv_sec = odelta / 1000000;
    575 		atv.tv_usec = odelta % 1000000;
    576 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    577 	}
    578 #endif /* __HAVE_TIMECOUNTER */
    579 
    580 	return error;
    581 }
    582 
    583 /*
    584  * Interval timer support. Both the BSD getitimer() family and the POSIX
    585  * timer_*() family of routines are supported.
    586  *
    587  * All timers are kept in an array pointed to by p_timers, which is
    588  * allocated on demand - many processes don't use timers at all. The
    589  * first three elements in this array are reserved for the BSD timers:
    590  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    591  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    592  * syscall.
    593  *
    594  * Realtime timers are kept in the ptimer structure as an absolute
    595  * time; virtual time timers are kept as a linked list of deltas.
    596  * Virtual time timers are processed in the hardclock() routine of
    597  * kern_clock.c.  The real time timer is processed by a callout
    598  * routine, called from the softclock() routine.  Since a callout may
    599  * be delayed in real time due to interrupt processing in the system,
    600  * it is possible for the real time timeout routine (realtimeexpire,
    601  * given below), to be delayed in real time past when it is supposed
    602  * to occur.  It does not suffice, therefore, to reload the real timer
    603  * .it_value from the real time timers .it_interval.  Rather, we
    604  * compute the next time in absolute time the timer should go off.  */
    605 
    606 /* Allocate a POSIX realtime timer. */
    607 int
    608 sys_timer_create(struct lwp *l, void *v, register_t *retval)
    609 {
    610 	struct sys_timer_create_args /* {
    611 		syscallarg(clockid_t) clock_id;
    612 		syscallarg(struct sigevent *) evp;
    613 		syscallarg(timer_t *) timerid;
    614 	} */ *uap = v;
    615 
    616 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    617 	    SCARG(uap, evp), copyin, l);
    618 }
    619 
    620 int
    621 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    622     copyin_t fetch_event, struct lwp *l)
    623 {
    624 	int error;
    625 	timer_t timerid;
    626 	struct ptimer *pt;
    627 	struct proc *p;
    628 
    629 	p = l->l_proc;
    630 
    631 	if (id < CLOCK_REALTIME ||
    632 	    id > CLOCK_PROF)
    633 		return (EINVAL);
    634 
    635 	if (p->p_timers == NULL)
    636 		timers_alloc(p);
    637 
    638 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    639 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    640 		if (p->p_timers->pts_timers[timerid] == NULL)
    641 			break;
    642 
    643 	if (timerid == TIMER_MAX)
    644 		return EAGAIN;
    645 
    646 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    647 	if (evp) {
    648 		if (((error =
    649 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    650 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    651 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    652 			pool_put(&ptimer_pool, pt);
    653 			return (error ? error : EINVAL);
    654 		}
    655 	} else {
    656 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    657 		switch (id) {
    658 		case CLOCK_REALTIME:
    659 			pt->pt_ev.sigev_signo = SIGALRM;
    660 			break;
    661 		case CLOCK_VIRTUAL:
    662 			pt->pt_ev.sigev_signo = SIGVTALRM;
    663 			break;
    664 		case CLOCK_PROF:
    665 			pt->pt_ev.sigev_signo = SIGPROF;
    666 			break;
    667 		}
    668 		pt->pt_ev.sigev_value.sival_int = timerid;
    669 	}
    670 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    671 	pt->pt_info.ksi_errno = 0;
    672 	pt->pt_info.ksi_code = 0;
    673 	pt->pt_info.ksi_pid = p->p_pid;
    674 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    675 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    676 
    677 	pt->pt_type = id;
    678 	pt->pt_proc = p;
    679 	pt->pt_overruns = 0;
    680 	pt->pt_poverruns = 0;
    681 	pt->pt_entry = timerid;
    682 	timerclear(&pt->pt_time.it_value);
    683 	if (id == CLOCK_REALTIME)
    684 		callout_init(&pt->pt_ch, 0);
    685 	else
    686 		pt->pt_active = 0;
    687 
    688 	p->p_timers->pts_timers[timerid] = pt;
    689 
    690 	return copyout(&timerid, tid, sizeof(timerid));
    691 }
    692 
    693 /* Delete a POSIX realtime timer */
    694 int
    695 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    696 {
    697 	struct sys_timer_delete_args /*  {
    698 		syscallarg(timer_t) timerid;
    699 	} */ *uap = v;
    700 	struct proc *p = l->l_proc;
    701 	timer_t timerid;
    702 	struct ptimer *pt, *ptn;
    703 	int s;
    704 
    705 	timerid = SCARG(uap, timerid);
    706 
    707 	if ((p->p_timers == NULL) ||
    708 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    709 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    710 		return (EINVAL);
    711 
    712 	if (pt->pt_type == CLOCK_REALTIME) {
    713 		callout_stop(&pt->pt_ch);
    714 		callout_destroy(&pt->pt_ch);
    715 	} else if (pt->pt_active) {
    716 		s = splclock();
    717 		ptn = LIST_NEXT(pt, pt_list);
    718 		LIST_REMOVE(pt, pt_list);
    719 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    720 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    721 			    &ptn->pt_time.it_value);
    722 		splx(s);
    723 	}
    724 
    725 	p->p_timers->pts_timers[timerid] = NULL;
    726 	pool_put(&ptimer_pool, pt);
    727 
    728 	return (0);
    729 }
    730 
    731 /*
    732  * Set up the given timer. The value in pt->pt_time.it_value is taken
    733  * to be an absolute time for CLOCK_REALTIME timers and a relative
    734  * time for virtual timers.
    735  * Must be called at splclock().
    736  */
    737 void
    738 timer_settime(struct ptimer *pt)
    739 {
    740 	struct ptimer *ptn, *pptn;
    741 	struct ptlist *ptl;
    742 
    743 	if (pt->pt_type == CLOCK_REALTIME) {
    744 		callout_stop(&pt->pt_ch);
    745 		if (timerisset(&pt->pt_time.it_value)) {
    746 			/*
    747 			 * Don't need to check hzto() return value, here.
    748 			 * callout_reset() does it for us.
    749 			 */
    750 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    751 			    realtimerexpire, pt);
    752 		}
    753 	} else {
    754 		if (pt->pt_active) {
    755 			ptn = LIST_NEXT(pt, pt_list);
    756 			LIST_REMOVE(pt, pt_list);
    757 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    758 				timeradd(&pt->pt_time.it_value,
    759 				    &ptn->pt_time.it_value,
    760 				    &ptn->pt_time.it_value);
    761 		}
    762 		if (timerisset(&pt->pt_time.it_value)) {
    763 			if (pt->pt_type == CLOCK_VIRTUAL)
    764 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    765 			else
    766 				ptl = &pt->pt_proc->p_timers->pts_prof;
    767 
    768 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    769 			     ptn && timercmp(&pt->pt_time.it_value,
    770 				 &ptn->pt_time.it_value, >);
    771 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    772 				timersub(&pt->pt_time.it_value,
    773 				    &ptn->pt_time.it_value,
    774 				    &pt->pt_time.it_value);
    775 
    776 			if (pptn)
    777 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    778 			else
    779 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    780 
    781 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    782 				timersub(&ptn->pt_time.it_value,
    783 				    &pt->pt_time.it_value,
    784 				    &ptn->pt_time.it_value);
    785 
    786 			pt->pt_active = 1;
    787 		} else
    788 			pt->pt_active = 0;
    789 	}
    790 }
    791 
    792 void
    793 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    794 {
    795 #ifdef __HAVE_TIMECOUNTER
    796 	struct timeval now;
    797 #endif
    798 	struct ptimer *ptn;
    799 
    800 	*aitv = pt->pt_time;
    801 	if (pt->pt_type == CLOCK_REALTIME) {
    802 		/*
    803 		 * Convert from absolute to relative time in .it_value
    804 		 * part of real time timer.  If time for real time
    805 		 * timer has passed return 0, else return difference
    806 		 * between current time and time for the timer to go
    807 		 * off.
    808 		 */
    809 		if (timerisset(&aitv->it_value)) {
    810 #ifdef __HAVE_TIMECOUNTER
    811 			getmicrotime(&now);
    812 			if (timercmp(&aitv->it_value, &now, <))
    813 				timerclear(&aitv->it_value);
    814 			else
    815 				timersub(&aitv->it_value, &now,
    816 				    &aitv->it_value);
    817 #else /* !__HAVE_TIMECOUNTER */
    818 			if (timercmp(&aitv->it_value, &time, <))
    819 				timerclear(&aitv->it_value);
    820 			else
    821 				timersub(&aitv->it_value, &time,
    822 				    &aitv->it_value);
    823 #endif /* !__HAVE_TIMECOUNTER */
    824 		}
    825 	} else if (pt->pt_active) {
    826 		if (pt->pt_type == CLOCK_VIRTUAL)
    827 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    828 		else
    829 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    830 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    831 			timeradd(&aitv->it_value,
    832 			    &ptn->pt_time.it_value, &aitv->it_value);
    833 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    834 	} else
    835 		timerclear(&aitv->it_value);
    836 }
    837 
    838 
    839 
    840 /* Set and arm a POSIX realtime timer */
    841 int
    842 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    843 {
    844 	struct sys_timer_settime_args /* {
    845 		syscallarg(timer_t) timerid;
    846 		syscallarg(int) flags;
    847 		syscallarg(const struct itimerspec *) value;
    848 		syscallarg(struct itimerspec *) ovalue;
    849 	} */ *uap = v;
    850 	int error;
    851 	struct itimerspec value, ovalue, *ovp = NULL;
    852 
    853 	if ((error = copyin(SCARG(uap, value), &value,
    854 	    sizeof(struct itimerspec))) != 0)
    855 		return (error);
    856 
    857 	if (SCARG(uap, ovalue))
    858 		ovp = &ovalue;
    859 
    860 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    861 	    SCARG(uap, flags), l->l_proc)) != 0)
    862 		return error;
    863 
    864 	if (ovp)
    865 		return copyout(&ovalue, SCARG(uap, ovalue),
    866 		    sizeof(struct itimerspec));
    867 	return 0;
    868 }
    869 
    870 int
    871 dotimer_settime(int timerid, struct itimerspec *value,
    872     struct itimerspec *ovalue, int flags, struct proc *p)
    873 {
    874 #ifdef __HAVE_TIMECOUNTER
    875 	struct timeval now;
    876 #endif
    877 	struct itimerval val, oval;
    878 	struct ptimer *pt;
    879 	int s;
    880 
    881 	if ((p->p_timers == NULL) ||
    882 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    883 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    884 		return (EINVAL);
    885 
    886 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    887 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    888 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    889 		return (EINVAL);
    890 
    891 	oval = pt->pt_time;
    892 	pt->pt_time = val;
    893 
    894 	s = splclock();
    895 	/*
    896 	 * If we've been passed a relative time for a realtime timer,
    897 	 * convert it to absolute; if an absolute time for a virtual
    898 	 * timer, convert it to relative and make sure we don't set it
    899 	 * to zero, which would cancel the timer, or let it go
    900 	 * negative, which would confuse the comparison tests.
    901 	 */
    902 	if (timerisset(&pt->pt_time.it_value)) {
    903 		if (pt->pt_type == CLOCK_REALTIME) {
    904 #ifdef __HAVE_TIMECOUNTER
    905 			if ((flags & TIMER_ABSTIME) == 0) {
    906 				getmicrotime(&now);
    907 				timeradd(&pt->pt_time.it_value, &now,
    908 				    &pt->pt_time.it_value);
    909 			}
    910 #else /* !__HAVE_TIMECOUNTER */
    911 			if ((flags & TIMER_ABSTIME) == 0)
    912 				timeradd(&pt->pt_time.it_value, &time,
    913 				    &pt->pt_time.it_value);
    914 #endif /* !__HAVE_TIMECOUNTER */
    915 		} else {
    916 			if ((flags & TIMER_ABSTIME) != 0) {
    917 #ifdef __HAVE_TIMECOUNTER
    918 				getmicrotime(&now);
    919 				timersub(&pt->pt_time.it_value, &now,
    920 				    &pt->pt_time.it_value);
    921 #else /* !__HAVE_TIMECOUNTER */
    922 				timersub(&pt->pt_time.it_value, &time,
    923 				    &pt->pt_time.it_value);
    924 #endif /* !__HAVE_TIMECOUNTER */
    925 				if (!timerisset(&pt->pt_time.it_value) ||
    926 				    pt->pt_time.it_value.tv_sec < 0) {
    927 					pt->pt_time.it_value.tv_sec = 0;
    928 					pt->pt_time.it_value.tv_usec = 1;
    929 				}
    930 			}
    931 		}
    932 	}
    933 
    934 	timer_settime(pt);
    935 	splx(s);
    936 
    937 	if (ovalue) {
    938 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    939 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    940 	}
    941 
    942 	return (0);
    943 }
    944 
    945 /* Return the time remaining until a POSIX timer fires. */
    946 int
    947 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    948 {
    949 	struct sys_timer_gettime_args /* {
    950 		syscallarg(timer_t) timerid;
    951 		syscallarg(struct itimerspec *) value;
    952 	} */ *uap = v;
    953 	struct itimerspec its;
    954 	int error;
    955 
    956 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    957 	    &its)) != 0)
    958 		return error;
    959 
    960 	return copyout(&its, SCARG(uap, value), sizeof(its));
    961 }
    962 
    963 int
    964 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    965 {
    966 	int s;
    967 	struct ptimer *pt;
    968 	struct itimerval aitv;
    969 
    970 	if ((p->p_timers == NULL) ||
    971 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    972 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    973 		return (EINVAL);
    974 
    975 	s = splclock();
    976 	timer_gettime(pt, &aitv);
    977 	splx(s);
    978 
    979 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    980 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    981 
    982 	return 0;
    983 }
    984 
    985 /*
    986  * Return the count of the number of times a periodic timer expired
    987  * while a notification was already pending. The counter is reset when
    988  * a timer expires and a notification can be posted.
    989  */
    990 int
    991 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    992 {
    993 	struct sys_timer_getoverrun_args /* {
    994 		syscallarg(timer_t) timerid;
    995 	} */ *uap = v;
    996 	struct proc *p = l->l_proc;
    997 	int timerid;
    998 	struct ptimer *pt;
    999 
   1000 	timerid = SCARG(uap, timerid);
   1001 
   1002 	if ((p->p_timers == NULL) ||
   1003 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
   1004 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1005 		return (EINVAL);
   1006 
   1007 	*retval = pt->pt_poverruns;
   1008 
   1009 	return (0);
   1010 }
   1011 
   1012 /*
   1013  * Real interval timer expired:
   1014  * send process whose timer expired an alarm signal.
   1015  * If time is not set up to reload, then just return.
   1016  * Else compute next time timer should go off which is > current time.
   1017  * This is where delay in processing this timeout causes multiple
   1018  * SIGALRM calls to be compressed into one.
   1019  */
   1020 void
   1021 realtimerexpire(void *arg)
   1022 {
   1023 #ifdef __HAVE_TIMECOUNTER
   1024 	struct timeval now;
   1025 #endif
   1026 	struct ptimer *pt;
   1027 	int s;
   1028 
   1029 	pt = (struct ptimer *)arg;
   1030 
   1031 	itimerfire(pt);
   1032 
   1033 	if (!timerisset(&pt->pt_time.it_interval)) {
   1034 		timerclear(&pt->pt_time.it_value);
   1035 		return;
   1036 	}
   1037 #ifdef __HAVE_TIMECOUNTER
   1038 	for (;;) {
   1039 		s = splclock();	/* XXX need spl now? */
   1040 		timeradd(&pt->pt_time.it_value,
   1041 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1042 		getmicrotime(&now);
   1043 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
   1044 			/*
   1045 			 * Don't need to check hzto() return value, here.
   1046 			 * callout_reset() does it for us.
   1047 			 */
   1048 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1049 			    realtimerexpire, pt);
   1050 			splx(s);
   1051 			return;
   1052 		}
   1053 		splx(s);
   1054 		pt->pt_overruns++;
   1055 	}
   1056 #else /* !__HAVE_TIMECOUNTER */
   1057 	for (;;) {
   1058 		s = splclock();
   1059 		timeradd(&pt->pt_time.it_value,
   1060 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1061 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
   1062 			/*
   1063 			 * Don't need to check hzto() return value, here.
   1064 			 * callout_reset() does it for us.
   1065 			 */
   1066 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1067 			    realtimerexpire, pt);
   1068 			splx(s);
   1069 			return;
   1070 		}
   1071 		splx(s);
   1072 		pt->pt_overruns++;
   1073 	}
   1074 #endif /* !__HAVE_TIMECOUNTER */
   1075 }
   1076 
   1077 /* BSD routine to get the value of an interval timer. */
   1078 /* ARGSUSED */
   1079 int
   1080 sys_getitimer(struct lwp *l, void *v, register_t *retval)
   1081 {
   1082 	struct sys_getitimer_args /* {
   1083 		syscallarg(int) which;
   1084 		syscallarg(struct itimerval *) itv;
   1085 	} */ *uap = v;
   1086 	struct proc *p = l->l_proc;
   1087 	struct itimerval aitv;
   1088 	int error;
   1089 
   1090 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1091 	if (error)
   1092 		return error;
   1093 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1094 }
   1095 
   1096 int
   1097 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1098 {
   1099 	int s;
   1100 
   1101 	if ((u_int)which > ITIMER_PROF)
   1102 		return (EINVAL);
   1103 
   1104 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
   1105 		timerclear(&itvp->it_value);
   1106 		timerclear(&itvp->it_interval);
   1107 	} else {
   1108 		s = splclock();
   1109 		timer_gettime(p->p_timers->pts_timers[which], itvp);
   1110 		splx(s);
   1111 	}
   1112 
   1113 	return 0;
   1114 }
   1115 
   1116 /* BSD routine to set/arm an interval timer. */
   1117 /* ARGSUSED */
   1118 int
   1119 sys_setitimer(struct lwp *l, void *v, register_t *retval)
   1120 {
   1121 	struct sys_setitimer_args /* {
   1122 		syscallarg(int) which;
   1123 		syscallarg(const struct itimerval *) itv;
   1124 		syscallarg(struct itimerval *) oitv;
   1125 	} */ *uap = v;
   1126 	struct proc *p = l->l_proc;
   1127 	int which = SCARG(uap, which);
   1128 	struct sys_getitimer_args getargs;
   1129 	const struct itimerval *itvp;
   1130 	struct itimerval aitv;
   1131 	int error;
   1132 
   1133 	if ((u_int)which > ITIMER_PROF)
   1134 		return (EINVAL);
   1135 	itvp = SCARG(uap, itv);
   1136 	if (itvp &&
   1137 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1138 		return (error);
   1139 	if (SCARG(uap, oitv) != NULL) {
   1140 		SCARG(&getargs, which) = which;
   1141 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1142 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1143 			return (error);
   1144 	}
   1145 	if (itvp == 0)
   1146 		return (0);
   1147 
   1148 	return dosetitimer(p, which, &aitv);
   1149 }
   1150 
   1151 int
   1152 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1153 {
   1154 #ifdef __HAVE_TIMECOUNTER
   1155 	struct timeval now;
   1156 #endif
   1157 	struct ptimer *pt;
   1158 	int s;
   1159 
   1160 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1161 		return (EINVAL);
   1162 
   1163 	/*
   1164 	 * Don't bother allocating data structures if the process just
   1165 	 * wants to clear the timer.
   1166 	 */
   1167 	if (!timerisset(&itvp->it_value) &&
   1168 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1169 		return (0);
   1170 
   1171 	if (p->p_timers == NULL)
   1172 		timers_alloc(p);
   1173 	if (p->p_timers->pts_timers[which] == NULL) {
   1174 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1175 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1176 		pt->pt_ev.sigev_value.sival_int = which;
   1177 		pt->pt_overruns = 0;
   1178 		pt->pt_proc = p;
   1179 		pt->pt_type = which;
   1180 		pt->pt_entry = which;
   1181 		switch (which) {
   1182 		case ITIMER_REAL:
   1183 			callout_init(&pt->pt_ch, 0);
   1184 			pt->pt_ev.sigev_signo = SIGALRM;
   1185 			break;
   1186 		case ITIMER_VIRTUAL:
   1187 			pt->pt_active = 0;
   1188 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1189 			break;
   1190 		case ITIMER_PROF:
   1191 			pt->pt_active = 0;
   1192 			pt->pt_ev.sigev_signo = SIGPROF;
   1193 			break;
   1194 		}
   1195 	} else
   1196 		pt = p->p_timers->pts_timers[which];
   1197 
   1198 	pt->pt_time = *itvp;
   1199 	p->p_timers->pts_timers[which] = pt;
   1200 
   1201 	s = splclock();
   1202 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1203 		/* Convert to absolute time */
   1204 #ifdef __HAVE_TIMECOUNTER
   1205 		/* XXX need to wrap in splclock for timecounters case? */
   1206 		getmicrotime(&now);
   1207 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1208 #else /* !__HAVE_TIMECOUNTER */
   1209 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1210 #endif /* !__HAVE_TIMECOUNTER */
   1211 	}
   1212 	timer_settime(pt);
   1213 	splx(s);
   1214 
   1215 	return (0);
   1216 }
   1217 
   1218 /* Utility routines to manage the array of pointers to timers. */
   1219 void
   1220 timers_alloc(struct proc *p)
   1221 {
   1222 	int i;
   1223 	struct ptimers *pts;
   1224 
   1225 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1226 	LIST_INIT(&pts->pts_virtual);
   1227 	LIST_INIT(&pts->pts_prof);
   1228 	for (i = 0; i < TIMER_MAX; i++)
   1229 		pts->pts_timers[i] = NULL;
   1230 	pts->pts_fired = 0;
   1231 	p->p_timers = pts;
   1232 }
   1233 
   1234 /*
   1235  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1236  * then clean up all timers and free all the data structures. If
   1237  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1238  * by timer_create(), not the BSD setitimer() timers, and only free the
   1239  * structure if none of those remain.
   1240  */
   1241 void
   1242 timers_free(struct proc *p, int which)
   1243 {
   1244 	int i, s;
   1245 	struct ptimers *pts;
   1246 	struct ptimer *pt, *ptn;
   1247 	struct timeval tv;
   1248 
   1249 	if (p->p_timers) {
   1250 		pts = p->p_timers;
   1251 		if (which == TIMERS_ALL)
   1252 			i = 0;
   1253 		else {
   1254 			s = splclock();
   1255 			timerclear(&tv);
   1256 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1257 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1258 			     ptn = LIST_NEXT(ptn, pt_list))
   1259 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1260 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1261 			if (ptn) {
   1262 				timeradd(&tv, &ptn->pt_time.it_value,
   1263 				    &ptn->pt_time.it_value);
   1264 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1265 				    ptn, pt_list);
   1266 			}
   1267 
   1268 			timerclear(&tv);
   1269 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1270 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1271 			     ptn = LIST_NEXT(ptn, pt_list))
   1272 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1273 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1274 			if (ptn) {
   1275 				timeradd(&tv, &ptn->pt_time.it_value,
   1276 				    &ptn->pt_time.it_value);
   1277 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1278 				    pt_list);
   1279 			}
   1280 			splx(s);
   1281 			i = 3;
   1282 		}
   1283 		for ( ; i < TIMER_MAX; i++)
   1284 			if ((pt = pts->pts_timers[i]) != NULL) {
   1285 				if (pt->pt_type == CLOCK_REALTIME) {
   1286 					callout_stop(&pt->pt_ch);
   1287 					callout_destroy(&pt->pt_ch);
   1288 				}
   1289 				pts->pts_timers[i] = NULL;
   1290 				pool_put(&ptimer_pool, pt);
   1291 			}
   1292 		if ((pts->pts_timers[0] == NULL) &&
   1293 		    (pts->pts_timers[1] == NULL) &&
   1294 		    (pts->pts_timers[2] == NULL)) {
   1295 			p->p_timers = NULL;
   1296 			pool_put(&ptimers_pool, pts);
   1297 		}
   1298 	}
   1299 }
   1300 
   1301 /*
   1302  * Decrement an interval timer by a specified number
   1303  * of microseconds, which must be less than a second,
   1304  * i.e. < 1000000.  If the timer expires, then reload
   1305  * it.  In this case, carry over (usec - old value) to
   1306  * reduce the value reloaded into the timer so that
   1307  * the timer does not drift.  This routine assumes
   1308  * that it is called in a context where the timers
   1309  * on which it is operating cannot change in value.
   1310  */
   1311 int
   1312 itimerdecr(struct ptimer *pt, int usec)
   1313 {
   1314 	struct itimerval *itp;
   1315 
   1316 	itp = &pt->pt_time;
   1317 	if (itp->it_value.tv_usec < usec) {
   1318 		if (itp->it_value.tv_sec == 0) {
   1319 			/* expired, and already in next interval */
   1320 			usec -= itp->it_value.tv_usec;
   1321 			goto expire;
   1322 		}
   1323 		itp->it_value.tv_usec += 1000000;
   1324 		itp->it_value.tv_sec--;
   1325 	}
   1326 	itp->it_value.tv_usec -= usec;
   1327 	usec = 0;
   1328 	if (timerisset(&itp->it_value))
   1329 		return (1);
   1330 	/* expired, exactly at end of interval */
   1331 expire:
   1332 	if (timerisset(&itp->it_interval)) {
   1333 		itp->it_value = itp->it_interval;
   1334 		itp->it_value.tv_usec -= usec;
   1335 		if (itp->it_value.tv_usec < 0) {
   1336 			itp->it_value.tv_usec += 1000000;
   1337 			itp->it_value.tv_sec--;
   1338 		}
   1339 		timer_settime(pt);
   1340 	} else
   1341 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1342 	return (0);
   1343 }
   1344 
   1345 void
   1346 itimerfire(struct ptimer *pt)
   1347 {
   1348 	struct proc *p = pt->pt_proc;
   1349 
   1350 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1351 		/*
   1352 		 * No RT signal infrastructure exists at this time;
   1353 		 * just post the signal number and throw away the
   1354 		 * value.
   1355 		 */
   1356 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
   1357 			pt->pt_overruns++;
   1358 		else {
   1359 			ksiginfo_t ksi;
   1360 			KSI_INIT(&ksi);
   1361 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1362 			ksi.ksi_code = SI_TIMER;
   1363 			ksi.ksi_value = pt->pt_ev.sigev_value;
   1364 			pt->pt_poverruns = pt->pt_overruns;
   1365 			pt->pt_overruns = 0;
   1366 			mutex_enter(&proclist_mutex);
   1367 			kpsignal(p, &ksi, NULL);
   1368 			mutex_exit(&proclist_mutex);
   1369 		}
   1370 	}
   1371 }
   1372 
   1373 /*
   1374  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1375  * for usage and rationale.
   1376  */
   1377 int
   1378 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1379 {
   1380 	struct timeval tv, delta;
   1381 	int rv = 0;
   1382 #ifndef __HAVE_TIMECOUNTER
   1383 	int s;
   1384 #endif
   1385 
   1386 #ifdef __HAVE_TIMECOUNTER
   1387 	getmicrouptime(&tv);
   1388 #else /* !__HAVE_TIMECOUNTER */
   1389 	s = splclock();
   1390 	tv = mono_time;
   1391 	splx(s);
   1392 #endif /* !__HAVE_TIMECOUNTER */
   1393 	timersub(&tv, lasttime, &delta);
   1394 
   1395 	/*
   1396 	 * check for 0,0 is so that the message will be seen at least once,
   1397 	 * even if interval is huge.
   1398 	 */
   1399 	if (timercmp(&delta, mininterval, >=) ||
   1400 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1401 		*lasttime = tv;
   1402 		rv = 1;
   1403 	}
   1404 
   1405 	return (rv);
   1406 }
   1407 
   1408 /*
   1409  * ppsratecheck(): packets (or events) per second limitation.
   1410  */
   1411 int
   1412 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1413 {
   1414 	struct timeval tv, delta;
   1415 	int rv;
   1416 #ifndef __HAVE_TIMECOUNTER
   1417 	int s;
   1418 #endif
   1419 
   1420 #ifdef __HAVE_TIMECOUNTER
   1421 	getmicrouptime(&tv);
   1422 #else /* !__HAVE_TIMECOUNTER */
   1423 	s = splclock();
   1424 	tv = mono_time;
   1425 	splx(s);
   1426 #endif /* !__HAVE_TIMECOUNTER */
   1427 	timersub(&tv, lasttime, &delta);
   1428 
   1429 	/*
   1430 	 * check for 0,0 is so that the message will be seen at least once.
   1431 	 * if more than one second have passed since the last update of
   1432 	 * lasttime, reset the counter.
   1433 	 *
   1434 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1435 	 * try to use *curpps for stat purposes as well.
   1436 	 */
   1437 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1438 	    delta.tv_sec >= 1) {
   1439 		*lasttime = tv;
   1440 		*curpps = 0;
   1441 	}
   1442 	if (maxpps < 0)
   1443 		rv = 1;
   1444 	else if (*curpps < maxpps)
   1445 		rv = 1;
   1446 	else
   1447 		rv = 0;
   1448 
   1449 #if 1 /*DIAGNOSTIC?*/
   1450 	/* be careful about wrap-around */
   1451 	if (*curpps + 1 > *curpps)
   1452 		*curpps = *curpps + 1;
   1453 #else
   1454 	/*
   1455 	 * assume that there's not too many calls to this function.
   1456 	 * not sure if the assumption holds, as it depends on *caller's*
   1457 	 * behavior, not the behavior of this function.
   1458 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1459 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1460 	 */
   1461 	*curpps = *curpps + 1;
   1462 #endif
   1463 
   1464 	return (rv);
   1465 }
   1466