kern_time.c revision 1.91 1 /* $NetBSD: kern_time.c,v 1.91 2005/07/11 19:50:42 cube Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.91 2005/07/11 19:50:42 cube Exp $");
72
73 #include "fs_nfs.h"
74 #include "opt_nfs.h"
75 #include "opt_nfsserver.h"
76
77 #include <sys/param.h>
78 #include <sys/resourcevar.h>
79 #include <sys/kernel.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/proc.h>
83 #include <sys/sa.h>
84 #include <sys/savar.h>
85 #include <sys/vnode.h>
86 #include <sys/signalvar.h>
87 #include <sys/syslog.h>
88
89 #include <sys/mount.h>
90 #include <sys/syscallargs.h>
91
92 #include <uvm/uvm_extern.h>
93
94 #if defined(NFS) || defined(NFSSERVER)
95 #include <nfs/rpcv2.h>
96 #include <nfs/nfsproto.h>
97 #include <nfs/nfs_var.h>
98 #endif
99
100 #include <machine/cpu.h>
101
102 static void timerupcall(struct lwp *, void *);
103
104
105 /* Time of day and interval timer support.
106 *
107 * These routines provide the kernel entry points to get and set
108 * the time-of-day and per-process interval timers. Subroutines
109 * here provide support for adding and subtracting timeval structures
110 * and decrementing interval timers, optionally reloading the interval
111 * timers when they expire.
112 */
113
114 /* This function is used by clock_settime and settimeofday */
115 int
116 settime(struct timeval *tv)
117 {
118 struct timeval delta;
119 struct cpu_info *ci;
120 int s;
121
122 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123 s = splclock();
124 timersub(tv, &time, &delta);
125 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126 splx(s);
127 return (EPERM);
128 }
129 #ifdef notyet
130 if ((delta.tv_sec < 86400) && securelevel > 0) {
131 splx(s);
132 return (EPERM);
133 }
134 #endif
135 time = *tv;
136 (void) spllowersoftclock();
137 timeradd(&boottime, &delta, &boottime);
138 /*
139 * XXXSMP
140 * This is wrong. We should traverse a list of all
141 * CPUs and add the delta to the runtime of those
142 * CPUs which have a process on them.
143 */
144 ci = curcpu();
145 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146 &ci->ci_schedstate.spc_runtime);
147 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148 nqnfs_lease_updatetime(delta.tv_sec);
149 # endif
150 splx(s);
151 resettodr();
152 return (0);
153 }
154
155 /* ARGSUSED */
156 int
157 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
158 {
159 struct sys_clock_gettime_args /* {
160 syscallarg(clockid_t) clock_id;
161 syscallarg(struct timespec *) tp;
162 } */ *uap = v;
163 clockid_t clock_id;
164 struct timeval atv;
165 struct timespec ats;
166 int s;
167
168 clock_id = SCARG(uap, clock_id);
169 switch (clock_id) {
170 case CLOCK_REALTIME:
171 microtime(&atv);
172 TIMEVAL_TO_TIMESPEC(&atv,&ats);
173 break;
174 case CLOCK_MONOTONIC:
175 /* XXX "hz" granularity */
176 s = splclock();
177 atv = mono_time;
178 splx(s);
179 TIMEVAL_TO_TIMESPEC(&atv,&ats);
180 break;
181 default:
182 return (EINVAL);
183 }
184
185 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
186 }
187
188 /* ARGSUSED */
189 int
190 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
191 {
192 struct sys_clock_settime_args /* {
193 syscallarg(clockid_t) clock_id;
194 syscallarg(const struct timespec *) tp;
195 } */ *uap = v;
196 struct proc *p = l->l_proc;
197 int error;
198
199 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
200 return (error);
201
202 return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
203 }
204
205
206 int
207 clock_settime1(clockid_t clock_id, const struct timespec *tp)
208 {
209 struct timespec ats;
210 struct timeval atv;
211 int error;
212
213 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
214 return (error);
215
216 switch (clock_id) {
217 case CLOCK_REALTIME:
218 TIMESPEC_TO_TIMEVAL(&atv, &ats);
219 if ((error = settime(&atv)) != 0)
220 return (error);
221 break;
222 case CLOCK_MONOTONIC:
223 return (EINVAL); /* read-only clock */
224 default:
225 return (EINVAL);
226 }
227
228 return 0;
229 }
230
231 int
232 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
233 {
234 struct sys_clock_getres_args /* {
235 syscallarg(clockid_t) clock_id;
236 syscallarg(struct timespec *) tp;
237 } */ *uap = v;
238 clockid_t clock_id;
239 struct timespec ts;
240 int error = 0;
241
242 clock_id = SCARG(uap, clock_id);
243 switch (clock_id) {
244 case CLOCK_REALTIME:
245 case CLOCK_MONOTONIC:
246 ts.tv_sec = 0;
247 ts.tv_nsec = 1000000000 / hz;
248 break;
249 default:
250 return (EINVAL);
251 }
252
253 if (SCARG(uap, tp))
254 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
255
256 return error;
257 }
258
259 /* ARGSUSED */
260 int
261 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
262 {
263 static int nanowait;
264 struct sys_nanosleep_args/* {
265 syscallarg(struct timespec *) rqtp;
266 syscallarg(struct timespec *) rmtp;
267 } */ *uap = v;
268 struct timespec rqt;
269 struct timespec rmt;
270 struct timeval atv, utv;
271 int error, s, timo;
272
273 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
274 if (error)
275 return (error);
276
277 TIMESPEC_TO_TIMEVAL(&atv,&rqt);
278 if (itimerfix(&atv))
279 return (EINVAL);
280
281 s = splclock();
282 timeradd(&atv,&time,&atv);
283 timo = hzto(&atv);
284 /*
285 * Avoid inadvertantly sleeping forever
286 */
287 if (timo == 0)
288 timo = 1;
289 splx(s);
290
291 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
292 if (error == ERESTART)
293 error = EINTR;
294 if (error == EWOULDBLOCK)
295 error = 0;
296
297 if (SCARG(uap, rmtp)) {
298 int error1;
299
300 s = splclock();
301 utv = time;
302 splx(s);
303
304 timersub(&atv, &utv, &utv);
305 if (utv.tv_sec < 0)
306 timerclear(&utv);
307
308 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
309 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
310 sizeof(rmt));
311 if (error1)
312 return (error1);
313 }
314
315 return error;
316 }
317
318 /* ARGSUSED */
319 int
320 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
321 {
322 struct sys_gettimeofday_args /* {
323 syscallarg(struct timeval *) tp;
324 syscallarg(void *) tzp; really "struct timezone *"
325 } */ *uap = v;
326 struct timeval atv;
327 int error = 0;
328 struct timezone tzfake;
329
330 if (SCARG(uap, tp)) {
331 microtime(&atv);
332 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
333 if (error)
334 return (error);
335 }
336 if (SCARG(uap, tzp)) {
337 /*
338 * NetBSD has no kernel notion of time zone, so we just
339 * fake up a timezone struct and return it if demanded.
340 */
341 tzfake.tz_minuteswest = 0;
342 tzfake.tz_dsttime = 0;
343 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
344 }
345 return (error);
346 }
347
348 /* ARGSUSED */
349 int
350 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
351 {
352 struct sys_settimeofday_args /* {
353 syscallarg(const struct timeval *) tv;
354 syscallarg(const void *) tzp; really "const struct timezone *"
355 } */ *uap = v;
356 struct proc *p = l->l_proc;
357 int error;
358
359 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
360 return (error);
361
362 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
363 }
364
365 int
366 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
367 struct proc *p)
368 {
369 struct timeval atv;
370 struct timezone atz;
371 struct timeval *tv = NULL;
372 struct timezone *tzp = NULL;
373 int error;
374
375 /* Verify all parameters before changing time. */
376 if (utv) {
377 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
378 return (error);
379 tv = &atv;
380 }
381 /* XXX since we don't use tz, probably no point in doing copyin. */
382 if (utzp) {
383 if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
384 return (error);
385 tzp = &atz;
386 }
387
388 if (tv)
389 if ((error = settime(tv)) != 0)
390 return (error);
391 /*
392 * NetBSD has no kernel notion of time zone, and only an
393 * obsolete program would try to set it, so we log a warning.
394 */
395 if (tzp)
396 log(LOG_WARNING, "pid %d attempted to set the "
397 "(obsolete) kernel time zone\n", p->p_pid);
398 return (0);
399 }
400
401 int tickdelta; /* current clock skew, us. per tick */
402 long timedelta; /* unapplied time correction, us. */
403 long bigadj = 1000000; /* use 10x skew above bigadj us. */
404 int time_adjusted; /* set if an adjustment is made */
405
406 /* ARGSUSED */
407 int
408 sys_adjtime(struct lwp *l, void *v, register_t *retval)
409 {
410 struct sys_adjtime_args /* {
411 syscallarg(const struct timeval *) delta;
412 syscallarg(struct timeval *) olddelta;
413 } */ *uap = v;
414 struct proc *p = l->l_proc;
415 int error;
416
417 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
418 return (error);
419
420 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
421 }
422
423 int
424 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
425 {
426 struct timeval atv;
427 long ndelta, ntickdelta, odelta;
428 int error;
429 int s;
430
431 error = copyin(delta, &atv, sizeof(struct timeval));
432 if (error)
433 return (error);
434
435 /*
436 * Compute the total correction and the rate at which to apply it.
437 * Round the adjustment down to a whole multiple of the per-tick
438 * delta, so that after some number of incremental changes in
439 * hardclock(), tickdelta will become zero, lest the correction
440 * overshoot and start taking us away from the desired final time.
441 */
442 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
443 if (ndelta > bigadj || ndelta < -bigadj)
444 ntickdelta = 10 * tickadj;
445 else
446 ntickdelta = tickadj;
447 if (ndelta % ntickdelta)
448 ndelta = ndelta / ntickdelta * ntickdelta;
449
450 /*
451 * To make hardclock()'s job easier, make the per-tick delta negative
452 * if we want time to run slower; then hardclock can simply compute
453 * tick + tickdelta, and subtract tickdelta from timedelta.
454 */
455 if (ndelta < 0)
456 ntickdelta = -ntickdelta;
457 if (ndelta != 0)
458 /* We need to save the system clock time during shutdown */
459 time_adjusted |= 1;
460 s = splclock();
461 odelta = timedelta;
462 timedelta = ndelta;
463 tickdelta = ntickdelta;
464 splx(s);
465
466 if (olddelta) {
467 atv.tv_sec = odelta / 1000000;
468 atv.tv_usec = odelta % 1000000;
469 error = copyout(&atv, olddelta, sizeof(struct timeval));
470 }
471 return error;
472 }
473
474 /*
475 * Interval timer support. Both the BSD getitimer() family and the POSIX
476 * timer_*() family of routines are supported.
477 *
478 * All timers are kept in an array pointed to by p_timers, which is
479 * allocated on demand - many processes don't use timers at all. The
480 * first three elements in this array are reserved for the BSD timers:
481 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
482 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
483 * syscall.
484 *
485 * Realtime timers are kept in the ptimer structure as an absolute
486 * time; virtual time timers are kept as a linked list of deltas.
487 * Virtual time timers are processed in the hardclock() routine of
488 * kern_clock.c. The real time timer is processed by a callout
489 * routine, called from the softclock() routine. Since a callout may
490 * be delayed in real time due to interrupt processing in the system,
491 * it is possible for the real time timeout routine (realtimeexpire,
492 * given below), to be delayed in real time past when it is supposed
493 * to occur. It does not suffice, therefore, to reload the real timer
494 * .it_value from the real time timers .it_interval. Rather, we
495 * compute the next time in absolute time the timer should go off. */
496
497 /* Allocate a POSIX realtime timer. */
498 int
499 sys_timer_create(struct lwp *l, void *v, register_t *retval)
500 {
501 struct sys_timer_create_args /* {
502 syscallarg(clockid_t) clock_id;
503 syscallarg(struct sigevent *) evp;
504 syscallarg(timer_t *) timerid;
505 } */ *uap = v;
506 struct proc *p = l->l_proc;
507 clockid_t id;
508 struct sigevent *evp;
509 struct ptimer *pt;
510 timer_t timerid;
511 int error;
512
513 id = SCARG(uap, clock_id);
514 if (id < CLOCK_REALTIME ||
515 id > CLOCK_PROF)
516 return (EINVAL);
517
518 if (p->p_timers == NULL)
519 timers_alloc(p);
520
521 /* Find a free timer slot, skipping those reserved for setitimer(). */
522 for (timerid = 3; timerid < TIMER_MAX; timerid++)
523 if (p->p_timers->pts_timers[timerid] == NULL)
524 break;
525
526 if (timerid == TIMER_MAX)
527 return EAGAIN;
528
529 pt = pool_get(&ptimer_pool, PR_WAITOK);
530 evp = SCARG(uap, evp);
531 if (evp) {
532 if (((error =
533 copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
534 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
535 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
536 pool_put(&ptimer_pool, pt);
537 return (error ? error : EINVAL);
538 }
539 } else {
540 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
541 switch (id) {
542 case CLOCK_REALTIME:
543 pt->pt_ev.sigev_signo = SIGALRM;
544 break;
545 case CLOCK_VIRTUAL:
546 pt->pt_ev.sigev_signo = SIGVTALRM;
547 break;
548 case CLOCK_PROF:
549 pt->pt_ev.sigev_signo = SIGPROF;
550 break;
551 }
552 pt->pt_ev.sigev_value.sival_int = timerid;
553 }
554 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
555 pt->pt_info.ksi_errno = 0;
556 pt->pt_info.ksi_code = 0;
557 pt->pt_info.ksi_pid = p->p_pid;
558 pt->pt_info.ksi_uid = p->p_cred->p_ruid;
559 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
560
561 pt->pt_type = id;
562 pt->pt_proc = p;
563 pt->pt_overruns = 0;
564 pt->pt_poverruns = 0;
565 pt->pt_entry = timerid;
566 timerclear(&pt->pt_time.it_value);
567 if (id == CLOCK_REALTIME)
568 callout_init(&pt->pt_ch);
569 else
570 pt->pt_active = 0;
571
572 p->p_timers->pts_timers[timerid] = pt;
573
574 return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
575 }
576
577
578 /* Delete a POSIX realtime timer */
579 int
580 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
581 {
582 struct sys_timer_delete_args /* {
583 syscallarg(timer_t) timerid;
584 } */ *uap = v;
585 struct proc *p = l->l_proc;
586 timer_t timerid;
587 struct ptimer *pt, *ptn;
588 int s;
589
590 timerid = SCARG(uap, timerid);
591
592 if ((p->p_timers == NULL) ||
593 (timerid < 2) || (timerid >= TIMER_MAX) ||
594 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
595 return (EINVAL);
596
597 if (pt->pt_type == CLOCK_REALTIME)
598 callout_stop(&pt->pt_ch);
599 else if (pt->pt_active) {
600 s = splclock();
601 ptn = LIST_NEXT(pt, pt_list);
602 LIST_REMOVE(pt, pt_list);
603 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
604 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
605 &ptn->pt_time.it_value);
606 splx(s);
607 }
608
609 p->p_timers->pts_timers[timerid] = NULL;
610 pool_put(&ptimer_pool, pt);
611
612 return (0);
613 }
614
615 /*
616 * Set up the given timer. The value in pt->pt_time.it_value is taken
617 * to be an absolute time for CLOCK_REALTIME timers and a relative
618 * time for virtual timers.
619 * Must be called at splclock().
620 */
621 void
622 timer_settime(struct ptimer *pt)
623 {
624 struct ptimer *ptn, *pptn;
625 struct ptlist *ptl;
626
627 if (pt->pt_type == CLOCK_REALTIME) {
628 callout_stop(&pt->pt_ch);
629 if (timerisset(&pt->pt_time.it_value)) {
630 /*
631 * Don't need to check hzto() return value, here.
632 * callout_reset() does it for us.
633 */
634 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
635 realtimerexpire, pt);
636 }
637 } else {
638 if (pt->pt_active) {
639 ptn = LIST_NEXT(pt, pt_list);
640 LIST_REMOVE(pt, pt_list);
641 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
642 timeradd(&pt->pt_time.it_value,
643 &ptn->pt_time.it_value,
644 &ptn->pt_time.it_value);
645 }
646 if (timerisset(&pt->pt_time.it_value)) {
647 if (pt->pt_type == CLOCK_VIRTUAL)
648 ptl = &pt->pt_proc->p_timers->pts_virtual;
649 else
650 ptl = &pt->pt_proc->p_timers->pts_prof;
651
652 for (ptn = LIST_FIRST(ptl), pptn = NULL;
653 ptn && timercmp(&pt->pt_time.it_value,
654 &ptn->pt_time.it_value, >);
655 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
656 timersub(&pt->pt_time.it_value,
657 &ptn->pt_time.it_value,
658 &pt->pt_time.it_value);
659
660 if (pptn)
661 LIST_INSERT_AFTER(pptn, pt, pt_list);
662 else
663 LIST_INSERT_HEAD(ptl, pt, pt_list);
664
665 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
666 timersub(&ptn->pt_time.it_value,
667 &pt->pt_time.it_value,
668 &ptn->pt_time.it_value);
669
670 pt->pt_active = 1;
671 } else
672 pt->pt_active = 0;
673 }
674 }
675
676 void
677 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
678 {
679 struct ptimer *ptn;
680
681 *aitv = pt->pt_time;
682 if (pt->pt_type == CLOCK_REALTIME) {
683 /*
684 * Convert from absolute to relative time in .it_value
685 * part of real time timer. If time for real time
686 * timer has passed return 0, else return difference
687 * between current time and time for the timer to go
688 * off.
689 */
690 if (timerisset(&aitv->it_value)) {
691 if (timercmp(&aitv->it_value, &time, <))
692 timerclear(&aitv->it_value);
693 else
694 timersub(&aitv->it_value, &time,
695 &aitv->it_value);
696 }
697 } else if (pt->pt_active) {
698 if (pt->pt_type == CLOCK_VIRTUAL)
699 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
700 else
701 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
702 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
703 timeradd(&aitv->it_value,
704 &ptn->pt_time.it_value, &aitv->it_value);
705 KASSERT(ptn != NULL); /* pt should be findable on the list */
706 } else
707 timerclear(&aitv->it_value);
708 }
709
710
711
712 /* Set and arm a POSIX realtime timer */
713 int
714 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
715 {
716 struct sys_timer_settime_args /* {
717 syscallarg(timer_t) timerid;
718 syscallarg(int) flags;
719 syscallarg(const struct itimerspec *) value;
720 syscallarg(struct itimerspec *) ovalue;
721 } */ *uap = v;
722 struct proc *p = l->l_proc;
723 int error, s, timerid;
724 struct itimerval val, oval;
725 struct itimerspec value, ovalue;
726 struct ptimer *pt;
727
728 timerid = SCARG(uap, timerid);
729
730 if ((p->p_timers == NULL) ||
731 (timerid < 2) || (timerid >= TIMER_MAX) ||
732 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
733 return (EINVAL);
734
735 if ((error = copyin(SCARG(uap, value), &value,
736 sizeof(struct itimerspec))) != 0)
737 return (error);
738
739 TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
740 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
741 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
742 return (EINVAL);
743
744 oval = pt->pt_time;
745 pt->pt_time = val;
746
747 s = splclock();
748 /*
749 * If we've been passed a relative time for a realtime timer,
750 * convert it to absolute; if an absolute time for a virtual
751 * timer, convert it to relative and make sure we don't set it
752 * to zero, which would cancel the timer, or let it go
753 * negative, which would confuse the comparison tests.
754 */
755 if (timerisset(&pt->pt_time.it_value)) {
756 if (pt->pt_type == CLOCK_REALTIME) {
757 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
758 timeradd(&pt->pt_time.it_value, &time,
759 &pt->pt_time.it_value);
760 } else {
761 if ((SCARG(uap, flags) & TIMER_ABSTIME) != 0) {
762 timersub(&pt->pt_time.it_value, &time,
763 &pt->pt_time.it_value);
764 if (!timerisset(&pt->pt_time.it_value) ||
765 pt->pt_time.it_value.tv_sec < 0) {
766 pt->pt_time.it_value.tv_sec = 0;
767 pt->pt_time.it_value.tv_usec = 1;
768 }
769 }
770 }
771 }
772
773 timer_settime(pt);
774 splx(s);
775
776 if (SCARG(uap, ovalue)) {
777 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
778 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
779 return copyout(&ovalue, SCARG(uap, ovalue),
780 sizeof(struct itimerspec));
781 }
782
783 return (0);
784 }
785
786 /* Return the time remaining until a POSIX timer fires. */
787 int
788 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
789 {
790 struct sys_timer_gettime_args /* {
791 syscallarg(timer_t) timerid;
792 syscallarg(struct itimerspec *) value;
793 } */ *uap = v;
794 struct itimerval aitv;
795 struct itimerspec its;
796 struct proc *p = l->l_proc;
797 int s, timerid;
798 struct ptimer *pt;
799
800 timerid = SCARG(uap, timerid);
801
802 if ((p->p_timers == NULL) ||
803 (timerid < 2) || (timerid >= TIMER_MAX) ||
804 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
805 return (EINVAL);
806
807 s = splclock();
808 timer_gettime(pt, &aitv);
809 splx(s);
810
811 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
812 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
813
814 return copyout(&its, SCARG(uap, value), sizeof(its));
815 }
816
817 /*
818 * Return the count of the number of times a periodic timer expired
819 * while a notification was already pending. The counter is reset when
820 * a timer expires and a notification can be posted.
821 */
822 int
823 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
824 {
825 struct sys_timer_getoverrun_args /* {
826 syscallarg(timer_t) timerid;
827 } */ *uap = v;
828 struct proc *p = l->l_proc;
829 int timerid;
830 struct ptimer *pt;
831
832 timerid = SCARG(uap, timerid);
833
834 if ((p->p_timers == NULL) ||
835 (timerid < 2) || (timerid >= TIMER_MAX) ||
836 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
837 return (EINVAL);
838
839 *retval = pt->pt_poverruns;
840
841 return (0);
842 }
843
844 /* Glue function that triggers an upcall; called from userret(). */
845 static void
846 timerupcall(struct lwp *l, void *arg)
847 {
848 struct ptimers *pt = (struct ptimers *)arg;
849 unsigned int i, fired, done;
850 extern struct pool siginfo_pool; /* XXX Ew. */
851
852 KDASSERT(l->l_proc->p_sa);
853 /* Bail out if we do not own the virtual processor */
854 if (l->l_savp->savp_lwp != l)
855 return ;
856
857 KERNEL_PROC_LOCK(l);
858
859 fired = pt->pts_fired;
860 done = 0;
861 while ((i = ffs(fired)) != 0) {
862 siginfo_t *si;
863 int mask = 1 << --i;
864 int f;
865
866 f = l->l_flag & L_SA;
867 l->l_flag &= ~L_SA;
868 si = pool_get(&siginfo_pool, PR_WAITOK);
869 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
870 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
871 sizeof(*si), si) != 0) {
872 pool_put(&siginfo_pool, si);
873 /* XXX What do we do here?? */
874 } else
875 done |= mask;
876 fired &= ~mask;
877 l->l_flag |= f;
878 }
879 pt->pts_fired &= ~done;
880 if (pt->pts_fired == 0)
881 l->l_proc->p_userret = NULL;
882
883 KERNEL_PROC_UNLOCK(l);
884 }
885
886
887 /*
888 * Real interval timer expired:
889 * send process whose timer expired an alarm signal.
890 * If time is not set up to reload, then just return.
891 * Else compute next time timer should go off which is > current time.
892 * This is where delay in processing this timeout causes multiple
893 * SIGALRM calls to be compressed into one.
894 */
895 void
896 realtimerexpire(void *arg)
897 {
898 struct ptimer *pt;
899 int s;
900
901 pt = (struct ptimer *)arg;
902
903 itimerfire(pt);
904
905 if (!timerisset(&pt->pt_time.it_interval)) {
906 timerclear(&pt->pt_time.it_value);
907 return;
908 }
909 for (;;) {
910 s = splclock();
911 timeradd(&pt->pt_time.it_value,
912 &pt->pt_time.it_interval, &pt->pt_time.it_value);
913 if (timercmp(&pt->pt_time.it_value, &time, >)) {
914 /*
915 * Don't need to check hzto() return value, here.
916 * callout_reset() does it for us.
917 */
918 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
919 realtimerexpire, pt);
920 splx(s);
921 return;
922 }
923 splx(s);
924 pt->pt_overruns++;
925 }
926 }
927
928 /* BSD routine to get the value of an interval timer. */
929 /* ARGSUSED */
930 int
931 sys_getitimer(struct lwp *l, void *v, register_t *retval)
932 {
933 struct sys_getitimer_args /* {
934 syscallarg(int) which;
935 syscallarg(struct itimerval *) itv;
936 } */ *uap = v;
937 struct proc *p = l->l_proc;
938 struct itimerval aitv;
939 int error;
940
941 error = dogetitimer(p, SCARG(uap, which), &aitv);
942 if (error)
943 return error;
944 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
945 }
946
947 int
948 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
949 {
950 int s;
951
952 if ((u_int)which > ITIMER_PROF)
953 return (EINVAL);
954
955 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
956 timerclear(&itvp->it_value);
957 timerclear(&itvp->it_interval);
958 } else {
959 s = splclock();
960 timer_gettime(p->p_timers->pts_timers[which], itvp);
961 splx(s);
962 }
963
964 return 0;
965 }
966
967 /* BSD routine to set/arm an interval timer. */
968 /* ARGSUSED */
969 int
970 sys_setitimer(struct lwp *l, void *v, register_t *retval)
971 {
972 struct sys_setitimer_args /* {
973 syscallarg(int) which;
974 syscallarg(const struct itimerval *) itv;
975 syscallarg(struct itimerval *) oitv;
976 } */ *uap = v;
977 struct proc *p = l->l_proc;
978 int which = SCARG(uap, which);
979 struct sys_getitimer_args getargs;
980 const struct itimerval *itvp;
981 struct itimerval aitv;
982 int error;
983
984 if ((u_int)which > ITIMER_PROF)
985 return (EINVAL);
986 itvp = SCARG(uap, itv);
987 if (itvp &&
988 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
989 return (error);
990 if (SCARG(uap, oitv) != NULL) {
991 SCARG(&getargs, which) = which;
992 SCARG(&getargs, itv) = SCARG(uap, oitv);
993 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
994 return (error);
995 }
996 if (itvp == 0)
997 return (0);
998
999 return dosetitimer(p, which, &aitv);
1000 }
1001
1002 int
1003 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1004 {
1005 struct ptimer *pt;
1006 int s;
1007
1008 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1009 return (EINVAL);
1010
1011 /*
1012 * Don't bother allocating data structures if the process just
1013 * wants to clear the timer.
1014 */
1015 if (!timerisset(&itvp->it_value) &&
1016 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1017 return (0);
1018
1019 if (p->p_timers == NULL)
1020 timers_alloc(p);
1021 if (p->p_timers->pts_timers[which] == NULL) {
1022 pt = pool_get(&ptimer_pool, PR_WAITOK);
1023 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1024 pt->pt_ev.sigev_value.sival_int = which;
1025 pt->pt_overruns = 0;
1026 pt->pt_proc = p;
1027 pt->pt_type = which;
1028 pt->pt_entry = which;
1029 switch (which) {
1030 case ITIMER_REAL:
1031 callout_init(&pt->pt_ch);
1032 pt->pt_ev.sigev_signo = SIGALRM;
1033 break;
1034 case ITIMER_VIRTUAL:
1035 pt->pt_active = 0;
1036 pt->pt_ev.sigev_signo = SIGVTALRM;
1037 break;
1038 case ITIMER_PROF:
1039 pt->pt_active = 0;
1040 pt->pt_ev.sigev_signo = SIGPROF;
1041 break;
1042 }
1043 } else
1044 pt = p->p_timers->pts_timers[which];
1045
1046 pt->pt_time = *itvp;
1047 p->p_timers->pts_timers[which] = pt;
1048
1049 s = splclock();
1050 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1051 /* Convert to absolute time */
1052 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1053 }
1054 timer_settime(pt);
1055 splx(s);
1056
1057 return (0);
1058 }
1059
1060 /* Utility routines to manage the array of pointers to timers. */
1061 void
1062 timers_alloc(struct proc *p)
1063 {
1064 int i;
1065 struct ptimers *pts;
1066
1067 pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1068 LIST_INIT(&pts->pts_virtual);
1069 LIST_INIT(&pts->pts_prof);
1070 for (i = 0; i < TIMER_MAX; i++)
1071 pts->pts_timers[i] = NULL;
1072 pts->pts_fired = 0;
1073 p->p_timers = pts;
1074 }
1075
1076 /*
1077 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1078 * then clean up all timers and free all the data structures. If
1079 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1080 * by timer_create(), not the BSD setitimer() timers, and only free the
1081 * structure if none of those remain.
1082 */
1083 void
1084 timers_free(struct proc *p, int which)
1085 {
1086 int i, s;
1087 struct ptimers *pts;
1088 struct ptimer *pt, *ptn;
1089 struct timeval tv;
1090
1091 if (p->p_timers) {
1092 pts = p->p_timers;
1093 if (which == TIMERS_ALL)
1094 i = 0;
1095 else {
1096 s = splclock();
1097 timerclear(&tv);
1098 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1099 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1100 ptn = LIST_NEXT(ptn, pt_list))
1101 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1102 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1103 if (ptn) {
1104 timeradd(&tv, &ptn->pt_time.it_value,
1105 &ptn->pt_time.it_value);
1106 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1107 ptn, pt_list);
1108 }
1109
1110 timerclear(&tv);
1111 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1112 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1113 ptn = LIST_NEXT(ptn, pt_list))
1114 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1115 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1116 if (ptn) {
1117 timeradd(&tv, &ptn->pt_time.it_value,
1118 &ptn->pt_time.it_value);
1119 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1120 pt_list);
1121 }
1122 splx(s);
1123 i = 3;
1124 }
1125 for ( ; i < TIMER_MAX; i++)
1126 if ((pt = pts->pts_timers[i]) != NULL) {
1127 if (pt->pt_type == CLOCK_REALTIME)
1128 callout_stop(&pt->pt_ch);
1129 pts->pts_timers[i] = NULL;
1130 pool_put(&ptimer_pool, pt);
1131 }
1132 if ((pts->pts_timers[0] == NULL) &&
1133 (pts->pts_timers[1] == NULL) &&
1134 (pts->pts_timers[2] == NULL)) {
1135 p->p_timers = NULL;
1136 free(pts, M_SUBPROC);
1137 }
1138 }
1139 }
1140
1141 /*
1142 * Check that a proposed value to load into the .it_value or
1143 * .it_interval part of an interval timer is acceptable, and
1144 * fix it to have at least minimal value (i.e. if it is less
1145 * than the resolution of the clock, round it up.)
1146 */
1147 int
1148 itimerfix(struct timeval *tv)
1149 {
1150
1151 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1152 return (EINVAL);
1153 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1154 tv->tv_usec = tick;
1155 return (0);
1156 }
1157
1158 /*
1159 * Decrement an interval timer by a specified number
1160 * of microseconds, which must be less than a second,
1161 * i.e. < 1000000. If the timer expires, then reload
1162 * it. In this case, carry over (usec - old value) to
1163 * reduce the value reloaded into the timer so that
1164 * the timer does not drift. This routine assumes
1165 * that it is called in a context where the timers
1166 * on which it is operating cannot change in value.
1167 */
1168 int
1169 itimerdecr(struct ptimer *pt, int usec)
1170 {
1171 struct itimerval *itp;
1172
1173 itp = &pt->pt_time;
1174 if (itp->it_value.tv_usec < usec) {
1175 if (itp->it_value.tv_sec == 0) {
1176 /* expired, and already in next interval */
1177 usec -= itp->it_value.tv_usec;
1178 goto expire;
1179 }
1180 itp->it_value.tv_usec += 1000000;
1181 itp->it_value.tv_sec--;
1182 }
1183 itp->it_value.tv_usec -= usec;
1184 usec = 0;
1185 if (timerisset(&itp->it_value))
1186 return (1);
1187 /* expired, exactly at end of interval */
1188 expire:
1189 if (timerisset(&itp->it_interval)) {
1190 itp->it_value = itp->it_interval;
1191 itp->it_value.tv_usec -= usec;
1192 if (itp->it_value.tv_usec < 0) {
1193 itp->it_value.tv_usec += 1000000;
1194 itp->it_value.tv_sec--;
1195 }
1196 timer_settime(pt);
1197 } else
1198 itp->it_value.tv_usec = 0; /* sec is already 0 */
1199 return (0);
1200 }
1201
1202 void
1203 itimerfire(struct ptimer *pt)
1204 {
1205 struct proc *p = pt->pt_proc;
1206 struct sadata_vp *vp;
1207 int s;
1208 unsigned int i;
1209
1210 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1211 /*
1212 * No RT signal infrastructure exists at this time;
1213 * just post the signal number and throw away the
1214 * value.
1215 */
1216 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1217 pt->pt_overruns++;
1218 else {
1219 ksiginfo_t ksi;
1220 (void)memset(&ksi, 0, sizeof(ksi));
1221 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1222 ksi.ksi_code = SI_TIMER;
1223 ksi.ksi_sigval = pt->pt_ev.sigev_value;
1224 pt->pt_poverruns = pt->pt_overruns;
1225 pt->pt_overruns = 0;
1226 kpsignal(p, &ksi, NULL);
1227 }
1228 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1229 /* Cause the process to generate an upcall when it returns. */
1230
1231 if (p->p_userret == NULL) {
1232 /*
1233 * XXX stop signals can be processed inside tsleep,
1234 * which can be inside sa_yield's inner loop, which
1235 * makes testing for sa_idle alone insuffucent to
1236 * determine if we really should call setrunnable.
1237 */
1238 pt->pt_poverruns = pt->pt_overruns;
1239 pt->pt_overruns = 0;
1240 i = 1 << pt->pt_entry;
1241 p->p_timers->pts_fired = i;
1242 p->p_userret = timerupcall;
1243 p->p_userret_arg = p->p_timers;
1244
1245 SCHED_LOCK(s);
1246 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1247 if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1248 vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1249 sched_wakeup(vp->savp_lwp);
1250 break;
1251 }
1252 }
1253 SCHED_UNLOCK(s);
1254 } else if (p->p_userret == timerupcall) {
1255 i = 1 << pt->pt_entry;
1256 if ((p->p_timers->pts_fired & i) == 0) {
1257 pt->pt_poverruns = pt->pt_overruns;
1258 pt->pt_overruns = 0;
1259 p->p_timers->pts_fired |= i;
1260 } else
1261 pt->pt_overruns++;
1262 } else {
1263 pt->pt_overruns++;
1264 if ((p->p_flag & P_WEXIT) == 0)
1265 printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1266 p->p_pid, pt->pt_overruns,
1267 pt->pt_ev.sigev_value.sival_int,
1268 p->p_userret);
1269 }
1270 }
1271
1272 }
1273
1274 /*
1275 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1276 * for usage and rationale.
1277 */
1278 int
1279 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1280 {
1281 struct timeval tv, delta;
1282 int s, rv = 0;
1283
1284 s = splclock();
1285 tv = mono_time;
1286 splx(s);
1287
1288 timersub(&tv, lasttime, &delta);
1289
1290 /*
1291 * check for 0,0 is so that the message will be seen at least once,
1292 * even if interval is huge.
1293 */
1294 if (timercmp(&delta, mininterval, >=) ||
1295 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1296 *lasttime = tv;
1297 rv = 1;
1298 }
1299
1300 return (rv);
1301 }
1302
1303 /*
1304 * ppsratecheck(): packets (or events) per second limitation.
1305 */
1306 int
1307 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1308 {
1309 struct timeval tv, delta;
1310 int s, rv;
1311
1312 s = splclock();
1313 tv = mono_time;
1314 splx(s);
1315
1316 timersub(&tv, lasttime, &delta);
1317
1318 /*
1319 * check for 0,0 is so that the message will be seen at least once.
1320 * if more than one second have passed since the last update of
1321 * lasttime, reset the counter.
1322 *
1323 * we do increment *curpps even in *curpps < maxpps case, as some may
1324 * try to use *curpps for stat purposes as well.
1325 */
1326 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1327 delta.tv_sec >= 1) {
1328 *lasttime = tv;
1329 *curpps = 0;
1330 }
1331 if (maxpps < 0)
1332 rv = 1;
1333 else if (*curpps < maxpps)
1334 rv = 1;
1335 else
1336 rv = 0;
1337
1338 #if 1 /*DIAGNOSTIC?*/
1339 /* be careful about wrap-around */
1340 if (*curpps + 1 > *curpps)
1341 *curpps = *curpps + 1;
1342 #else
1343 /*
1344 * assume that there's not too many calls to this function.
1345 * not sure if the assumption holds, as it depends on *caller's*
1346 * behavior, not the behavior of this function.
1347 * IMHO it is wrong to make assumption on the caller's behavior,
1348 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1349 */
1350 *curpps = *curpps + 1;
1351 #endif
1352
1353 return (rv);
1354 }
1355