kern_time.c revision 1.92 1 /* $NetBSD: kern_time.c,v 1.92 2005/07/23 18:54:07 cube Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.92 2005/07/23 18:54:07 cube Exp $");
72
73 #include "fs_nfs.h"
74 #include "opt_nfs.h"
75 #include "opt_nfsserver.h"
76
77 #include <sys/param.h>
78 #include <sys/resourcevar.h>
79 #include <sys/kernel.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/proc.h>
83 #include <sys/sa.h>
84 #include <sys/savar.h>
85 #include <sys/vnode.h>
86 #include <sys/signalvar.h>
87 #include <sys/syslog.h>
88
89 #include <sys/mount.h>
90 #include <sys/syscallargs.h>
91
92 #include <uvm/uvm_extern.h>
93
94 #if defined(NFS) || defined(NFSSERVER)
95 #include <nfs/rpcv2.h>
96 #include <nfs/nfsproto.h>
97 #include <nfs/nfs_var.h>
98 #endif
99
100 #include <machine/cpu.h>
101
102 static void timerupcall(struct lwp *, void *);
103
104
105 /* Time of day and interval timer support.
106 *
107 * These routines provide the kernel entry points to get and set
108 * the time-of-day and per-process interval timers. Subroutines
109 * here provide support for adding and subtracting timeval structures
110 * and decrementing interval timers, optionally reloading the interval
111 * timers when they expire.
112 */
113
114 /* This function is used by clock_settime and settimeofday */
115 int
116 settime(struct timeval *tv)
117 {
118 struct timeval delta;
119 struct cpu_info *ci;
120 int s;
121
122 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123 s = splclock();
124 timersub(tv, &time, &delta);
125 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126 splx(s);
127 return (EPERM);
128 }
129 #ifdef notyet
130 if ((delta.tv_sec < 86400) && securelevel > 0) {
131 splx(s);
132 return (EPERM);
133 }
134 #endif
135 time = *tv;
136 (void) spllowersoftclock();
137 timeradd(&boottime, &delta, &boottime);
138 /*
139 * XXXSMP
140 * This is wrong. We should traverse a list of all
141 * CPUs and add the delta to the runtime of those
142 * CPUs which have a process on them.
143 */
144 ci = curcpu();
145 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146 &ci->ci_schedstate.spc_runtime);
147 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148 nqnfs_lease_updatetime(delta.tv_sec);
149 # endif
150 splx(s);
151 resettodr();
152 return (0);
153 }
154
155 /* ARGSUSED */
156 int
157 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
158 {
159 struct sys_clock_gettime_args /* {
160 syscallarg(clockid_t) clock_id;
161 syscallarg(struct timespec *) tp;
162 } */ *uap = v;
163 clockid_t clock_id;
164 struct timeval atv;
165 struct timespec ats;
166 int s;
167
168 clock_id = SCARG(uap, clock_id);
169 switch (clock_id) {
170 case CLOCK_REALTIME:
171 microtime(&atv);
172 TIMEVAL_TO_TIMESPEC(&atv,&ats);
173 break;
174 case CLOCK_MONOTONIC:
175 /* XXX "hz" granularity */
176 s = splclock();
177 atv = mono_time;
178 splx(s);
179 TIMEVAL_TO_TIMESPEC(&atv,&ats);
180 break;
181 default:
182 return (EINVAL);
183 }
184
185 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
186 }
187
188 /* ARGSUSED */
189 int
190 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
191 {
192 struct sys_clock_settime_args /* {
193 syscallarg(clockid_t) clock_id;
194 syscallarg(const struct timespec *) tp;
195 } */ *uap = v;
196 struct proc *p = l->l_proc;
197 int error;
198
199 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
200 return (error);
201
202 return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
203 }
204
205
206 int
207 clock_settime1(clockid_t clock_id, const struct timespec *tp)
208 {
209 struct timespec ats;
210 struct timeval atv;
211 int error;
212
213 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
214 return (error);
215
216 switch (clock_id) {
217 case CLOCK_REALTIME:
218 TIMESPEC_TO_TIMEVAL(&atv, &ats);
219 if ((error = settime(&atv)) != 0)
220 return (error);
221 break;
222 case CLOCK_MONOTONIC:
223 return (EINVAL); /* read-only clock */
224 default:
225 return (EINVAL);
226 }
227
228 return 0;
229 }
230
231 int
232 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
233 {
234 struct sys_clock_getres_args /* {
235 syscallarg(clockid_t) clock_id;
236 syscallarg(struct timespec *) tp;
237 } */ *uap = v;
238 clockid_t clock_id;
239 struct timespec ts;
240 int error = 0;
241
242 clock_id = SCARG(uap, clock_id);
243 switch (clock_id) {
244 case CLOCK_REALTIME:
245 case CLOCK_MONOTONIC:
246 ts.tv_sec = 0;
247 ts.tv_nsec = 1000000000 / hz;
248 break;
249 default:
250 return (EINVAL);
251 }
252
253 if (SCARG(uap, tp))
254 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
255
256 return error;
257 }
258
259 /* ARGSUSED */
260 int
261 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
262 {
263 static int nanowait;
264 struct sys_nanosleep_args/* {
265 syscallarg(struct timespec *) rqtp;
266 syscallarg(struct timespec *) rmtp;
267 } */ *uap = v;
268 struct timespec rqt;
269 struct timespec rmt;
270 struct timeval atv, utv;
271 int error, s, timo;
272
273 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
274 if (error)
275 return (error);
276
277 TIMESPEC_TO_TIMEVAL(&atv,&rqt);
278 if (itimerfix(&atv))
279 return (EINVAL);
280
281 s = splclock();
282 timeradd(&atv,&time,&atv);
283 timo = hzto(&atv);
284 /*
285 * Avoid inadvertantly sleeping forever
286 */
287 if (timo == 0)
288 timo = 1;
289 splx(s);
290
291 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
292 if (error == ERESTART)
293 error = EINTR;
294 if (error == EWOULDBLOCK)
295 error = 0;
296
297 if (SCARG(uap, rmtp)) {
298 int error1;
299
300 s = splclock();
301 utv = time;
302 splx(s);
303
304 timersub(&atv, &utv, &utv);
305 if (utv.tv_sec < 0)
306 timerclear(&utv);
307
308 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
309 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
310 sizeof(rmt));
311 if (error1)
312 return (error1);
313 }
314
315 return error;
316 }
317
318 /* ARGSUSED */
319 int
320 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
321 {
322 struct sys_gettimeofday_args /* {
323 syscallarg(struct timeval *) tp;
324 syscallarg(void *) tzp; really "struct timezone *"
325 } */ *uap = v;
326 struct timeval atv;
327 int error = 0;
328 struct timezone tzfake;
329
330 if (SCARG(uap, tp)) {
331 microtime(&atv);
332 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
333 if (error)
334 return (error);
335 }
336 if (SCARG(uap, tzp)) {
337 /*
338 * NetBSD has no kernel notion of time zone, so we just
339 * fake up a timezone struct and return it if demanded.
340 */
341 tzfake.tz_minuteswest = 0;
342 tzfake.tz_dsttime = 0;
343 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
344 }
345 return (error);
346 }
347
348 /* ARGSUSED */
349 int
350 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
351 {
352 struct sys_settimeofday_args /* {
353 syscallarg(const struct timeval *) tv;
354 syscallarg(const void *) tzp; really "const struct timezone *"
355 } */ *uap = v;
356 struct proc *p = l->l_proc;
357 int error;
358
359 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
360 return (error);
361
362 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
363 }
364
365 int
366 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
367 struct proc *p)
368 {
369 struct timeval atv;
370 struct timezone atz;
371 struct timeval *tv = NULL;
372 struct timezone *tzp = NULL;
373 int error;
374
375 /* Verify all parameters before changing time. */
376 if (utv) {
377 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
378 return (error);
379 tv = &atv;
380 }
381 /* XXX since we don't use tz, probably no point in doing copyin. */
382 if (utzp) {
383 if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
384 return (error);
385 tzp = &atz;
386 }
387
388 if (tv)
389 if ((error = settime(tv)) != 0)
390 return (error);
391 /*
392 * NetBSD has no kernel notion of time zone, and only an
393 * obsolete program would try to set it, so we log a warning.
394 */
395 if (tzp)
396 log(LOG_WARNING, "pid %d attempted to set the "
397 "(obsolete) kernel time zone\n", p->p_pid);
398 return (0);
399 }
400
401 int tickdelta; /* current clock skew, us. per tick */
402 long timedelta; /* unapplied time correction, us. */
403 long bigadj = 1000000; /* use 10x skew above bigadj us. */
404 int time_adjusted; /* set if an adjustment is made */
405
406 /* ARGSUSED */
407 int
408 sys_adjtime(struct lwp *l, void *v, register_t *retval)
409 {
410 struct sys_adjtime_args /* {
411 syscallarg(const struct timeval *) delta;
412 syscallarg(struct timeval *) olddelta;
413 } */ *uap = v;
414 struct proc *p = l->l_proc;
415 int error;
416
417 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
418 return (error);
419
420 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
421 }
422
423 int
424 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
425 {
426 struct timeval atv;
427 long ndelta, ntickdelta, odelta;
428 int error;
429 int s;
430
431 error = copyin(delta, &atv, sizeof(struct timeval));
432 if (error)
433 return (error);
434
435 /*
436 * Compute the total correction and the rate at which to apply it.
437 * Round the adjustment down to a whole multiple of the per-tick
438 * delta, so that after some number of incremental changes in
439 * hardclock(), tickdelta will become zero, lest the correction
440 * overshoot and start taking us away from the desired final time.
441 */
442 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
443 if (ndelta > bigadj || ndelta < -bigadj)
444 ntickdelta = 10 * tickadj;
445 else
446 ntickdelta = tickadj;
447 if (ndelta % ntickdelta)
448 ndelta = ndelta / ntickdelta * ntickdelta;
449
450 /*
451 * To make hardclock()'s job easier, make the per-tick delta negative
452 * if we want time to run slower; then hardclock can simply compute
453 * tick + tickdelta, and subtract tickdelta from timedelta.
454 */
455 if (ndelta < 0)
456 ntickdelta = -ntickdelta;
457 if (ndelta != 0)
458 /* We need to save the system clock time during shutdown */
459 time_adjusted |= 1;
460 s = splclock();
461 odelta = timedelta;
462 timedelta = ndelta;
463 tickdelta = ntickdelta;
464 splx(s);
465
466 if (olddelta) {
467 atv.tv_sec = odelta / 1000000;
468 atv.tv_usec = odelta % 1000000;
469 error = copyout(&atv, olddelta, sizeof(struct timeval));
470 }
471 return error;
472 }
473
474 /*
475 * Interval timer support. Both the BSD getitimer() family and the POSIX
476 * timer_*() family of routines are supported.
477 *
478 * All timers are kept in an array pointed to by p_timers, which is
479 * allocated on demand - many processes don't use timers at all. The
480 * first three elements in this array are reserved for the BSD timers:
481 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
482 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
483 * syscall.
484 *
485 * Realtime timers are kept in the ptimer structure as an absolute
486 * time; virtual time timers are kept as a linked list of deltas.
487 * Virtual time timers are processed in the hardclock() routine of
488 * kern_clock.c. The real time timer is processed by a callout
489 * routine, called from the softclock() routine. Since a callout may
490 * be delayed in real time due to interrupt processing in the system,
491 * it is possible for the real time timeout routine (realtimeexpire,
492 * given below), to be delayed in real time past when it is supposed
493 * to occur. It does not suffice, therefore, to reload the real timer
494 * .it_value from the real time timers .it_interval. Rather, we
495 * compute the next time in absolute time the timer should go off. */
496
497 /* Allocate a POSIX realtime timer. */
498 int
499 sys_timer_create(struct lwp *l, void *v, register_t *retval)
500 {
501 struct sys_timer_create_args /* {
502 syscallarg(clockid_t) clock_id;
503 syscallarg(struct sigevent *) evp;
504 syscallarg(timer_t *) timerid;
505 } */ *uap = v;
506
507 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
508 SCARG(uap, evp), copyin, l->l_proc);
509 }
510
511 int
512 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
513 copyinout_t fetch_event, struct proc *p)
514 {
515 int error;
516 timer_t timerid;
517 struct ptimer *pt;
518
519 if (id < CLOCK_REALTIME ||
520 id > CLOCK_PROF)
521 return (EINVAL);
522
523 if (p->p_timers == NULL)
524 timers_alloc(p);
525
526 /* Find a free timer slot, skipping those reserved for setitimer(). */
527 for (timerid = 3; timerid < TIMER_MAX; timerid++)
528 if (p->p_timers->pts_timers[timerid] == NULL)
529 break;
530
531 if (timerid == TIMER_MAX)
532 return EAGAIN;
533
534 pt = pool_get(&ptimer_pool, PR_WAITOK);
535 if (evp) {
536 if (((error =
537 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
538 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
539 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
540 pool_put(&ptimer_pool, pt);
541 return (error ? error : EINVAL);
542 }
543 } else {
544 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
545 switch (id) {
546 case CLOCK_REALTIME:
547 pt->pt_ev.sigev_signo = SIGALRM;
548 break;
549 case CLOCK_VIRTUAL:
550 pt->pt_ev.sigev_signo = SIGVTALRM;
551 break;
552 case CLOCK_PROF:
553 pt->pt_ev.sigev_signo = SIGPROF;
554 break;
555 }
556 pt->pt_ev.sigev_value.sival_int = timerid;
557 }
558 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
559 pt->pt_info.ksi_errno = 0;
560 pt->pt_info.ksi_code = 0;
561 pt->pt_info.ksi_pid = p->p_pid;
562 pt->pt_info.ksi_uid = p->p_cred->p_ruid;
563 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
564
565 pt->pt_type = id;
566 pt->pt_proc = p;
567 pt->pt_overruns = 0;
568 pt->pt_poverruns = 0;
569 pt->pt_entry = timerid;
570 timerclear(&pt->pt_time.it_value);
571 if (id == CLOCK_REALTIME)
572 callout_init(&pt->pt_ch);
573 else
574 pt->pt_active = 0;
575
576 p->p_timers->pts_timers[timerid] = pt;
577
578 return copyout(&timerid, tid, sizeof(timerid));
579 }
580
581 /* Delete a POSIX realtime timer */
582 int
583 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
584 {
585 struct sys_timer_delete_args /* {
586 syscallarg(timer_t) timerid;
587 } */ *uap = v;
588 struct proc *p = l->l_proc;
589 timer_t timerid;
590 struct ptimer *pt, *ptn;
591 int s;
592
593 timerid = SCARG(uap, timerid);
594
595 if ((p->p_timers == NULL) ||
596 (timerid < 2) || (timerid >= TIMER_MAX) ||
597 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
598 return (EINVAL);
599
600 if (pt->pt_type == CLOCK_REALTIME)
601 callout_stop(&pt->pt_ch);
602 else if (pt->pt_active) {
603 s = splclock();
604 ptn = LIST_NEXT(pt, pt_list);
605 LIST_REMOVE(pt, pt_list);
606 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
607 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
608 &ptn->pt_time.it_value);
609 splx(s);
610 }
611
612 p->p_timers->pts_timers[timerid] = NULL;
613 pool_put(&ptimer_pool, pt);
614
615 return (0);
616 }
617
618 /*
619 * Set up the given timer. The value in pt->pt_time.it_value is taken
620 * to be an absolute time for CLOCK_REALTIME timers and a relative
621 * time for virtual timers.
622 * Must be called at splclock().
623 */
624 void
625 timer_settime(struct ptimer *pt)
626 {
627 struct ptimer *ptn, *pptn;
628 struct ptlist *ptl;
629
630 if (pt->pt_type == CLOCK_REALTIME) {
631 callout_stop(&pt->pt_ch);
632 if (timerisset(&pt->pt_time.it_value)) {
633 /*
634 * Don't need to check hzto() return value, here.
635 * callout_reset() does it for us.
636 */
637 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
638 realtimerexpire, pt);
639 }
640 } else {
641 if (pt->pt_active) {
642 ptn = LIST_NEXT(pt, pt_list);
643 LIST_REMOVE(pt, pt_list);
644 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
645 timeradd(&pt->pt_time.it_value,
646 &ptn->pt_time.it_value,
647 &ptn->pt_time.it_value);
648 }
649 if (timerisset(&pt->pt_time.it_value)) {
650 if (pt->pt_type == CLOCK_VIRTUAL)
651 ptl = &pt->pt_proc->p_timers->pts_virtual;
652 else
653 ptl = &pt->pt_proc->p_timers->pts_prof;
654
655 for (ptn = LIST_FIRST(ptl), pptn = NULL;
656 ptn && timercmp(&pt->pt_time.it_value,
657 &ptn->pt_time.it_value, >);
658 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
659 timersub(&pt->pt_time.it_value,
660 &ptn->pt_time.it_value,
661 &pt->pt_time.it_value);
662
663 if (pptn)
664 LIST_INSERT_AFTER(pptn, pt, pt_list);
665 else
666 LIST_INSERT_HEAD(ptl, pt, pt_list);
667
668 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
669 timersub(&ptn->pt_time.it_value,
670 &pt->pt_time.it_value,
671 &ptn->pt_time.it_value);
672
673 pt->pt_active = 1;
674 } else
675 pt->pt_active = 0;
676 }
677 }
678
679 void
680 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
681 {
682 struct ptimer *ptn;
683
684 *aitv = pt->pt_time;
685 if (pt->pt_type == CLOCK_REALTIME) {
686 /*
687 * Convert from absolute to relative time in .it_value
688 * part of real time timer. If time for real time
689 * timer has passed return 0, else return difference
690 * between current time and time for the timer to go
691 * off.
692 */
693 if (timerisset(&aitv->it_value)) {
694 if (timercmp(&aitv->it_value, &time, <))
695 timerclear(&aitv->it_value);
696 else
697 timersub(&aitv->it_value, &time,
698 &aitv->it_value);
699 }
700 } else if (pt->pt_active) {
701 if (pt->pt_type == CLOCK_VIRTUAL)
702 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
703 else
704 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
705 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
706 timeradd(&aitv->it_value,
707 &ptn->pt_time.it_value, &aitv->it_value);
708 KASSERT(ptn != NULL); /* pt should be findable on the list */
709 } else
710 timerclear(&aitv->it_value);
711 }
712
713
714
715 /* Set and arm a POSIX realtime timer */
716 int
717 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
718 {
719 struct sys_timer_settime_args /* {
720 syscallarg(timer_t) timerid;
721 syscallarg(int) flags;
722 syscallarg(const struct itimerspec *) value;
723 syscallarg(struct itimerspec *) ovalue;
724 } */ *uap = v;
725 int error;
726 struct itimerspec value, ovalue, *ovp = NULL;
727
728 if ((error = copyin(SCARG(uap, value), &value,
729 sizeof(struct itimerspec))) != 0)
730 return (error);
731
732 if (SCARG(uap, ovalue))
733 ovp = &ovalue;
734
735 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
736 SCARG(uap, flags), l->l_proc)) != 0)
737 return error;
738
739 if (ovp)
740 return copyout(&ovalue, SCARG(uap, ovalue),
741 sizeof(struct itimerspec));
742 return 0;
743 }
744
745 int
746 dotimer_settime(int timerid, struct itimerspec *value,
747 struct itimerspec *ovalue, int flags, struct proc *p)
748 {
749 int s;
750 struct itimerval val, oval;
751 struct ptimer *pt;
752
753 if ((p->p_timers == NULL) ||
754 (timerid < 2) || (timerid >= TIMER_MAX) ||
755 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
756 return (EINVAL);
757
758 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
759 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
760 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
761 return (EINVAL);
762
763 oval = pt->pt_time;
764 pt->pt_time = val;
765
766 s = splclock();
767 /*
768 * If we've been passed a relative time for a realtime timer,
769 * convert it to absolute; if an absolute time for a virtual
770 * timer, convert it to relative and make sure we don't set it
771 * to zero, which would cancel the timer, or let it go
772 * negative, which would confuse the comparison tests.
773 */
774 if (timerisset(&pt->pt_time.it_value)) {
775 if (pt->pt_type == CLOCK_REALTIME) {
776 if ((flags & TIMER_ABSTIME) == 0)
777 timeradd(&pt->pt_time.it_value, &time,
778 &pt->pt_time.it_value);
779 } else {
780 if ((flags & TIMER_ABSTIME) != 0) {
781 timersub(&pt->pt_time.it_value, &time,
782 &pt->pt_time.it_value);
783 if (!timerisset(&pt->pt_time.it_value) ||
784 pt->pt_time.it_value.tv_sec < 0) {
785 pt->pt_time.it_value.tv_sec = 0;
786 pt->pt_time.it_value.tv_usec = 1;
787 }
788 }
789 }
790 }
791
792 timer_settime(pt);
793 splx(s);
794
795 if (ovalue) {
796 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
797 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
798 }
799
800 return (0);
801 }
802
803 /* Return the time remaining until a POSIX timer fires. */
804 int
805 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
806 {
807 struct sys_timer_gettime_args /* {
808 syscallarg(timer_t) timerid;
809 syscallarg(struct itimerspec *) value;
810 } */ *uap = v;
811 struct itimerspec its;
812 int error;
813
814 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
815 &its)) != 0)
816 return error;
817
818 return copyout(&its, SCARG(uap, value), sizeof(its));
819 }
820
821 int
822 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
823 {
824 int s;
825 struct ptimer *pt;
826 struct itimerval aitv;
827
828 if ((p->p_timers == NULL) ||
829 (timerid < 2) || (timerid >= TIMER_MAX) ||
830 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
831 return (EINVAL);
832
833 s = splclock();
834 timer_gettime(pt, &aitv);
835 splx(s);
836
837 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
838 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
839
840 return 0;
841 }
842
843 /*
844 * Return the count of the number of times a periodic timer expired
845 * while a notification was already pending. The counter is reset when
846 * a timer expires and a notification can be posted.
847 */
848 int
849 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
850 {
851 struct sys_timer_getoverrun_args /* {
852 syscallarg(timer_t) timerid;
853 } */ *uap = v;
854 struct proc *p = l->l_proc;
855 int timerid;
856 struct ptimer *pt;
857
858 timerid = SCARG(uap, timerid);
859
860 if ((p->p_timers == NULL) ||
861 (timerid < 2) || (timerid >= TIMER_MAX) ||
862 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
863 return (EINVAL);
864
865 *retval = pt->pt_poverruns;
866
867 return (0);
868 }
869
870 /* Glue function that triggers an upcall; called from userret(). */
871 static void
872 timerupcall(struct lwp *l, void *arg)
873 {
874 struct ptimers *pt = (struct ptimers *)arg;
875 unsigned int i, fired, done;
876 extern struct pool siginfo_pool; /* XXX Ew. */
877
878 KDASSERT(l->l_proc->p_sa);
879 /* Bail out if we do not own the virtual processor */
880 if (l->l_savp->savp_lwp != l)
881 return ;
882
883 KERNEL_PROC_LOCK(l);
884
885 fired = pt->pts_fired;
886 done = 0;
887 while ((i = ffs(fired)) != 0) {
888 siginfo_t *si;
889 int mask = 1 << --i;
890 int f;
891
892 f = l->l_flag & L_SA;
893 l->l_flag &= ~L_SA;
894 si = pool_get(&siginfo_pool, PR_WAITOK);
895 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
896 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
897 sizeof(*si), si) != 0) {
898 pool_put(&siginfo_pool, si);
899 /* XXX What do we do here?? */
900 } else
901 done |= mask;
902 fired &= ~mask;
903 l->l_flag |= f;
904 }
905 pt->pts_fired &= ~done;
906 if (pt->pts_fired == 0)
907 l->l_proc->p_userret = NULL;
908
909 KERNEL_PROC_UNLOCK(l);
910 }
911
912
913 /*
914 * Real interval timer expired:
915 * send process whose timer expired an alarm signal.
916 * If time is not set up to reload, then just return.
917 * Else compute next time timer should go off which is > current time.
918 * This is where delay in processing this timeout causes multiple
919 * SIGALRM calls to be compressed into one.
920 */
921 void
922 realtimerexpire(void *arg)
923 {
924 struct ptimer *pt;
925 int s;
926
927 pt = (struct ptimer *)arg;
928
929 itimerfire(pt);
930
931 if (!timerisset(&pt->pt_time.it_interval)) {
932 timerclear(&pt->pt_time.it_value);
933 return;
934 }
935 for (;;) {
936 s = splclock();
937 timeradd(&pt->pt_time.it_value,
938 &pt->pt_time.it_interval, &pt->pt_time.it_value);
939 if (timercmp(&pt->pt_time.it_value, &time, >)) {
940 /*
941 * Don't need to check hzto() return value, here.
942 * callout_reset() does it for us.
943 */
944 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
945 realtimerexpire, pt);
946 splx(s);
947 return;
948 }
949 splx(s);
950 pt->pt_overruns++;
951 }
952 }
953
954 /* BSD routine to get the value of an interval timer. */
955 /* ARGSUSED */
956 int
957 sys_getitimer(struct lwp *l, void *v, register_t *retval)
958 {
959 struct sys_getitimer_args /* {
960 syscallarg(int) which;
961 syscallarg(struct itimerval *) itv;
962 } */ *uap = v;
963 struct proc *p = l->l_proc;
964 struct itimerval aitv;
965 int error;
966
967 error = dogetitimer(p, SCARG(uap, which), &aitv);
968 if (error)
969 return error;
970 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
971 }
972
973 int
974 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
975 {
976 int s;
977
978 if ((u_int)which > ITIMER_PROF)
979 return (EINVAL);
980
981 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
982 timerclear(&itvp->it_value);
983 timerclear(&itvp->it_interval);
984 } else {
985 s = splclock();
986 timer_gettime(p->p_timers->pts_timers[which], itvp);
987 splx(s);
988 }
989
990 return 0;
991 }
992
993 /* BSD routine to set/arm an interval timer. */
994 /* ARGSUSED */
995 int
996 sys_setitimer(struct lwp *l, void *v, register_t *retval)
997 {
998 struct sys_setitimer_args /* {
999 syscallarg(int) which;
1000 syscallarg(const struct itimerval *) itv;
1001 syscallarg(struct itimerval *) oitv;
1002 } */ *uap = v;
1003 struct proc *p = l->l_proc;
1004 int which = SCARG(uap, which);
1005 struct sys_getitimer_args getargs;
1006 const struct itimerval *itvp;
1007 struct itimerval aitv;
1008 int error;
1009
1010 if ((u_int)which > ITIMER_PROF)
1011 return (EINVAL);
1012 itvp = SCARG(uap, itv);
1013 if (itvp &&
1014 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1015 return (error);
1016 if (SCARG(uap, oitv) != NULL) {
1017 SCARG(&getargs, which) = which;
1018 SCARG(&getargs, itv) = SCARG(uap, oitv);
1019 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1020 return (error);
1021 }
1022 if (itvp == 0)
1023 return (0);
1024
1025 return dosetitimer(p, which, &aitv);
1026 }
1027
1028 int
1029 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1030 {
1031 struct ptimer *pt;
1032 int s;
1033
1034 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1035 return (EINVAL);
1036
1037 /*
1038 * Don't bother allocating data structures if the process just
1039 * wants to clear the timer.
1040 */
1041 if (!timerisset(&itvp->it_value) &&
1042 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1043 return (0);
1044
1045 if (p->p_timers == NULL)
1046 timers_alloc(p);
1047 if (p->p_timers->pts_timers[which] == NULL) {
1048 pt = pool_get(&ptimer_pool, PR_WAITOK);
1049 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1050 pt->pt_ev.sigev_value.sival_int = which;
1051 pt->pt_overruns = 0;
1052 pt->pt_proc = p;
1053 pt->pt_type = which;
1054 pt->pt_entry = which;
1055 switch (which) {
1056 case ITIMER_REAL:
1057 callout_init(&pt->pt_ch);
1058 pt->pt_ev.sigev_signo = SIGALRM;
1059 break;
1060 case ITIMER_VIRTUAL:
1061 pt->pt_active = 0;
1062 pt->pt_ev.sigev_signo = SIGVTALRM;
1063 break;
1064 case ITIMER_PROF:
1065 pt->pt_active = 0;
1066 pt->pt_ev.sigev_signo = SIGPROF;
1067 break;
1068 }
1069 } else
1070 pt = p->p_timers->pts_timers[which];
1071
1072 pt->pt_time = *itvp;
1073 p->p_timers->pts_timers[which] = pt;
1074
1075 s = splclock();
1076 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1077 /* Convert to absolute time */
1078 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1079 }
1080 timer_settime(pt);
1081 splx(s);
1082
1083 return (0);
1084 }
1085
1086 /* Utility routines to manage the array of pointers to timers. */
1087 void
1088 timers_alloc(struct proc *p)
1089 {
1090 int i;
1091 struct ptimers *pts;
1092
1093 pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1094 LIST_INIT(&pts->pts_virtual);
1095 LIST_INIT(&pts->pts_prof);
1096 for (i = 0; i < TIMER_MAX; i++)
1097 pts->pts_timers[i] = NULL;
1098 pts->pts_fired = 0;
1099 p->p_timers = pts;
1100 }
1101
1102 /*
1103 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1104 * then clean up all timers and free all the data structures. If
1105 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1106 * by timer_create(), not the BSD setitimer() timers, and only free the
1107 * structure if none of those remain.
1108 */
1109 void
1110 timers_free(struct proc *p, int which)
1111 {
1112 int i, s;
1113 struct ptimers *pts;
1114 struct ptimer *pt, *ptn;
1115 struct timeval tv;
1116
1117 if (p->p_timers) {
1118 pts = p->p_timers;
1119 if (which == TIMERS_ALL)
1120 i = 0;
1121 else {
1122 s = splclock();
1123 timerclear(&tv);
1124 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1125 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1126 ptn = LIST_NEXT(ptn, pt_list))
1127 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1128 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1129 if (ptn) {
1130 timeradd(&tv, &ptn->pt_time.it_value,
1131 &ptn->pt_time.it_value);
1132 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1133 ptn, pt_list);
1134 }
1135
1136 timerclear(&tv);
1137 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1138 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1139 ptn = LIST_NEXT(ptn, pt_list))
1140 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1141 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1142 if (ptn) {
1143 timeradd(&tv, &ptn->pt_time.it_value,
1144 &ptn->pt_time.it_value);
1145 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1146 pt_list);
1147 }
1148 splx(s);
1149 i = 3;
1150 }
1151 for ( ; i < TIMER_MAX; i++)
1152 if ((pt = pts->pts_timers[i]) != NULL) {
1153 if (pt->pt_type == CLOCK_REALTIME)
1154 callout_stop(&pt->pt_ch);
1155 pts->pts_timers[i] = NULL;
1156 pool_put(&ptimer_pool, pt);
1157 }
1158 if ((pts->pts_timers[0] == NULL) &&
1159 (pts->pts_timers[1] == NULL) &&
1160 (pts->pts_timers[2] == NULL)) {
1161 p->p_timers = NULL;
1162 free(pts, M_SUBPROC);
1163 }
1164 }
1165 }
1166
1167 /*
1168 * Check that a proposed value to load into the .it_value or
1169 * .it_interval part of an interval timer is acceptable, and
1170 * fix it to have at least minimal value (i.e. if it is less
1171 * than the resolution of the clock, round it up.)
1172 */
1173 int
1174 itimerfix(struct timeval *tv)
1175 {
1176
1177 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1178 return (EINVAL);
1179 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1180 tv->tv_usec = tick;
1181 return (0);
1182 }
1183
1184 /*
1185 * Decrement an interval timer by a specified number
1186 * of microseconds, which must be less than a second,
1187 * i.e. < 1000000. If the timer expires, then reload
1188 * it. In this case, carry over (usec - old value) to
1189 * reduce the value reloaded into the timer so that
1190 * the timer does not drift. This routine assumes
1191 * that it is called in a context where the timers
1192 * on which it is operating cannot change in value.
1193 */
1194 int
1195 itimerdecr(struct ptimer *pt, int usec)
1196 {
1197 struct itimerval *itp;
1198
1199 itp = &pt->pt_time;
1200 if (itp->it_value.tv_usec < usec) {
1201 if (itp->it_value.tv_sec == 0) {
1202 /* expired, and already in next interval */
1203 usec -= itp->it_value.tv_usec;
1204 goto expire;
1205 }
1206 itp->it_value.tv_usec += 1000000;
1207 itp->it_value.tv_sec--;
1208 }
1209 itp->it_value.tv_usec -= usec;
1210 usec = 0;
1211 if (timerisset(&itp->it_value))
1212 return (1);
1213 /* expired, exactly at end of interval */
1214 expire:
1215 if (timerisset(&itp->it_interval)) {
1216 itp->it_value = itp->it_interval;
1217 itp->it_value.tv_usec -= usec;
1218 if (itp->it_value.tv_usec < 0) {
1219 itp->it_value.tv_usec += 1000000;
1220 itp->it_value.tv_sec--;
1221 }
1222 timer_settime(pt);
1223 } else
1224 itp->it_value.tv_usec = 0; /* sec is already 0 */
1225 return (0);
1226 }
1227
1228 void
1229 itimerfire(struct ptimer *pt)
1230 {
1231 struct proc *p = pt->pt_proc;
1232 struct sadata_vp *vp;
1233 int s;
1234 unsigned int i;
1235
1236 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1237 /*
1238 * No RT signal infrastructure exists at this time;
1239 * just post the signal number and throw away the
1240 * value.
1241 */
1242 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1243 pt->pt_overruns++;
1244 else {
1245 ksiginfo_t ksi;
1246 (void)memset(&ksi, 0, sizeof(ksi));
1247 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1248 ksi.ksi_code = SI_TIMER;
1249 ksi.ksi_sigval = pt->pt_ev.sigev_value;
1250 pt->pt_poverruns = pt->pt_overruns;
1251 pt->pt_overruns = 0;
1252 kpsignal(p, &ksi, NULL);
1253 }
1254 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1255 /* Cause the process to generate an upcall when it returns. */
1256
1257 if (p->p_userret == NULL) {
1258 /*
1259 * XXX stop signals can be processed inside tsleep,
1260 * which can be inside sa_yield's inner loop, which
1261 * makes testing for sa_idle alone insuffucent to
1262 * determine if we really should call setrunnable.
1263 */
1264 pt->pt_poverruns = pt->pt_overruns;
1265 pt->pt_overruns = 0;
1266 i = 1 << pt->pt_entry;
1267 p->p_timers->pts_fired = i;
1268 p->p_userret = timerupcall;
1269 p->p_userret_arg = p->p_timers;
1270
1271 SCHED_LOCK(s);
1272 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1273 if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1274 vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1275 sched_wakeup(vp->savp_lwp);
1276 break;
1277 }
1278 }
1279 SCHED_UNLOCK(s);
1280 } else if (p->p_userret == timerupcall) {
1281 i = 1 << pt->pt_entry;
1282 if ((p->p_timers->pts_fired & i) == 0) {
1283 pt->pt_poverruns = pt->pt_overruns;
1284 pt->pt_overruns = 0;
1285 p->p_timers->pts_fired |= i;
1286 } else
1287 pt->pt_overruns++;
1288 } else {
1289 pt->pt_overruns++;
1290 if ((p->p_flag & P_WEXIT) == 0)
1291 printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1292 p->p_pid, pt->pt_overruns,
1293 pt->pt_ev.sigev_value.sival_int,
1294 p->p_userret);
1295 }
1296 }
1297
1298 }
1299
1300 /*
1301 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1302 * for usage and rationale.
1303 */
1304 int
1305 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1306 {
1307 struct timeval tv, delta;
1308 int s, rv = 0;
1309
1310 s = splclock();
1311 tv = mono_time;
1312 splx(s);
1313
1314 timersub(&tv, lasttime, &delta);
1315
1316 /*
1317 * check for 0,0 is so that the message will be seen at least once,
1318 * even if interval is huge.
1319 */
1320 if (timercmp(&delta, mininterval, >=) ||
1321 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1322 *lasttime = tv;
1323 rv = 1;
1324 }
1325
1326 return (rv);
1327 }
1328
1329 /*
1330 * ppsratecheck(): packets (or events) per second limitation.
1331 */
1332 int
1333 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1334 {
1335 struct timeval tv, delta;
1336 int s, rv;
1337
1338 s = splclock();
1339 tv = mono_time;
1340 splx(s);
1341
1342 timersub(&tv, lasttime, &delta);
1343
1344 /*
1345 * check for 0,0 is so that the message will be seen at least once.
1346 * if more than one second have passed since the last update of
1347 * lasttime, reset the counter.
1348 *
1349 * we do increment *curpps even in *curpps < maxpps case, as some may
1350 * try to use *curpps for stat purposes as well.
1351 */
1352 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1353 delta.tv_sec >= 1) {
1354 *lasttime = tv;
1355 *curpps = 0;
1356 }
1357 if (maxpps < 0)
1358 rv = 1;
1359 else if (*curpps < maxpps)
1360 rv = 1;
1361 else
1362 rv = 0;
1363
1364 #if 1 /*DIAGNOSTIC?*/
1365 /* be careful about wrap-around */
1366 if (*curpps + 1 > *curpps)
1367 *curpps = *curpps + 1;
1368 #else
1369 /*
1370 * assume that there's not too many calls to this function.
1371 * not sure if the assumption holds, as it depends on *caller's*
1372 * behavior, not the behavior of this function.
1373 * IMHO it is wrong to make assumption on the caller's behavior,
1374 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1375 */
1376 *curpps = *curpps + 1;
1377 #endif
1378
1379 return (rv);
1380 }
1381