Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.96
      1 /*	$NetBSD: kern_time.c,v 1.96 2005/11/11 07:07:42 simonb Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.96 2005/11/11 07:07:42 simonb Exp $");
     72 
     73 #include "fs_nfs.h"
     74 #include "opt_nfs.h"
     75 #include "opt_nfsserver.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/kernel.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/proc.h>
     83 #include <sys/sa.h>
     84 #include <sys/savar.h>
     85 #include <sys/vnode.h>
     86 #include <sys/signalvar.h>
     87 #include <sys/syslog.h>
     88 #include <sys/timevar.h>
     89 
     90 #include <sys/mount.h>
     91 #include <sys/syscallargs.h>
     92 
     93 #include <uvm/uvm_extern.h>
     94 
     95 #if defined(NFS) || defined(NFSSERVER)
     96 #include <nfs/rpcv2.h>
     97 #include <nfs/nfsproto.h>
     98 #include <nfs/nfs.h>
     99 #include <nfs/nfs_var.h>
    100 #endif
    101 
    102 #include <machine/cpu.h>
    103 
    104 static void timerupcall(struct lwp *, void *);
    105 
    106 /* Time of day and interval timer support.
    107  *
    108  * These routines provide the kernel entry points to get and set
    109  * the time-of-day and per-process interval timers.  Subroutines
    110  * here provide support for adding and subtracting timeval structures
    111  * and decrementing interval timers, optionally reloading the interval
    112  * timers when they expire.
    113  */
    114 
    115 /* This function is used by clock_settime and settimeofday */
    116 int
    117 settime(struct timeval *tv)
    118 {
    119 	struct timeval delta;
    120 	struct cpu_info *ci;
    121 	int s;
    122 
    123 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    124 	s = splclock();
    125 	timersub(tv, &time, &delta);
    126 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    127 		splx(s);
    128 		return (EPERM);
    129 	}
    130 #ifdef notyet
    131 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    132 		splx(s);
    133 		return (EPERM);
    134 	}
    135 #endif
    136 	time = *tv;
    137 	(void) spllowersoftclock();
    138 	timeradd(&boottime, &delta, &boottime);
    139 	/*
    140 	 * XXXSMP
    141 	 * This is wrong.  We should traverse a list of all
    142 	 * CPUs and add the delta to the runtime of those
    143 	 * CPUs which have a process on them.
    144 	 */
    145 	ci = curcpu();
    146 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    147 	    &ci->ci_schedstate.spc_runtime);
    148 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    149 		nqnfs_lease_updatetime(delta.tv_sec);
    150 #	endif
    151 	splx(s);
    152 	resettodr();
    153 	return (0);
    154 }
    155 
    156 /* ARGSUSED */
    157 int
    158 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    159 {
    160 	struct sys_clock_gettime_args /* {
    161 		syscallarg(clockid_t) clock_id;
    162 		syscallarg(struct timespec *) tp;
    163 	} */ *uap = v;
    164 	clockid_t clock_id;
    165 	struct timeval atv;
    166 	struct timespec ats;
    167 	int s;
    168 
    169 	clock_id = SCARG(uap, clock_id);
    170 	switch (clock_id) {
    171 	case CLOCK_REALTIME:
    172 		nanotime(&ats);
    173 		break;
    174 	case CLOCK_MONOTONIC:
    175 		/* XXX "hz" granularity */
    176 		s = splclock();
    177 		atv = mono_time;
    178 		splx(s);
    179 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    180 		break;
    181 	default:
    182 		return (EINVAL);
    183 	}
    184 
    185 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    186 }
    187 
    188 /* ARGSUSED */
    189 int
    190 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
    191 {
    192 	struct sys_clock_settime_args /* {
    193 		syscallarg(clockid_t) clock_id;
    194 		syscallarg(const struct timespec *) tp;
    195 	} */ *uap = v;
    196 	struct proc *p = l->l_proc;
    197 	int error;
    198 
    199 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    200 		return (error);
    201 
    202 	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
    203 }
    204 
    205 
    206 int
    207 clock_settime1(clockid_t clock_id, const struct timespec *tp)
    208 {
    209 	struct timespec ats;
    210 	struct timeval atv;
    211 	int error;
    212 
    213 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    214 		return (error);
    215 
    216 	switch (clock_id) {
    217 	case CLOCK_REALTIME:
    218 		TIMESPEC_TO_TIMEVAL(&atv, &ats);
    219 		if ((error = settime(&atv)) != 0)
    220 			return (error);
    221 		break;
    222 	case CLOCK_MONOTONIC:
    223 		return (EINVAL);	/* read-only clock */
    224 	default:
    225 		return (EINVAL);
    226 	}
    227 
    228 	return 0;
    229 }
    230 
    231 int
    232 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    233 {
    234 	struct sys_clock_getres_args /* {
    235 		syscallarg(clockid_t) clock_id;
    236 		syscallarg(struct timespec *) tp;
    237 	} */ *uap = v;
    238 	clockid_t clock_id;
    239 	struct timespec ts;
    240 	int error = 0;
    241 
    242 	clock_id = SCARG(uap, clock_id);
    243 	switch (clock_id) {
    244 	case CLOCK_REALTIME:
    245 	case CLOCK_MONOTONIC:
    246 		ts.tv_sec = 0;
    247 		ts.tv_nsec = 1000000000 / hz;
    248 		break;
    249 	default:
    250 		return (EINVAL);
    251 	}
    252 
    253 	if (SCARG(uap, tp))
    254 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    255 
    256 	return error;
    257 }
    258 
    259 /* ARGSUSED */
    260 int
    261 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    262 {
    263 	static int nanowait;
    264 	struct sys_nanosleep_args/* {
    265 		syscallarg(struct timespec *) rqtp;
    266 		syscallarg(struct timespec *) rmtp;
    267 	} */ *uap = v;
    268 	struct timespec rqt;
    269 	struct timespec rmt;
    270 	struct timeval atv, utv;
    271 	int error, s, timo;
    272 
    273 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    274 	if (error)
    275 		return (error);
    276 
    277 	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
    278 	if (itimerfix(&atv))
    279 		return (EINVAL);
    280 
    281 	s = splclock();
    282 	timeradd(&atv,&time,&atv);
    283 	timo = hzto(&atv);
    284 	/*
    285 	 * Avoid inadvertantly sleeping forever
    286 	 */
    287 	if (timo == 0)
    288 		timo = 1;
    289 	splx(s);
    290 
    291 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    292 	if (error == ERESTART)
    293 		error = EINTR;
    294 	if (error == EWOULDBLOCK)
    295 		error = 0;
    296 
    297 	if (SCARG(uap, rmtp)) {
    298 		int error1;
    299 
    300 		s = splclock();
    301 		utv = time;
    302 		splx(s);
    303 
    304 		timersub(&atv, &utv, &utv);
    305 		if (utv.tv_sec < 0)
    306 			timerclear(&utv);
    307 
    308 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    309 		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    310 			sizeof(rmt));
    311 		if (error1)
    312 			return (error1);
    313 	}
    314 
    315 	return error;
    316 }
    317 
    318 /* ARGSUSED */
    319 int
    320 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    321 {
    322 	struct sys_gettimeofday_args /* {
    323 		syscallarg(struct timeval *) tp;
    324 		syscallarg(void *) tzp;		really "struct timezone *"
    325 	} */ *uap = v;
    326 	struct timeval atv;
    327 	int error = 0;
    328 	struct timezone tzfake;
    329 
    330 	if (SCARG(uap, tp)) {
    331 		microtime(&atv);
    332 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    333 		if (error)
    334 			return (error);
    335 	}
    336 	if (SCARG(uap, tzp)) {
    337 		/*
    338 		 * NetBSD has no kernel notion of time zone, so we just
    339 		 * fake up a timezone struct and return it if demanded.
    340 		 */
    341 		tzfake.tz_minuteswest = 0;
    342 		tzfake.tz_dsttime = 0;
    343 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    344 	}
    345 	return (error);
    346 }
    347 
    348 /* ARGSUSED */
    349 int
    350 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    351 {
    352 	struct sys_settimeofday_args /* {
    353 		syscallarg(const struct timeval *) tv;
    354 		syscallarg(const void *) tzp;	really "const struct timezone *"
    355 	} */ *uap = v;
    356 	struct proc *p = l->l_proc;
    357 	int error;
    358 
    359 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    360 		return (error);
    361 
    362 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
    363 }
    364 
    365 int
    366 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
    367     struct proc *p)
    368 {
    369 	struct timeval atv;
    370 	struct timezone atz;
    371 	struct timeval *tv = NULL;
    372 	struct timezone *tzp = NULL;
    373 	int error;
    374 
    375 	/* Verify all parameters before changing time. */
    376 	if (utv) {
    377 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    378 			return (error);
    379 		tv = &atv;
    380 	}
    381 	/* XXX since we don't use tz, probably no point in doing copyin. */
    382 	if (utzp) {
    383 		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
    384 			return (error);
    385 		tzp = &atz;
    386 	}
    387 
    388 	if (tv)
    389 		if ((error = settime(tv)) != 0)
    390 			return (error);
    391 	/*
    392 	 * NetBSD has no kernel notion of time zone, and only an
    393 	 * obsolete program would try to set it, so we log a warning.
    394 	 */
    395 	if (tzp)
    396 		log(LOG_WARNING, "pid %d attempted to set the "
    397 		    "(obsolete) kernel time zone\n", p->p_pid);
    398 	return (0);
    399 }
    400 
    401 int	tickdelta;			/* current clock skew, us. per tick */
    402 long	timedelta;			/* unapplied time correction, us. */
    403 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    404 int	time_adjusted;			/* set if an adjustment is made */
    405 
    406 /* ARGSUSED */
    407 int
    408 sys_adjtime(struct lwp *l, void *v, register_t *retval)
    409 {
    410 	struct sys_adjtime_args /* {
    411 		syscallarg(const struct timeval *) delta;
    412 		syscallarg(struct timeval *) olddelta;
    413 	} */ *uap = v;
    414 	struct proc *p = l->l_proc;
    415 	int error;
    416 
    417 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    418 		return (error);
    419 
    420 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
    421 }
    422 
    423 int
    424 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    425 {
    426 	struct timeval atv;
    427 	long ndelta, ntickdelta, odelta;
    428 	int error;
    429 	int s;
    430 
    431 	error = copyin(delta, &atv, sizeof(struct timeval));
    432 	if (error)
    433 		return (error);
    434 
    435 	/*
    436 	 * Compute the total correction and the rate at which to apply it.
    437 	 * Round the adjustment down to a whole multiple of the per-tick
    438 	 * delta, so that after some number of incremental changes in
    439 	 * hardclock(), tickdelta will become zero, lest the correction
    440 	 * overshoot and start taking us away from the desired final time.
    441 	 */
    442 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    443 	if (ndelta > bigadj || ndelta < -bigadj)
    444 		ntickdelta = 10 * tickadj;
    445 	else
    446 		ntickdelta = tickadj;
    447 	if (ndelta % ntickdelta)
    448 		ndelta = ndelta / ntickdelta * ntickdelta;
    449 
    450 	/*
    451 	 * To make hardclock()'s job easier, make the per-tick delta negative
    452 	 * if we want time to run slower; then hardclock can simply compute
    453 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    454 	 */
    455 	if (ndelta < 0)
    456 		ntickdelta = -ntickdelta;
    457 	if (ndelta != 0)
    458 		/* We need to save the system clock time during shutdown */
    459 		time_adjusted |= 1;
    460 	s = splclock();
    461 	odelta = timedelta;
    462 	timedelta = ndelta;
    463 	tickdelta = ntickdelta;
    464 	splx(s);
    465 
    466 	if (olddelta) {
    467 		atv.tv_sec = odelta / 1000000;
    468 		atv.tv_usec = odelta % 1000000;
    469 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    470 	}
    471 	return error;
    472 }
    473 
    474 /*
    475  * Interval timer support. Both the BSD getitimer() family and the POSIX
    476  * timer_*() family of routines are supported.
    477  *
    478  * All timers are kept in an array pointed to by p_timers, which is
    479  * allocated on demand - many processes don't use timers at all. The
    480  * first three elements in this array are reserved for the BSD timers:
    481  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    482  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    483  * syscall.
    484  *
    485  * Realtime timers are kept in the ptimer structure as an absolute
    486  * time; virtual time timers are kept as a linked list of deltas.
    487  * Virtual time timers are processed in the hardclock() routine of
    488  * kern_clock.c.  The real time timer is processed by a callout
    489  * routine, called from the softclock() routine.  Since a callout may
    490  * be delayed in real time due to interrupt processing in the system,
    491  * it is possible for the real time timeout routine (realtimeexpire,
    492  * given below), to be delayed in real time past when it is supposed
    493  * to occur.  It does not suffice, therefore, to reload the real timer
    494  * .it_value from the real time timers .it_interval.  Rather, we
    495  * compute the next time in absolute time the timer should go off.  */
    496 
    497 /* Allocate a POSIX realtime timer. */
    498 int
    499 sys_timer_create(struct lwp *l, void *v, register_t *retval)
    500 {
    501 	struct sys_timer_create_args /* {
    502 		syscallarg(clockid_t) clock_id;
    503 		syscallarg(struct sigevent *) evp;
    504 		syscallarg(timer_t *) timerid;
    505 	} */ *uap = v;
    506 
    507 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    508 	    SCARG(uap, evp), copyin, l->l_proc);
    509 }
    510 
    511 int
    512 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    513     copyin_t fetch_event, struct proc *p)
    514 {
    515 	int error;
    516 	timer_t timerid;
    517 	struct ptimer *pt;
    518 
    519 	if (id < CLOCK_REALTIME ||
    520 	    id > CLOCK_PROF)
    521 		return (EINVAL);
    522 
    523 	if (p->p_timers == NULL)
    524 		timers_alloc(p);
    525 
    526 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    527 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    528 		if (p->p_timers->pts_timers[timerid] == NULL)
    529 			break;
    530 
    531 	if (timerid == TIMER_MAX)
    532 		return EAGAIN;
    533 
    534 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    535 	if (evp) {
    536 		if (((error =
    537 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    538 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    539 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    540 			pool_put(&ptimer_pool, pt);
    541 			return (error ? error : EINVAL);
    542 		}
    543 	} else {
    544 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    545 		switch (id) {
    546 		case CLOCK_REALTIME:
    547 			pt->pt_ev.sigev_signo = SIGALRM;
    548 			break;
    549 		case CLOCK_VIRTUAL:
    550 			pt->pt_ev.sigev_signo = SIGVTALRM;
    551 			break;
    552 		case CLOCK_PROF:
    553 			pt->pt_ev.sigev_signo = SIGPROF;
    554 			break;
    555 		}
    556 		pt->pt_ev.sigev_value.sival_int = timerid;
    557 	}
    558 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    559 	pt->pt_info.ksi_errno = 0;
    560 	pt->pt_info.ksi_code = 0;
    561 	pt->pt_info.ksi_pid = p->p_pid;
    562 	pt->pt_info.ksi_uid = p->p_cred->p_ruid;
    563 	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
    564 
    565 	pt->pt_type = id;
    566 	pt->pt_proc = p;
    567 	pt->pt_overruns = 0;
    568 	pt->pt_poverruns = 0;
    569 	pt->pt_entry = timerid;
    570 	timerclear(&pt->pt_time.it_value);
    571 	if (id == CLOCK_REALTIME)
    572 		callout_init(&pt->pt_ch);
    573 	else
    574 		pt->pt_active = 0;
    575 
    576 	p->p_timers->pts_timers[timerid] = pt;
    577 
    578 	return copyout(&timerid, tid, sizeof(timerid));
    579 }
    580 
    581 /* Delete a POSIX realtime timer */
    582 int
    583 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    584 {
    585 	struct sys_timer_delete_args /*  {
    586 		syscallarg(timer_t) timerid;
    587 	} */ *uap = v;
    588 	struct proc *p = l->l_proc;
    589 	timer_t timerid;
    590 	struct ptimer *pt, *ptn;
    591 	int s;
    592 
    593 	timerid = SCARG(uap, timerid);
    594 
    595 	if ((p->p_timers == NULL) ||
    596 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    597 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    598 		return (EINVAL);
    599 
    600 	if (pt->pt_type == CLOCK_REALTIME)
    601 		callout_stop(&pt->pt_ch);
    602 	else if (pt->pt_active) {
    603 		s = splclock();
    604 		ptn = LIST_NEXT(pt, pt_list);
    605 		LIST_REMOVE(pt, pt_list);
    606 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    607 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    608 			    &ptn->pt_time.it_value);
    609 		splx(s);
    610 	}
    611 
    612 	p->p_timers->pts_timers[timerid] = NULL;
    613 	pool_put(&ptimer_pool, pt);
    614 
    615 	return (0);
    616 }
    617 
    618 /*
    619  * Set up the given timer. The value in pt->pt_time.it_value is taken
    620  * to be an absolute time for CLOCK_REALTIME timers and a relative
    621  * time for virtual timers.
    622  * Must be called at splclock().
    623  */
    624 void
    625 timer_settime(struct ptimer *pt)
    626 {
    627 	struct ptimer *ptn, *pptn;
    628 	struct ptlist *ptl;
    629 
    630 	if (pt->pt_type == CLOCK_REALTIME) {
    631 		callout_stop(&pt->pt_ch);
    632 		if (timerisset(&pt->pt_time.it_value)) {
    633 			/*
    634 			 * Don't need to check hzto() return value, here.
    635 			 * callout_reset() does it for us.
    636 			 */
    637 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    638 			    realtimerexpire, pt);
    639 		}
    640 	} else {
    641 		if (pt->pt_active) {
    642 			ptn = LIST_NEXT(pt, pt_list);
    643 			LIST_REMOVE(pt, pt_list);
    644 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    645 				timeradd(&pt->pt_time.it_value,
    646 				    &ptn->pt_time.it_value,
    647 				    &ptn->pt_time.it_value);
    648 		}
    649 		if (timerisset(&pt->pt_time.it_value)) {
    650 			if (pt->pt_type == CLOCK_VIRTUAL)
    651 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    652 			else
    653 				ptl = &pt->pt_proc->p_timers->pts_prof;
    654 
    655 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    656 			     ptn && timercmp(&pt->pt_time.it_value,
    657 				 &ptn->pt_time.it_value, >);
    658 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    659 				timersub(&pt->pt_time.it_value,
    660 				    &ptn->pt_time.it_value,
    661 				    &pt->pt_time.it_value);
    662 
    663 			if (pptn)
    664 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    665 			else
    666 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    667 
    668 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    669 				timersub(&ptn->pt_time.it_value,
    670 				    &pt->pt_time.it_value,
    671 				    &ptn->pt_time.it_value);
    672 
    673 			pt->pt_active = 1;
    674 		} else
    675 			pt->pt_active = 0;
    676 	}
    677 }
    678 
    679 void
    680 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    681 {
    682 	struct ptimer *ptn;
    683 
    684 	*aitv = pt->pt_time;
    685 	if (pt->pt_type == CLOCK_REALTIME) {
    686 		/*
    687 		 * Convert from absolute to relative time in .it_value
    688 		 * part of real time timer.  If time for real time
    689 		 * timer has passed return 0, else return difference
    690 		 * between current time and time for the timer to go
    691 		 * off.
    692 		 */
    693 		if (timerisset(&aitv->it_value)) {
    694 			if (timercmp(&aitv->it_value, &time, <))
    695 				timerclear(&aitv->it_value);
    696 			else
    697 				timersub(&aitv->it_value, &time,
    698 				    &aitv->it_value);
    699 		}
    700 	} else if (pt->pt_active) {
    701 		if (pt->pt_type == CLOCK_VIRTUAL)
    702 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    703 		else
    704 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    705 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    706 			timeradd(&aitv->it_value,
    707 			    &ptn->pt_time.it_value, &aitv->it_value);
    708 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    709 	} else
    710 		timerclear(&aitv->it_value);
    711 }
    712 
    713 
    714 
    715 /* Set and arm a POSIX realtime timer */
    716 int
    717 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    718 {
    719 	struct sys_timer_settime_args /* {
    720 		syscallarg(timer_t) timerid;
    721 		syscallarg(int) flags;
    722 		syscallarg(const struct itimerspec *) value;
    723 		syscallarg(struct itimerspec *) ovalue;
    724 	} */ *uap = v;
    725 	int error;
    726 	struct itimerspec value, ovalue, *ovp = NULL;
    727 
    728 	if ((error = copyin(SCARG(uap, value), &value,
    729 	    sizeof(struct itimerspec))) != 0)
    730 		return (error);
    731 
    732 	if (SCARG(uap, ovalue))
    733 		ovp = &ovalue;
    734 
    735 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    736 	    SCARG(uap, flags), l->l_proc)) != 0)
    737 		return error;
    738 
    739 	if (ovp)
    740 		return copyout(&ovalue, SCARG(uap, ovalue),
    741 		    sizeof(struct itimerspec));
    742 	return 0;
    743 }
    744 
    745 int
    746 dotimer_settime(int timerid, struct itimerspec *value,
    747     struct itimerspec *ovalue, int flags, struct proc *p)
    748 {
    749 	int s;
    750 	struct itimerval val, oval;
    751 	struct ptimer *pt;
    752 
    753 	if ((p->p_timers == NULL) ||
    754 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    755 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    756 		return (EINVAL);
    757 
    758 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    759 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    760 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    761 		return (EINVAL);
    762 
    763 	oval = pt->pt_time;
    764 	pt->pt_time = val;
    765 
    766 	s = splclock();
    767 	/*
    768 	 * If we've been passed a relative time for a realtime timer,
    769 	 * convert it to absolute; if an absolute time for a virtual
    770 	 * timer, convert it to relative and make sure we don't set it
    771 	 * to zero, which would cancel the timer, or let it go
    772 	 * negative, which would confuse the comparison tests.
    773 	 */
    774 	if (timerisset(&pt->pt_time.it_value)) {
    775 		if (pt->pt_type == CLOCK_REALTIME) {
    776 			if ((flags & TIMER_ABSTIME) == 0)
    777 				timeradd(&pt->pt_time.it_value, &time,
    778 				    &pt->pt_time.it_value);
    779 		} else {
    780 			if ((flags & TIMER_ABSTIME) != 0) {
    781 				timersub(&pt->pt_time.it_value, &time,
    782 				    &pt->pt_time.it_value);
    783 				if (!timerisset(&pt->pt_time.it_value) ||
    784 				    pt->pt_time.it_value.tv_sec < 0) {
    785 					pt->pt_time.it_value.tv_sec = 0;
    786 					pt->pt_time.it_value.tv_usec = 1;
    787 				}
    788 			}
    789 		}
    790 	}
    791 
    792 	timer_settime(pt);
    793 	splx(s);
    794 
    795 	if (ovalue) {
    796 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    797 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    798 	}
    799 
    800 	return (0);
    801 }
    802 
    803 /* Return the time remaining until a POSIX timer fires. */
    804 int
    805 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    806 {
    807 	struct sys_timer_gettime_args /* {
    808 		syscallarg(timer_t) timerid;
    809 		syscallarg(struct itimerspec *) value;
    810 	} */ *uap = v;
    811 	struct itimerspec its;
    812 	int error;
    813 
    814 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    815 	    &its)) != 0)
    816 		return error;
    817 
    818 	return copyout(&its, SCARG(uap, value), sizeof(its));
    819 }
    820 
    821 int
    822 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    823 {
    824 	int s;
    825 	struct ptimer *pt;
    826 	struct itimerval aitv;
    827 
    828 	if ((p->p_timers == NULL) ||
    829 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    830 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    831 		return (EINVAL);
    832 
    833 	s = splclock();
    834 	timer_gettime(pt, &aitv);
    835 	splx(s);
    836 
    837 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    838 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    839 
    840 	return 0;
    841 }
    842 
    843 /*
    844  * Return the count of the number of times a periodic timer expired
    845  * while a notification was already pending. The counter is reset when
    846  * a timer expires and a notification can be posted.
    847  */
    848 int
    849 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    850 {
    851 	struct sys_timer_getoverrun_args /* {
    852 		syscallarg(timer_t) timerid;
    853 	} */ *uap = v;
    854 	struct proc *p = l->l_proc;
    855 	int timerid;
    856 	struct ptimer *pt;
    857 
    858 	timerid = SCARG(uap, timerid);
    859 
    860 	if ((p->p_timers == NULL) ||
    861 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    862 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    863 		return (EINVAL);
    864 
    865 	*retval = pt->pt_poverruns;
    866 
    867 	return (0);
    868 }
    869 
    870 /* Glue function that triggers an upcall; called from userret(). */
    871 static void
    872 timerupcall(struct lwp *l, void *arg)
    873 {
    874 	struct ptimers *pt = (struct ptimers *)arg;
    875 	unsigned int i, fired, done;
    876 
    877 	KDASSERT(l->l_proc->p_sa);
    878 	/* Bail out if we do not own the virtual processor */
    879 	if (l->l_savp->savp_lwp != l)
    880 		return ;
    881 
    882 	KERNEL_PROC_LOCK(l);
    883 
    884 	fired = pt->pts_fired;
    885 	done = 0;
    886 	while ((i = ffs(fired)) != 0) {
    887 		siginfo_t *si;
    888 		int mask = 1 << --i;
    889 		int f;
    890 
    891 		f = l->l_flag & L_SA;
    892 		l->l_flag &= ~L_SA;
    893 		si = siginfo_alloc(PR_WAITOK);
    894 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    895 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    896 		    sizeof(*si), si, siginfo_free) != 0) {
    897 			siginfo_free(si);
    898 			/* XXX What do we do here?? */
    899 		} else
    900 			done |= mask;
    901 		fired &= ~mask;
    902 		l->l_flag |= f;
    903 	}
    904 	pt->pts_fired &= ~done;
    905 	if (pt->pts_fired == 0)
    906 		l->l_proc->p_userret = NULL;
    907 
    908 	KERNEL_PROC_UNLOCK(l);
    909 }
    910 
    911 
    912 /*
    913  * Real interval timer expired:
    914  * send process whose timer expired an alarm signal.
    915  * If time is not set up to reload, then just return.
    916  * Else compute next time timer should go off which is > current time.
    917  * This is where delay in processing this timeout causes multiple
    918  * SIGALRM calls to be compressed into one.
    919  */
    920 void
    921 realtimerexpire(void *arg)
    922 {
    923 	struct ptimer *pt;
    924 	int s;
    925 
    926 	pt = (struct ptimer *)arg;
    927 
    928 	itimerfire(pt);
    929 
    930 	if (!timerisset(&pt->pt_time.it_interval)) {
    931 		timerclear(&pt->pt_time.it_value);
    932 		return;
    933 	}
    934 	for (;;) {
    935 		s = splclock();
    936 		timeradd(&pt->pt_time.it_value,
    937 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    938 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
    939 			/*
    940 			 * Don't need to check hzto() return value, here.
    941 			 * callout_reset() does it for us.
    942 			 */
    943 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    944 			    realtimerexpire, pt);
    945 			splx(s);
    946 			return;
    947 		}
    948 		splx(s);
    949 		pt->pt_overruns++;
    950 	}
    951 }
    952 
    953 /* BSD routine to get the value of an interval timer. */
    954 /* ARGSUSED */
    955 int
    956 sys_getitimer(struct lwp *l, void *v, register_t *retval)
    957 {
    958 	struct sys_getitimer_args /* {
    959 		syscallarg(int) which;
    960 		syscallarg(struct itimerval *) itv;
    961 	} */ *uap = v;
    962 	struct proc *p = l->l_proc;
    963 	struct itimerval aitv;
    964 	int error;
    965 
    966 	error = dogetitimer(p, SCARG(uap, which), &aitv);
    967 	if (error)
    968 		return error;
    969 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    970 }
    971 
    972 int
    973 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
    974 {
    975 	int s;
    976 
    977 	if ((u_int)which > ITIMER_PROF)
    978 		return (EINVAL);
    979 
    980 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
    981 		timerclear(&itvp->it_value);
    982 		timerclear(&itvp->it_interval);
    983 	} else {
    984 		s = splclock();
    985 		timer_gettime(p->p_timers->pts_timers[which], itvp);
    986 		splx(s);
    987 	}
    988 
    989 	return 0;
    990 }
    991 
    992 /* BSD routine to set/arm an interval timer. */
    993 /* ARGSUSED */
    994 int
    995 sys_setitimer(struct lwp *l, void *v, register_t *retval)
    996 {
    997 	struct sys_setitimer_args /* {
    998 		syscallarg(int) which;
    999 		syscallarg(const struct itimerval *) itv;
   1000 		syscallarg(struct itimerval *) oitv;
   1001 	} */ *uap = v;
   1002 	struct proc *p = l->l_proc;
   1003 	int which = SCARG(uap, which);
   1004 	struct sys_getitimer_args getargs;
   1005 	const struct itimerval *itvp;
   1006 	struct itimerval aitv;
   1007 	int error;
   1008 
   1009 	if ((u_int)which > ITIMER_PROF)
   1010 		return (EINVAL);
   1011 	itvp = SCARG(uap, itv);
   1012 	if (itvp &&
   1013 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1014 		return (error);
   1015 	if (SCARG(uap, oitv) != NULL) {
   1016 		SCARG(&getargs, which) = which;
   1017 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1018 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1019 			return (error);
   1020 	}
   1021 	if (itvp == 0)
   1022 		return (0);
   1023 
   1024 	return dosetitimer(p, which, &aitv);
   1025 }
   1026 
   1027 int
   1028 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1029 {
   1030 	struct ptimer *pt;
   1031 	int s;
   1032 
   1033 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1034 		return (EINVAL);
   1035 
   1036 	/*
   1037 	 * Don't bother allocating data structures if the process just
   1038 	 * wants to clear the timer.
   1039 	 */
   1040 	if (!timerisset(&itvp->it_value) &&
   1041 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1042 		return (0);
   1043 
   1044 	if (p->p_timers == NULL)
   1045 		timers_alloc(p);
   1046 	if (p->p_timers->pts_timers[which] == NULL) {
   1047 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1048 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1049 		pt->pt_ev.sigev_value.sival_int = which;
   1050 		pt->pt_overruns = 0;
   1051 		pt->pt_proc = p;
   1052 		pt->pt_type = which;
   1053 		pt->pt_entry = which;
   1054 		switch (which) {
   1055 		case ITIMER_REAL:
   1056 			callout_init(&pt->pt_ch);
   1057 			pt->pt_ev.sigev_signo = SIGALRM;
   1058 			break;
   1059 		case ITIMER_VIRTUAL:
   1060 			pt->pt_active = 0;
   1061 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1062 			break;
   1063 		case ITIMER_PROF:
   1064 			pt->pt_active = 0;
   1065 			pt->pt_ev.sigev_signo = SIGPROF;
   1066 			break;
   1067 		}
   1068 	} else
   1069 		pt = p->p_timers->pts_timers[which];
   1070 
   1071 	pt->pt_time = *itvp;
   1072 	p->p_timers->pts_timers[which] = pt;
   1073 
   1074 	s = splclock();
   1075 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1076 		/* Convert to absolute time */
   1077 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1078 	}
   1079 	timer_settime(pt);
   1080 	splx(s);
   1081 
   1082 	return (0);
   1083 }
   1084 
   1085 /* Utility routines to manage the array of pointers to timers. */
   1086 void
   1087 timers_alloc(struct proc *p)
   1088 {
   1089 	int i;
   1090 	struct ptimers *pts;
   1091 
   1092 	pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
   1093 	LIST_INIT(&pts->pts_virtual);
   1094 	LIST_INIT(&pts->pts_prof);
   1095 	for (i = 0; i < TIMER_MAX; i++)
   1096 		pts->pts_timers[i] = NULL;
   1097 	pts->pts_fired = 0;
   1098 	p->p_timers = pts;
   1099 }
   1100 
   1101 /*
   1102  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1103  * then clean up all timers and free all the data structures. If
   1104  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1105  * by timer_create(), not the BSD setitimer() timers, and only free the
   1106  * structure if none of those remain.
   1107  */
   1108 void
   1109 timers_free(struct proc *p, int which)
   1110 {
   1111 	int i, s;
   1112 	struct ptimers *pts;
   1113 	struct ptimer *pt, *ptn;
   1114 	struct timeval tv;
   1115 
   1116 	if (p->p_timers) {
   1117 		pts = p->p_timers;
   1118 		if (which == TIMERS_ALL)
   1119 			i = 0;
   1120 		else {
   1121 			s = splclock();
   1122 			timerclear(&tv);
   1123 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1124 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1125 			     ptn = LIST_NEXT(ptn, pt_list))
   1126 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1127 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1128 			if (ptn) {
   1129 				timeradd(&tv, &ptn->pt_time.it_value,
   1130 				    &ptn->pt_time.it_value);
   1131 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1132 				    ptn, pt_list);
   1133 			}
   1134 
   1135 			timerclear(&tv);
   1136 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1137 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1138 			     ptn = LIST_NEXT(ptn, pt_list))
   1139 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1140 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1141 			if (ptn) {
   1142 				timeradd(&tv, &ptn->pt_time.it_value,
   1143 				    &ptn->pt_time.it_value);
   1144 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1145 				    pt_list);
   1146 			}
   1147 			splx(s);
   1148 			i = 3;
   1149 		}
   1150 		for ( ; i < TIMER_MAX; i++)
   1151 			if ((pt = pts->pts_timers[i]) != NULL) {
   1152 				if (pt->pt_type == CLOCK_REALTIME)
   1153 					callout_stop(&pt->pt_ch);
   1154 				pts->pts_timers[i] = NULL;
   1155 				pool_put(&ptimer_pool, pt);
   1156 			}
   1157 		if ((pts->pts_timers[0] == NULL) &&
   1158 		    (pts->pts_timers[1] == NULL) &&
   1159 		    (pts->pts_timers[2] == NULL)) {
   1160 			p->p_timers = NULL;
   1161 			free(pts, M_SUBPROC);
   1162 		}
   1163 	}
   1164 }
   1165 
   1166 /*
   1167  * Check that a proposed value to load into the .it_value or
   1168  * .it_interval part of an interval timer is acceptable, and
   1169  * fix it to have at least minimal value (i.e. if it is less
   1170  * than the resolution of the clock, round it up.)
   1171  */
   1172 int
   1173 itimerfix(struct timeval *tv)
   1174 {
   1175 
   1176 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1177 		return (EINVAL);
   1178 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1179 		tv->tv_usec = tick;
   1180 	return (0);
   1181 }
   1182 
   1183 /*
   1184  * Decrement an interval timer by a specified number
   1185  * of microseconds, which must be less than a second,
   1186  * i.e. < 1000000.  If the timer expires, then reload
   1187  * it.  In this case, carry over (usec - old value) to
   1188  * reduce the value reloaded into the timer so that
   1189  * the timer does not drift.  This routine assumes
   1190  * that it is called in a context where the timers
   1191  * on which it is operating cannot change in value.
   1192  */
   1193 int
   1194 itimerdecr(struct ptimer *pt, int usec)
   1195 {
   1196 	struct itimerval *itp;
   1197 
   1198 	itp = &pt->pt_time;
   1199 	if (itp->it_value.tv_usec < usec) {
   1200 		if (itp->it_value.tv_sec == 0) {
   1201 			/* expired, and already in next interval */
   1202 			usec -= itp->it_value.tv_usec;
   1203 			goto expire;
   1204 		}
   1205 		itp->it_value.tv_usec += 1000000;
   1206 		itp->it_value.tv_sec--;
   1207 	}
   1208 	itp->it_value.tv_usec -= usec;
   1209 	usec = 0;
   1210 	if (timerisset(&itp->it_value))
   1211 		return (1);
   1212 	/* expired, exactly at end of interval */
   1213 expire:
   1214 	if (timerisset(&itp->it_interval)) {
   1215 		itp->it_value = itp->it_interval;
   1216 		itp->it_value.tv_usec -= usec;
   1217 		if (itp->it_value.tv_usec < 0) {
   1218 			itp->it_value.tv_usec += 1000000;
   1219 			itp->it_value.tv_sec--;
   1220 		}
   1221 		timer_settime(pt);
   1222 	} else
   1223 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1224 	return (0);
   1225 }
   1226 
   1227 void
   1228 itimerfire(struct ptimer *pt)
   1229 {
   1230 	struct proc *p = pt->pt_proc;
   1231 	struct sadata_vp *vp;
   1232 	int s;
   1233 	unsigned int i;
   1234 
   1235 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1236 		/*
   1237 		 * No RT signal infrastructure exists at this time;
   1238 		 * just post the signal number and throw away the
   1239 		 * value.
   1240 		 */
   1241 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
   1242 			pt->pt_overruns++;
   1243 		else {
   1244 			ksiginfo_t ksi;
   1245 			(void)memset(&ksi, 0, sizeof(ksi));
   1246 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1247 			ksi.ksi_code = SI_TIMER;
   1248 			ksi.ksi_sigval = pt->pt_ev.sigev_value;
   1249 			pt->pt_poverruns = pt->pt_overruns;
   1250 			pt->pt_overruns = 0;
   1251 			kpsignal(p, &ksi, NULL);
   1252 		}
   1253 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
   1254 		/* Cause the process to generate an upcall when it returns. */
   1255 
   1256 		if (p->p_userret == NULL) {
   1257 			/*
   1258 			 * XXX stop signals can be processed inside tsleep,
   1259 			 * which can be inside sa_yield's inner loop, which
   1260 			 * makes testing for sa_idle alone insuffucent to
   1261 			 * determine if we really should call setrunnable.
   1262 			 */
   1263 			pt->pt_poverruns = pt->pt_overruns;
   1264 			pt->pt_overruns = 0;
   1265 			i = 1 << pt->pt_entry;
   1266 			p->p_timers->pts_fired = i;
   1267 			p->p_userret = timerupcall;
   1268 			p->p_userret_arg = p->p_timers;
   1269 
   1270 			SCHED_LOCK(s);
   1271 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1272 				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
   1273 					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
   1274 					sched_wakeup(vp->savp_lwp);
   1275 					break;
   1276 				}
   1277 			}
   1278 			SCHED_UNLOCK(s);
   1279 		} else if (p->p_userret == timerupcall) {
   1280 			i = 1 << pt->pt_entry;
   1281 			if ((p->p_timers->pts_fired & i) == 0) {
   1282 				pt->pt_poverruns = pt->pt_overruns;
   1283 				pt->pt_overruns = 0;
   1284 				p->p_timers->pts_fired |= i;
   1285 			} else
   1286 				pt->pt_overruns++;
   1287 		} else {
   1288 			pt->pt_overruns++;
   1289 			if ((p->p_flag & P_WEXIT) == 0)
   1290 				printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
   1291 				    p->p_pid, pt->pt_overruns,
   1292 				    pt->pt_ev.sigev_value.sival_int,
   1293 				    p->p_userret);
   1294 		}
   1295 	}
   1296 
   1297 }
   1298 
   1299 /*
   1300  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1301  * for usage and rationale.
   1302  */
   1303 int
   1304 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1305 {
   1306 	struct timeval tv, delta;
   1307 	int s, rv = 0;
   1308 
   1309 	s = splclock();
   1310 	tv = mono_time;
   1311 	splx(s);
   1312 
   1313 	timersub(&tv, lasttime, &delta);
   1314 
   1315 	/*
   1316 	 * check for 0,0 is so that the message will be seen at least once,
   1317 	 * even if interval is huge.
   1318 	 */
   1319 	if (timercmp(&delta, mininterval, >=) ||
   1320 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1321 		*lasttime = tv;
   1322 		rv = 1;
   1323 	}
   1324 
   1325 	return (rv);
   1326 }
   1327 
   1328 /*
   1329  * ppsratecheck(): packets (or events) per second limitation.
   1330  */
   1331 int
   1332 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1333 {
   1334 	struct timeval tv, delta;
   1335 	int s, rv;
   1336 
   1337 	s = splclock();
   1338 	tv = mono_time;
   1339 	splx(s);
   1340 
   1341 	timersub(&tv, lasttime, &delta);
   1342 
   1343 	/*
   1344 	 * check for 0,0 is so that the message will be seen at least once.
   1345 	 * if more than one second have passed since the last update of
   1346 	 * lasttime, reset the counter.
   1347 	 *
   1348 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1349 	 * try to use *curpps for stat purposes as well.
   1350 	 */
   1351 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1352 	    delta.tv_sec >= 1) {
   1353 		*lasttime = tv;
   1354 		*curpps = 0;
   1355 	}
   1356 	if (maxpps < 0)
   1357 		rv = 1;
   1358 	else if (*curpps < maxpps)
   1359 		rv = 1;
   1360 	else
   1361 		rv = 0;
   1362 
   1363 #if 1 /*DIAGNOSTIC?*/
   1364 	/* be careful about wrap-around */
   1365 	if (*curpps + 1 > *curpps)
   1366 		*curpps = *curpps + 1;
   1367 #else
   1368 	/*
   1369 	 * assume that there's not too many calls to this function.
   1370 	 * not sure if the assumption holds, as it depends on *caller's*
   1371 	 * behavior, not the behavior of this function.
   1372 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1373 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1374 	 */
   1375 	*curpps = *curpps + 1;
   1376 #endif
   1377 
   1378 	return (rv);
   1379 }
   1380