kern_time.c revision 1.97 1 /* $NetBSD: kern_time.c,v 1.97 2005/11/26 05:26:33 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.97 2005/11/26 05:26:33 simonb Exp $");
72
73 #include "fs_nfs.h"
74 #include "opt_nfs.h"
75 #include "opt_nfsserver.h"
76
77 #include <sys/param.h>
78 #include <sys/resourcevar.h>
79 #include <sys/kernel.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/sa.h>
83 #include <sys/savar.h>
84 #include <sys/vnode.h>
85 #include <sys/signalvar.h>
86 #include <sys/syslog.h>
87 #include <sys/timevar.h>
88
89 #include <sys/mount.h>
90 #include <sys/syscallargs.h>
91
92 #include <uvm/uvm_extern.h>
93
94 #if defined(NFS) || defined(NFSSERVER)
95 #include <nfs/rpcv2.h>
96 #include <nfs/nfsproto.h>
97 #include <nfs/nfs.h>
98 #include <nfs/nfs_var.h>
99 #endif
100
101 #include <machine/cpu.h>
102
103 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
104 &pool_allocator_nointr);
105 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
106 &pool_allocator_nointr);
107
108 static void timerupcall(struct lwp *, void *);
109
110 /* Time of day and interval timer support.
111 *
112 * These routines provide the kernel entry points to get and set
113 * the time-of-day and per-process interval timers. Subroutines
114 * here provide support for adding and subtracting timeval structures
115 * and decrementing interval timers, optionally reloading the interval
116 * timers when they expire.
117 */
118
119 /* This function is used by clock_settime and settimeofday */
120 int
121 settime(struct timeval *tv)
122 {
123 struct timeval delta;
124 struct cpu_info *ci;
125 int s;
126
127 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
128 s = splclock();
129 timersub(tv, &time, &delta);
130 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
131 splx(s);
132 return (EPERM);
133 }
134 #ifdef notyet
135 if ((delta.tv_sec < 86400) && securelevel > 0) {
136 splx(s);
137 return (EPERM);
138 }
139 #endif
140 time = *tv;
141 (void) spllowersoftclock();
142 timeradd(&boottime, &delta, &boottime);
143 /*
144 * XXXSMP
145 * This is wrong. We should traverse a list of all
146 * CPUs and add the delta to the runtime of those
147 * CPUs which have a process on them.
148 */
149 ci = curcpu();
150 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
151 &ci->ci_schedstate.spc_runtime);
152 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
153 nqnfs_lease_updatetime(delta.tv_sec);
154 # endif
155 splx(s);
156 resettodr();
157 return (0);
158 }
159
160 /* ARGSUSED */
161 int
162 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
163 {
164 struct sys_clock_gettime_args /* {
165 syscallarg(clockid_t) clock_id;
166 syscallarg(struct timespec *) tp;
167 } */ *uap = v;
168 clockid_t clock_id;
169 struct timeval atv;
170 struct timespec ats;
171 int s;
172
173 clock_id = SCARG(uap, clock_id);
174 switch (clock_id) {
175 case CLOCK_REALTIME:
176 nanotime(&ats);
177 break;
178 case CLOCK_MONOTONIC:
179 /* XXX "hz" granularity */
180 s = splclock();
181 atv = mono_time;
182 splx(s);
183 TIMEVAL_TO_TIMESPEC(&atv,&ats);
184 break;
185 default:
186 return (EINVAL);
187 }
188
189 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
190 }
191
192 /* ARGSUSED */
193 int
194 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
195 {
196 struct sys_clock_settime_args /* {
197 syscallarg(clockid_t) clock_id;
198 syscallarg(const struct timespec *) tp;
199 } */ *uap = v;
200 struct proc *p = l->l_proc;
201 int error;
202
203 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
204 return (error);
205
206 return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
207 }
208
209
210 int
211 clock_settime1(clockid_t clock_id, const struct timespec *tp)
212 {
213 struct timespec ats;
214 struct timeval atv;
215 int error;
216
217 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
218 return (error);
219
220 switch (clock_id) {
221 case CLOCK_REALTIME:
222 TIMESPEC_TO_TIMEVAL(&atv, &ats);
223 if ((error = settime(&atv)) != 0)
224 return (error);
225 break;
226 case CLOCK_MONOTONIC:
227 return (EINVAL); /* read-only clock */
228 default:
229 return (EINVAL);
230 }
231
232 return 0;
233 }
234
235 int
236 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
237 {
238 struct sys_clock_getres_args /* {
239 syscallarg(clockid_t) clock_id;
240 syscallarg(struct timespec *) tp;
241 } */ *uap = v;
242 clockid_t clock_id;
243 struct timespec ts;
244 int error = 0;
245
246 clock_id = SCARG(uap, clock_id);
247 switch (clock_id) {
248 case CLOCK_REALTIME:
249 case CLOCK_MONOTONIC:
250 ts.tv_sec = 0;
251 ts.tv_nsec = 1000000000 / hz;
252 break;
253 default:
254 return (EINVAL);
255 }
256
257 if (SCARG(uap, tp))
258 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
259
260 return error;
261 }
262
263 /* ARGSUSED */
264 int
265 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
266 {
267 static int nanowait;
268 struct sys_nanosleep_args/* {
269 syscallarg(struct timespec *) rqtp;
270 syscallarg(struct timespec *) rmtp;
271 } */ *uap = v;
272 struct timespec rqt;
273 struct timespec rmt;
274 struct timeval atv, utv;
275 int error, s, timo;
276
277 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
278 if (error)
279 return (error);
280
281 TIMESPEC_TO_TIMEVAL(&atv,&rqt);
282 if (itimerfix(&atv))
283 return (EINVAL);
284
285 s = splclock();
286 timeradd(&atv,&time,&atv);
287 timo = hzto(&atv);
288 /*
289 * Avoid inadvertantly sleeping forever
290 */
291 if (timo == 0)
292 timo = 1;
293 splx(s);
294
295 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
296 if (error == ERESTART)
297 error = EINTR;
298 if (error == EWOULDBLOCK)
299 error = 0;
300
301 if (SCARG(uap, rmtp)) {
302 int error1;
303
304 s = splclock();
305 utv = time;
306 splx(s);
307
308 timersub(&atv, &utv, &utv);
309 if (utv.tv_sec < 0)
310 timerclear(&utv);
311
312 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
313 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
314 sizeof(rmt));
315 if (error1)
316 return (error1);
317 }
318
319 return error;
320 }
321
322 /* ARGSUSED */
323 int
324 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
325 {
326 struct sys_gettimeofday_args /* {
327 syscallarg(struct timeval *) tp;
328 syscallarg(void *) tzp; really "struct timezone *"
329 } */ *uap = v;
330 struct timeval atv;
331 int error = 0;
332 struct timezone tzfake;
333
334 if (SCARG(uap, tp)) {
335 microtime(&atv);
336 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
337 if (error)
338 return (error);
339 }
340 if (SCARG(uap, tzp)) {
341 /*
342 * NetBSD has no kernel notion of time zone, so we just
343 * fake up a timezone struct and return it if demanded.
344 */
345 tzfake.tz_minuteswest = 0;
346 tzfake.tz_dsttime = 0;
347 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
348 }
349 return (error);
350 }
351
352 /* ARGSUSED */
353 int
354 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
355 {
356 struct sys_settimeofday_args /* {
357 syscallarg(const struct timeval *) tv;
358 syscallarg(const void *) tzp; really "const struct timezone *"
359 } */ *uap = v;
360 struct proc *p = l->l_proc;
361 int error;
362
363 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
364 return (error);
365
366 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
367 }
368
369 int
370 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
371 struct proc *p)
372 {
373 struct timeval atv;
374 struct timezone atz;
375 struct timeval *tv = NULL;
376 struct timezone *tzp = NULL;
377 int error;
378
379 /* Verify all parameters before changing time. */
380 if (utv) {
381 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
382 return (error);
383 tv = &atv;
384 }
385 /* XXX since we don't use tz, probably no point in doing copyin. */
386 if (utzp) {
387 if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
388 return (error);
389 tzp = &atz;
390 }
391
392 if (tv)
393 if ((error = settime(tv)) != 0)
394 return (error);
395 /*
396 * NetBSD has no kernel notion of time zone, and only an
397 * obsolete program would try to set it, so we log a warning.
398 */
399 if (tzp)
400 log(LOG_WARNING, "pid %d attempted to set the "
401 "(obsolete) kernel time zone\n", p->p_pid);
402 return (0);
403 }
404
405 int tickdelta; /* current clock skew, us. per tick */
406 long timedelta; /* unapplied time correction, us. */
407 long bigadj = 1000000; /* use 10x skew above bigadj us. */
408 int time_adjusted; /* set if an adjustment is made */
409
410 /* ARGSUSED */
411 int
412 sys_adjtime(struct lwp *l, void *v, register_t *retval)
413 {
414 struct sys_adjtime_args /* {
415 syscallarg(const struct timeval *) delta;
416 syscallarg(struct timeval *) olddelta;
417 } */ *uap = v;
418 struct proc *p = l->l_proc;
419 int error;
420
421 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
422 return (error);
423
424 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
425 }
426
427 int
428 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
429 {
430 struct timeval atv;
431 long ndelta, ntickdelta, odelta;
432 int error;
433 int s;
434
435 error = copyin(delta, &atv, sizeof(struct timeval));
436 if (error)
437 return (error);
438
439 /*
440 * Compute the total correction and the rate at which to apply it.
441 * Round the adjustment down to a whole multiple of the per-tick
442 * delta, so that after some number of incremental changes in
443 * hardclock(), tickdelta will become zero, lest the correction
444 * overshoot and start taking us away from the desired final time.
445 */
446 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
447 if (ndelta > bigadj || ndelta < -bigadj)
448 ntickdelta = 10 * tickadj;
449 else
450 ntickdelta = tickadj;
451 if (ndelta % ntickdelta)
452 ndelta = ndelta / ntickdelta * ntickdelta;
453
454 /*
455 * To make hardclock()'s job easier, make the per-tick delta negative
456 * if we want time to run slower; then hardclock can simply compute
457 * tick + tickdelta, and subtract tickdelta from timedelta.
458 */
459 if (ndelta < 0)
460 ntickdelta = -ntickdelta;
461 if (ndelta != 0)
462 /* We need to save the system clock time during shutdown */
463 time_adjusted |= 1;
464 s = splclock();
465 odelta = timedelta;
466 timedelta = ndelta;
467 tickdelta = ntickdelta;
468 splx(s);
469
470 if (olddelta) {
471 atv.tv_sec = odelta / 1000000;
472 atv.tv_usec = odelta % 1000000;
473 error = copyout(&atv, olddelta, sizeof(struct timeval));
474 }
475 return error;
476 }
477
478 /*
479 * Interval timer support. Both the BSD getitimer() family and the POSIX
480 * timer_*() family of routines are supported.
481 *
482 * All timers are kept in an array pointed to by p_timers, which is
483 * allocated on demand - many processes don't use timers at all. The
484 * first three elements in this array are reserved for the BSD timers:
485 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
486 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
487 * syscall.
488 *
489 * Realtime timers are kept in the ptimer structure as an absolute
490 * time; virtual time timers are kept as a linked list of deltas.
491 * Virtual time timers are processed in the hardclock() routine of
492 * kern_clock.c. The real time timer is processed by a callout
493 * routine, called from the softclock() routine. Since a callout may
494 * be delayed in real time due to interrupt processing in the system,
495 * it is possible for the real time timeout routine (realtimeexpire,
496 * given below), to be delayed in real time past when it is supposed
497 * to occur. It does not suffice, therefore, to reload the real timer
498 * .it_value from the real time timers .it_interval. Rather, we
499 * compute the next time in absolute time the timer should go off. */
500
501 /* Allocate a POSIX realtime timer. */
502 int
503 sys_timer_create(struct lwp *l, void *v, register_t *retval)
504 {
505 struct sys_timer_create_args /* {
506 syscallarg(clockid_t) clock_id;
507 syscallarg(struct sigevent *) evp;
508 syscallarg(timer_t *) timerid;
509 } */ *uap = v;
510
511 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
512 SCARG(uap, evp), copyin, l->l_proc);
513 }
514
515 int
516 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
517 copyin_t fetch_event, struct proc *p)
518 {
519 int error;
520 timer_t timerid;
521 struct ptimer *pt;
522
523 if (id < CLOCK_REALTIME ||
524 id > CLOCK_PROF)
525 return (EINVAL);
526
527 if (p->p_timers == NULL)
528 timers_alloc(p);
529
530 /* Find a free timer slot, skipping those reserved for setitimer(). */
531 for (timerid = 3; timerid < TIMER_MAX; timerid++)
532 if (p->p_timers->pts_timers[timerid] == NULL)
533 break;
534
535 if (timerid == TIMER_MAX)
536 return EAGAIN;
537
538 pt = pool_get(&ptimer_pool, PR_WAITOK);
539 if (evp) {
540 if (((error =
541 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
542 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
543 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
544 pool_put(&ptimer_pool, pt);
545 return (error ? error : EINVAL);
546 }
547 } else {
548 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
549 switch (id) {
550 case CLOCK_REALTIME:
551 pt->pt_ev.sigev_signo = SIGALRM;
552 break;
553 case CLOCK_VIRTUAL:
554 pt->pt_ev.sigev_signo = SIGVTALRM;
555 break;
556 case CLOCK_PROF:
557 pt->pt_ev.sigev_signo = SIGPROF;
558 break;
559 }
560 pt->pt_ev.sigev_value.sival_int = timerid;
561 }
562 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
563 pt->pt_info.ksi_errno = 0;
564 pt->pt_info.ksi_code = 0;
565 pt->pt_info.ksi_pid = p->p_pid;
566 pt->pt_info.ksi_uid = p->p_cred->p_ruid;
567 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
568
569 pt->pt_type = id;
570 pt->pt_proc = p;
571 pt->pt_overruns = 0;
572 pt->pt_poverruns = 0;
573 pt->pt_entry = timerid;
574 timerclear(&pt->pt_time.it_value);
575 if (id == CLOCK_REALTIME)
576 callout_init(&pt->pt_ch);
577 else
578 pt->pt_active = 0;
579
580 p->p_timers->pts_timers[timerid] = pt;
581
582 return copyout(&timerid, tid, sizeof(timerid));
583 }
584
585 /* Delete a POSIX realtime timer */
586 int
587 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
588 {
589 struct sys_timer_delete_args /* {
590 syscallarg(timer_t) timerid;
591 } */ *uap = v;
592 struct proc *p = l->l_proc;
593 timer_t timerid;
594 struct ptimer *pt, *ptn;
595 int s;
596
597 timerid = SCARG(uap, timerid);
598
599 if ((p->p_timers == NULL) ||
600 (timerid < 2) || (timerid >= TIMER_MAX) ||
601 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
602 return (EINVAL);
603
604 if (pt->pt_type == CLOCK_REALTIME)
605 callout_stop(&pt->pt_ch);
606 else if (pt->pt_active) {
607 s = splclock();
608 ptn = LIST_NEXT(pt, pt_list);
609 LIST_REMOVE(pt, pt_list);
610 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
611 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
612 &ptn->pt_time.it_value);
613 splx(s);
614 }
615
616 p->p_timers->pts_timers[timerid] = NULL;
617 pool_put(&ptimer_pool, pt);
618
619 return (0);
620 }
621
622 /*
623 * Set up the given timer. The value in pt->pt_time.it_value is taken
624 * to be an absolute time for CLOCK_REALTIME timers and a relative
625 * time for virtual timers.
626 * Must be called at splclock().
627 */
628 void
629 timer_settime(struct ptimer *pt)
630 {
631 struct ptimer *ptn, *pptn;
632 struct ptlist *ptl;
633
634 if (pt->pt_type == CLOCK_REALTIME) {
635 callout_stop(&pt->pt_ch);
636 if (timerisset(&pt->pt_time.it_value)) {
637 /*
638 * Don't need to check hzto() return value, here.
639 * callout_reset() does it for us.
640 */
641 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
642 realtimerexpire, pt);
643 }
644 } else {
645 if (pt->pt_active) {
646 ptn = LIST_NEXT(pt, pt_list);
647 LIST_REMOVE(pt, pt_list);
648 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
649 timeradd(&pt->pt_time.it_value,
650 &ptn->pt_time.it_value,
651 &ptn->pt_time.it_value);
652 }
653 if (timerisset(&pt->pt_time.it_value)) {
654 if (pt->pt_type == CLOCK_VIRTUAL)
655 ptl = &pt->pt_proc->p_timers->pts_virtual;
656 else
657 ptl = &pt->pt_proc->p_timers->pts_prof;
658
659 for (ptn = LIST_FIRST(ptl), pptn = NULL;
660 ptn && timercmp(&pt->pt_time.it_value,
661 &ptn->pt_time.it_value, >);
662 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
663 timersub(&pt->pt_time.it_value,
664 &ptn->pt_time.it_value,
665 &pt->pt_time.it_value);
666
667 if (pptn)
668 LIST_INSERT_AFTER(pptn, pt, pt_list);
669 else
670 LIST_INSERT_HEAD(ptl, pt, pt_list);
671
672 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
673 timersub(&ptn->pt_time.it_value,
674 &pt->pt_time.it_value,
675 &ptn->pt_time.it_value);
676
677 pt->pt_active = 1;
678 } else
679 pt->pt_active = 0;
680 }
681 }
682
683 void
684 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
685 {
686 struct ptimer *ptn;
687
688 *aitv = pt->pt_time;
689 if (pt->pt_type == CLOCK_REALTIME) {
690 /*
691 * Convert from absolute to relative time in .it_value
692 * part of real time timer. If time for real time
693 * timer has passed return 0, else return difference
694 * between current time and time for the timer to go
695 * off.
696 */
697 if (timerisset(&aitv->it_value)) {
698 if (timercmp(&aitv->it_value, &time, <))
699 timerclear(&aitv->it_value);
700 else
701 timersub(&aitv->it_value, &time,
702 &aitv->it_value);
703 }
704 } else if (pt->pt_active) {
705 if (pt->pt_type == CLOCK_VIRTUAL)
706 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
707 else
708 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
709 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
710 timeradd(&aitv->it_value,
711 &ptn->pt_time.it_value, &aitv->it_value);
712 KASSERT(ptn != NULL); /* pt should be findable on the list */
713 } else
714 timerclear(&aitv->it_value);
715 }
716
717
718
719 /* Set and arm a POSIX realtime timer */
720 int
721 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
722 {
723 struct sys_timer_settime_args /* {
724 syscallarg(timer_t) timerid;
725 syscallarg(int) flags;
726 syscallarg(const struct itimerspec *) value;
727 syscallarg(struct itimerspec *) ovalue;
728 } */ *uap = v;
729 int error;
730 struct itimerspec value, ovalue, *ovp = NULL;
731
732 if ((error = copyin(SCARG(uap, value), &value,
733 sizeof(struct itimerspec))) != 0)
734 return (error);
735
736 if (SCARG(uap, ovalue))
737 ovp = &ovalue;
738
739 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
740 SCARG(uap, flags), l->l_proc)) != 0)
741 return error;
742
743 if (ovp)
744 return copyout(&ovalue, SCARG(uap, ovalue),
745 sizeof(struct itimerspec));
746 return 0;
747 }
748
749 int
750 dotimer_settime(int timerid, struct itimerspec *value,
751 struct itimerspec *ovalue, int flags, struct proc *p)
752 {
753 int s;
754 struct itimerval val, oval;
755 struct ptimer *pt;
756
757 if ((p->p_timers == NULL) ||
758 (timerid < 2) || (timerid >= TIMER_MAX) ||
759 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
760 return (EINVAL);
761
762 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
763 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
764 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
765 return (EINVAL);
766
767 oval = pt->pt_time;
768 pt->pt_time = val;
769
770 s = splclock();
771 /*
772 * If we've been passed a relative time for a realtime timer,
773 * convert it to absolute; if an absolute time for a virtual
774 * timer, convert it to relative and make sure we don't set it
775 * to zero, which would cancel the timer, or let it go
776 * negative, which would confuse the comparison tests.
777 */
778 if (timerisset(&pt->pt_time.it_value)) {
779 if (pt->pt_type == CLOCK_REALTIME) {
780 if ((flags & TIMER_ABSTIME) == 0)
781 timeradd(&pt->pt_time.it_value, &time,
782 &pt->pt_time.it_value);
783 } else {
784 if ((flags & TIMER_ABSTIME) != 0) {
785 timersub(&pt->pt_time.it_value, &time,
786 &pt->pt_time.it_value);
787 if (!timerisset(&pt->pt_time.it_value) ||
788 pt->pt_time.it_value.tv_sec < 0) {
789 pt->pt_time.it_value.tv_sec = 0;
790 pt->pt_time.it_value.tv_usec = 1;
791 }
792 }
793 }
794 }
795
796 timer_settime(pt);
797 splx(s);
798
799 if (ovalue) {
800 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
801 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
802 }
803
804 return (0);
805 }
806
807 /* Return the time remaining until a POSIX timer fires. */
808 int
809 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
810 {
811 struct sys_timer_gettime_args /* {
812 syscallarg(timer_t) timerid;
813 syscallarg(struct itimerspec *) value;
814 } */ *uap = v;
815 struct itimerspec its;
816 int error;
817
818 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
819 &its)) != 0)
820 return error;
821
822 return copyout(&its, SCARG(uap, value), sizeof(its));
823 }
824
825 int
826 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
827 {
828 int s;
829 struct ptimer *pt;
830 struct itimerval aitv;
831
832 if ((p->p_timers == NULL) ||
833 (timerid < 2) || (timerid >= TIMER_MAX) ||
834 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
835 return (EINVAL);
836
837 s = splclock();
838 timer_gettime(pt, &aitv);
839 splx(s);
840
841 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
842 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
843
844 return 0;
845 }
846
847 /*
848 * Return the count of the number of times a periodic timer expired
849 * while a notification was already pending. The counter is reset when
850 * a timer expires and a notification can be posted.
851 */
852 int
853 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
854 {
855 struct sys_timer_getoverrun_args /* {
856 syscallarg(timer_t) timerid;
857 } */ *uap = v;
858 struct proc *p = l->l_proc;
859 int timerid;
860 struct ptimer *pt;
861
862 timerid = SCARG(uap, timerid);
863
864 if ((p->p_timers == NULL) ||
865 (timerid < 2) || (timerid >= TIMER_MAX) ||
866 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
867 return (EINVAL);
868
869 *retval = pt->pt_poverruns;
870
871 return (0);
872 }
873
874 /* Glue function that triggers an upcall; called from userret(). */
875 static void
876 timerupcall(struct lwp *l, void *arg)
877 {
878 struct ptimers *pt = (struct ptimers *)arg;
879 unsigned int i, fired, done;
880
881 KDASSERT(l->l_proc->p_sa);
882 /* Bail out if we do not own the virtual processor */
883 if (l->l_savp->savp_lwp != l)
884 return ;
885
886 KERNEL_PROC_LOCK(l);
887
888 fired = pt->pts_fired;
889 done = 0;
890 while ((i = ffs(fired)) != 0) {
891 siginfo_t *si;
892 int mask = 1 << --i;
893 int f;
894
895 f = l->l_flag & L_SA;
896 l->l_flag &= ~L_SA;
897 si = siginfo_alloc(PR_WAITOK);
898 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
899 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
900 sizeof(*si), si, siginfo_free) != 0) {
901 siginfo_free(si);
902 /* XXX What do we do here?? */
903 } else
904 done |= mask;
905 fired &= ~mask;
906 l->l_flag |= f;
907 }
908 pt->pts_fired &= ~done;
909 if (pt->pts_fired == 0)
910 l->l_proc->p_userret = NULL;
911
912 KERNEL_PROC_UNLOCK(l);
913 }
914
915
916 /*
917 * Real interval timer expired:
918 * send process whose timer expired an alarm signal.
919 * If time is not set up to reload, then just return.
920 * Else compute next time timer should go off which is > current time.
921 * This is where delay in processing this timeout causes multiple
922 * SIGALRM calls to be compressed into one.
923 */
924 void
925 realtimerexpire(void *arg)
926 {
927 struct ptimer *pt;
928 int s;
929
930 pt = (struct ptimer *)arg;
931
932 itimerfire(pt);
933
934 if (!timerisset(&pt->pt_time.it_interval)) {
935 timerclear(&pt->pt_time.it_value);
936 return;
937 }
938 for (;;) {
939 s = splclock();
940 timeradd(&pt->pt_time.it_value,
941 &pt->pt_time.it_interval, &pt->pt_time.it_value);
942 if (timercmp(&pt->pt_time.it_value, &time, >)) {
943 /*
944 * Don't need to check hzto() return value, here.
945 * callout_reset() does it for us.
946 */
947 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
948 realtimerexpire, pt);
949 splx(s);
950 return;
951 }
952 splx(s);
953 pt->pt_overruns++;
954 }
955 }
956
957 /* BSD routine to get the value of an interval timer. */
958 /* ARGSUSED */
959 int
960 sys_getitimer(struct lwp *l, void *v, register_t *retval)
961 {
962 struct sys_getitimer_args /* {
963 syscallarg(int) which;
964 syscallarg(struct itimerval *) itv;
965 } */ *uap = v;
966 struct proc *p = l->l_proc;
967 struct itimerval aitv;
968 int error;
969
970 error = dogetitimer(p, SCARG(uap, which), &aitv);
971 if (error)
972 return error;
973 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
974 }
975
976 int
977 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
978 {
979 int s;
980
981 if ((u_int)which > ITIMER_PROF)
982 return (EINVAL);
983
984 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
985 timerclear(&itvp->it_value);
986 timerclear(&itvp->it_interval);
987 } else {
988 s = splclock();
989 timer_gettime(p->p_timers->pts_timers[which], itvp);
990 splx(s);
991 }
992
993 return 0;
994 }
995
996 /* BSD routine to set/arm an interval timer. */
997 /* ARGSUSED */
998 int
999 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1000 {
1001 struct sys_setitimer_args /* {
1002 syscallarg(int) which;
1003 syscallarg(const struct itimerval *) itv;
1004 syscallarg(struct itimerval *) oitv;
1005 } */ *uap = v;
1006 struct proc *p = l->l_proc;
1007 int which = SCARG(uap, which);
1008 struct sys_getitimer_args getargs;
1009 const struct itimerval *itvp;
1010 struct itimerval aitv;
1011 int error;
1012
1013 if ((u_int)which > ITIMER_PROF)
1014 return (EINVAL);
1015 itvp = SCARG(uap, itv);
1016 if (itvp &&
1017 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1018 return (error);
1019 if (SCARG(uap, oitv) != NULL) {
1020 SCARG(&getargs, which) = which;
1021 SCARG(&getargs, itv) = SCARG(uap, oitv);
1022 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1023 return (error);
1024 }
1025 if (itvp == 0)
1026 return (0);
1027
1028 return dosetitimer(p, which, &aitv);
1029 }
1030
1031 int
1032 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1033 {
1034 struct ptimer *pt;
1035 int s;
1036
1037 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1038 return (EINVAL);
1039
1040 /*
1041 * Don't bother allocating data structures if the process just
1042 * wants to clear the timer.
1043 */
1044 if (!timerisset(&itvp->it_value) &&
1045 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1046 return (0);
1047
1048 if (p->p_timers == NULL)
1049 timers_alloc(p);
1050 if (p->p_timers->pts_timers[which] == NULL) {
1051 pt = pool_get(&ptimer_pool, PR_WAITOK);
1052 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1053 pt->pt_ev.sigev_value.sival_int = which;
1054 pt->pt_overruns = 0;
1055 pt->pt_proc = p;
1056 pt->pt_type = which;
1057 pt->pt_entry = which;
1058 switch (which) {
1059 case ITIMER_REAL:
1060 callout_init(&pt->pt_ch);
1061 pt->pt_ev.sigev_signo = SIGALRM;
1062 break;
1063 case ITIMER_VIRTUAL:
1064 pt->pt_active = 0;
1065 pt->pt_ev.sigev_signo = SIGVTALRM;
1066 break;
1067 case ITIMER_PROF:
1068 pt->pt_active = 0;
1069 pt->pt_ev.sigev_signo = SIGPROF;
1070 break;
1071 }
1072 } else
1073 pt = p->p_timers->pts_timers[which];
1074
1075 pt->pt_time = *itvp;
1076 p->p_timers->pts_timers[which] = pt;
1077
1078 s = splclock();
1079 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1080 /* Convert to absolute time */
1081 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1082 }
1083 timer_settime(pt);
1084 splx(s);
1085
1086 return (0);
1087 }
1088
1089 /* Utility routines to manage the array of pointers to timers. */
1090 void
1091 timers_alloc(struct proc *p)
1092 {
1093 int i;
1094 struct ptimers *pts;
1095
1096 pts = pool_get(&ptimers_pool, 0);
1097 LIST_INIT(&pts->pts_virtual);
1098 LIST_INIT(&pts->pts_prof);
1099 for (i = 0; i < TIMER_MAX; i++)
1100 pts->pts_timers[i] = NULL;
1101 pts->pts_fired = 0;
1102 p->p_timers = pts;
1103 }
1104
1105 /*
1106 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1107 * then clean up all timers and free all the data structures. If
1108 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1109 * by timer_create(), not the BSD setitimer() timers, and only free the
1110 * structure if none of those remain.
1111 */
1112 void
1113 timers_free(struct proc *p, int which)
1114 {
1115 int i, s;
1116 struct ptimers *pts;
1117 struct ptimer *pt, *ptn;
1118 struct timeval tv;
1119
1120 if (p->p_timers) {
1121 pts = p->p_timers;
1122 if (which == TIMERS_ALL)
1123 i = 0;
1124 else {
1125 s = splclock();
1126 timerclear(&tv);
1127 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1128 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1129 ptn = LIST_NEXT(ptn, pt_list))
1130 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1131 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1132 if (ptn) {
1133 timeradd(&tv, &ptn->pt_time.it_value,
1134 &ptn->pt_time.it_value);
1135 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1136 ptn, pt_list);
1137 }
1138
1139 timerclear(&tv);
1140 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1141 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1142 ptn = LIST_NEXT(ptn, pt_list))
1143 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1144 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1145 if (ptn) {
1146 timeradd(&tv, &ptn->pt_time.it_value,
1147 &ptn->pt_time.it_value);
1148 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1149 pt_list);
1150 }
1151 splx(s);
1152 i = 3;
1153 }
1154 for ( ; i < TIMER_MAX; i++)
1155 if ((pt = pts->pts_timers[i]) != NULL) {
1156 if (pt->pt_type == CLOCK_REALTIME)
1157 callout_stop(&pt->pt_ch);
1158 pts->pts_timers[i] = NULL;
1159 pool_put(&ptimer_pool, pt);
1160 }
1161 if ((pts->pts_timers[0] == NULL) &&
1162 (pts->pts_timers[1] == NULL) &&
1163 (pts->pts_timers[2] == NULL)) {
1164 p->p_timers = NULL;
1165 pool_put(&ptimers_pool, pts);
1166 }
1167 }
1168 }
1169
1170 /*
1171 * Check that a proposed value to load into the .it_value or
1172 * .it_interval part of an interval timer is acceptable, and
1173 * fix it to have at least minimal value (i.e. if it is less
1174 * than the resolution of the clock, round it up.)
1175 */
1176 int
1177 itimerfix(struct timeval *tv)
1178 {
1179
1180 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1181 return (EINVAL);
1182 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1183 tv->tv_usec = tick;
1184 return (0);
1185 }
1186
1187 /*
1188 * Decrement an interval timer by a specified number
1189 * of microseconds, which must be less than a second,
1190 * i.e. < 1000000. If the timer expires, then reload
1191 * it. In this case, carry over (usec - old value) to
1192 * reduce the value reloaded into the timer so that
1193 * the timer does not drift. This routine assumes
1194 * that it is called in a context where the timers
1195 * on which it is operating cannot change in value.
1196 */
1197 int
1198 itimerdecr(struct ptimer *pt, int usec)
1199 {
1200 struct itimerval *itp;
1201
1202 itp = &pt->pt_time;
1203 if (itp->it_value.tv_usec < usec) {
1204 if (itp->it_value.tv_sec == 0) {
1205 /* expired, and already in next interval */
1206 usec -= itp->it_value.tv_usec;
1207 goto expire;
1208 }
1209 itp->it_value.tv_usec += 1000000;
1210 itp->it_value.tv_sec--;
1211 }
1212 itp->it_value.tv_usec -= usec;
1213 usec = 0;
1214 if (timerisset(&itp->it_value))
1215 return (1);
1216 /* expired, exactly at end of interval */
1217 expire:
1218 if (timerisset(&itp->it_interval)) {
1219 itp->it_value = itp->it_interval;
1220 itp->it_value.tv_usec -= usec;
1221 if (itp->it_value.tv_usec < 0) {
1222 itp->it_value.tv_usec += 1000000;
1223 itp->it_value.tv_sec--;
1224 }
1225 timer_settime(pt);
1226 } else
1227 itp->it_value.tv_usec = 0; /* sec is already 0 */
1228 return (0);
1229 }
1230
1231 void
1232 itimerfire(struct ptimer *pt)
1233 {
1234 struct proc *p = pt->pt_proc;
1235 struct sadata_vp *vp;
1236 int s;
1237 unsigned int i;
1238
1239 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1240 /*
1241 * No RT signal infrastructure exists at this time;
1242 * just post the signal number and throw away the
1243 * value.
1244 */
1245 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1246 pt->pt_overruns++;
1247 else {
1248 ksiginfo_t ksi;
1249 (void)memset(&ksi, 0, sizeof(ksi));
1250 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1251 ksi.ksi_code = SI_TIMER;
1252 ksi.ksi_sigval = pt->pt_ev.sigev_value;
1253 pt->pt_poverruns = pt->pt_overruns;
1254 pt->pt_overruns = 0;
1255 kpsignal(p, &ksi, NULL);
1256 }
1257 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1258 /* Cause the process to generate an upcall when it returns. */
1259
1260 if (p->p_userret == NULL) {
1261 /*
1262 * XXX stop signals can be processed inside tsleep,
1263 * which can be inside sa_yield's inner loop, which
1264 * makes testing for sa_idle alone insuffucent to
1265 * determine if we really should call setrunnable.
1266 */
1267 pt->pt_poverruns = pt->pt_overruns;
1268 pt->pt_overruns = 0;
1269 i = 1 << pt->pt_entry;
1270 p->p_timers->pts_fired = i;
1271 p->p_userret = timerupcall;
1272 p->p_userret_arg = p->p_timers;
1273
1274 SCHED_LOCK(s);
1275 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1276 if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1277 vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1278 sched_wakeup(vp->savp_lwp);
1279 break;
1280 }
1281 }
1282 SCHED_UNLOCK(s);
1283 } else if (p->p_userret == timerupcall) {
1284 i = 1 << pt->pt_entry;
1285 if ((p->p_timers->pts_fired & i) == 0) {
1286 pt->pt_poverruns = pt->pt_overruns;
1287 pt->pt_overruns = 0;
1288 p->p_timers->pts_fired |= i;
1289 } else
1290 pt->pt_overruns++;
1291 } else {
1292 pt->pt_overruns++;
1293 if ((p->p_flag & P_WEXIT) == 0)
1294 printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1295 p->p_pid, pt->pt_overruns,
1296 pt->pt_ev.sigev_value.sival_int,
1297 p->p_userret);
1298 }
1299 }
1300
1301 }
1302
1303 /*
1304 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1305 * for usage and rationale.
1306 */
1307 int
1308 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1309 {
1310 struct timeval tv, delta;
1311 int s, rv = 0;
1312
1313 s = splclock();
1314 tv = mono_time;
1315 splx(s);
1316
1317 timersub(&tv, lasttime, &delta);
1318
1319 /*
1320 * check for 0,0 is so that the message will be seen at least once,
1321 * even if interval is huge.
1322 */
1323 if (timercmp(&delta, mininterval, >=) ||
1324 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1325 *lasttime = tv;
1326 rv = 1;
1327 }
1328
1329 return (rv);
1330 }
1331
1332 /*
1333 * ppsratecheck(): packets (or events) per second limitation.
1334 */
1335 int
1336 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1337 {
1338 struct timeval tv, delta;
1339 int s, rv;
1340
1341 s = splclock();
1342 tv = mono_time;
1343 splx(s);
1344
1345 timersub(&tv, lasttime, &delta);
1346
1347 /*
1348 * check for 0,0 is so that the message will be seen at least once.
1349 * if more than one second have passed since the last update of
1350 * lasttime, reset the counter.
1351 *
1352 * we do increment *curpps even in *curpps < maxpps case, as some may
1353 * try to use *curpps for stat purposes as well.
1354 */
1355 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1356 delta.tv_sec >= 1) {
1357 *lasttime = tv;
1358 *curpps = 0;
1359 }
1360 if (maxpps < 0)
1361 rv = 1;
1362 else if (*curpps < maxpps)
1363 rv = 1;
1364 else
1365 rv = 0;
1366
1367 #if 1 /*DIAGNOSTIC?*/
1368 /* be careful about wrap-around */
1369 if (*curpps + 1 > *curpps)
1370 *curpps = *curpps + 1;
1371 #else
1372 /*
1373 * assume that there's not too many calls to this function.
1374 * not sure if the assumption holds, as it depends on *caller's*
1375 * behavior, not the behavior of this function.
1376 * IMHO it is wrong to make assumption on the caller's behavior,
1377 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1378 */
1379 *curpps = *curpps + 1;
1380 #endif
1381
1382 return (rv);
1383 }
1384