Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.98.6.2
      1 /*	$NetBSD: kern_time.c,v 1.98.6.2 2006/02/28 21:07:13 kardel Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.98.6.2 2006/02/28 21:07:13 kardel Exp $");
     72 
     73 #include "fs_nfs.h"
     74 #include "opt_nfs.h"
     75 #include "opt_nfsserver.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/kernel.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/sa.h>
     83 #include <sys/savar.h>
     84 #include <sys/vnode.h>
     85 #include <sys/signalvar.h>
     86 #include <sys/syslog.h>
     87 #ifdef __HAVE_TIMECOUNTER
     88 #include <sys/timetc.h>
     89 #else /* !__HAVE_TIMECOUNTER */
     90 #include <sys/timevar.h>
     91 #endif /* !__HAVE_TIMECOUNTER */
     92 
     93 #include <sys/mount.h>
     94 #include <sys/syscallargs.h>
     95 
     96 #include <uvm/uvm_extern.h>
     97 
     98 #if defined(NFS) || defined(NFSSERVER)
     99 #include <nfs/rpcv2.h>
    100 #include <nfs/nfsproto.h>
    101 #include <nfs/nfs.h>
    102 #include <nfs/nfs_var.h>
    103 #endif
    104 
    105 #include <machine/cpu.h>
    106 
    107 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    108     &pool_allocator_nointr);
    109 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    110     &pool_allocator_nointr);
    111 
    112 static void timerupcall(struct lwp *, void *);
    113 #ifdef __HAVE_TIMECOUNTER
    114 static int itimespecfix(struct timespec *);		/* XXX move itimerfix to timespecs */
    115 #endif /* __HAVE_TIMECOUNTER */
    116 
    117 /* Time of day and interval timer support.
    118  *
    119  * These routines provide the kernel entry points to get and set
    120  * the time-of-day and per-process interval timers.  Subroutines
    121  * here provide support for adding and subtracting timeval structures
    122  * and decrementing interval timers, optionally reloading the interval
    123  * timers when they expire.
    124  */
    125 
    126 /* This function is used by clock_settime and settimeofday */
    127 int
    128 settime(struct proc *p, struct timespec *ts)
    129 {
    130 	struct timeval delta, tv;
    131 #ifdef __HAVE_TIMECOUNTER
    132 	struct timeval now;
    133 	struct timespec ts1;
    134 #endif /* !__HAVE_TIMECOUNTER */
    135 	struct cpu_info *ci;
    136 	int s;
    137 
    138 	/*
    139 	 * Don't allow the time to be set forward so far it will wrap
    140 	 * and become negative, thus allowing an attacker to bypass
    141 	 * the next check below.  The cutoff is 1 year before rollover
    142 	 * occurs, so even if the attacker uses adjtime(2) to move
    143 	 * the time past the cutoff, it will take a very long time
    144 	 * to get to the wrap point.
    145 	 *
    146 	 * XXX: we check against INT_MAX since on 64-bit
    147 	 *	platforms, sizeof(int) != sizeof(long) and
    148 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
    149 	 */
    150 	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
    151 		struct proc *pp = p->p_pptr;
    152 		log(LOG_WARNING, "pid %d (%s) "
    153 		    "invoked by uid %d ppid %d (%s) "
    154 		    "tried to set clock forward to %ld\n",
    155 		    p->p_pid, p->p_comm, pp->p_ucred->cr_uid,
    156 		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
    157 		return (EPERM);
    158 	}
    159 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    160 
    161 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    162 	s = splclock();
    163 #ifdef __HAVE_TIMECOUNTER
    164 	microtime(&now);
    165 	timersub(&tv, &now, &delta);
    166 #else /* !__HAVE_TIMECOUNTER */
    167 	timersub(&tv, &time, &delta);
    168 #endif /* !__HAVE_TIMECOUNTER */
    169 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    170 		splx(s);
    171 		return (EPERM);
    172 	}
    173 #ifdef notyet
    174 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    175 		splx(s);
    176 		return (EPERM);
    177 	}
    178 #endif
    179 #ifdef __HAVE_TIMECOUNTER
    180 	ts1.tv_sec = tv.tv_sec;
    181 	ts1.tv_nsec = tv.tv_usec * 1000;
    182 	tc_setclock(&ts1);
    183 	(void) spllowersoftclock();
    184 #else /* !__HAVE_TIMECOUNTER */
    185 	time = tv;
    186 	(void) spllowersoftclock();
    187 	timeradd(&boottime, &delta, &boottime);
    188 #endif /* !__HAVE_TIMECOUNTER */
    189 	/*
    190 	 * XXXSMP
    191 	 * This is wrong.  We should traverse a list of all
    192 	 * CPUs and add the delta to the runtime of those
    193 	 * CPUs which have a process on them.
    194 	 */
    195 	ci = curcpu();
    196 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    197 	    &ci->ci_schedstate.spc_runtime);
    198 #if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    199 	nqnfs_lease_updatetime(delta.tv_sec);
    200 #endif
    201 	splx(s);
    202 	resettodr();
    203 	return (0);
    204 }
    205 
    206 /* ARGSUSED */
    207 int
    208 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    209 {
    210 	struct sys_clock_gettime_args /* {
    211 		syscallarg(clockid_t) clock_id;
    212 		syscallarg(struct timespec *) tp;
    213 	} */ *uap = v;
    214 	clockid_t clock_id;
    215 	struct timespec ats;
    216 
    217 	clock_id = SCARG(uap, clock_id);
    218 	switch (clock_id) {
    219 	case CLOCK_REALTIME:
    220 		nanotime(&ats);
    221 		break;
    222 	case CLOCK_MONOTONIC:
    223 #ifdef __HAVE_TIMECOUNTER
    224 		nanouptime(&ats);
    225 #else /* !__HAVE_TIMECOUNTER */
    226 		{
    227 		int s;
    228 
    229 		/* XXX "hz" granularity */
    230 		s = splclock();
    231 		TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
    232 		splx(s);
    233 		}
    234 #endif /* !__HAVE_TIMECOUNTER */
    235 		break;
    236 	default:
    237 		return (EINVAL);
    238 	}
    239 
    240 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    241 }
    242 
    243 /* ARGSUSED */
    244 int
    245 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
    246 {
    247 	struct sys_clock_settime_args /* {
    248 		syscallarg(clockid_t) clock_id;
    249 		syscallarg(const struct timespec *) tp;
    250 	} */ *uap = v;
    251 	struct proc *p = l->l_proc;
    252 	int error;
    253 
    254 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    255 		return (error);
    256 
    257 	return (clock_settime1(p, SCARG(uap, clock_id), SCARG(uap, tp)));
    258 }
    259 
    260 
    261 int
    262 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
    263 {
    264 	struct timespec ats;
    265 	int error;
    266 
    267 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    268 		return (error);
    269 
    270 	switch (clock_id) {
    271 	case CLOCK_REALTIME:
    272 		if ((error = settime(p, &ats)) != 0)
    273 			return (error);
    274 		break;
    275 	case CLOCK_MONOTONIC:
    276 		return (EINVAL);	/* read-only clock */
    277 	default:
    278 		return (EINVAL);
    279 	}
    280 
    281 	return 0;
    282 }
    283 
    284 int
    285 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    286 {
    287 	struct sys_clock_getres_args /* {
    288 		syscallarg(clockid_t) clock_id;
    289 		syscallarg(struct timespec *) tp;
    290 	} */ *uap = v;
    291 	clockid_t clock_id;
    292 	struct timespec ts;
    293 	int error = 0;
    294 
    295 	clock_id = SCARG(uap, clock_id);
    296 	switch (clock_id) {
    297 	case CLOCK_REALTIME:
    298 	case CLOCK_MONOTONIC:
    299 		ts.tv_sec = 0;
    300 		ts.tv_nsec = 1000000000 / hz;
    301 		break;
    302 	default:
    303 		return (EINVAL);
    304 	}
    305 
    306 	if (SCARG(uap, tp))
    307 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    308 
    309 	return error;
    310 }
    311 
    312 /* ARGSUSED */
    313 int
    314 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    315 {
    316 #ifdef __HAVE_TIMECOUNTER
    317 	static int nanowait;
    318 	struct sys_nanosleep_args/* {
    319 		syscallarg(struct timespec *) rqtp;
    320 		syscallarg(struct timespec *) rmtp;
    321 	} */ *uap = v;
    322 	struct timespec rmt, rqt;
    323 	int error, timo;
    324 
    325 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    326 	if (error)
    327 		return (error);
    328 
    329 	if (itimespecfix(&rqt))
    330 		return (EINVAL);
    331 
    332 	timo = tstohz(&rqt);
    333 	/*
    334 	 * Avoid inadvertantly sleeping forever
    335 	 */
    336 	if (timo == 0)
    337 		timo = 1;
    338 
    339 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    340 	if (error == ERESTART)
    341 		error = EINTR;
    342 	if (error == EWOULDBLOCK)
    343 		error = 0;
    344 
    345 	if (SCARG(uap, rmtp)) {
    346 		int error1;
    347 
    348 		getnanotime(&rmt);
    349 
    350 		timespecsub(&rqt, &rmt, &rmt);
    351 		if (rmt.tv_sec < 0)
    352 			timespecclear(&rmt);
    353 
    354 		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    355 			sizeof(rmt));
    356 		if (error1)
    357 			return (error1);
    358 	}
    359 
    360 	return error;
    361 #else /* !__HAVE_TIMECOUNTER */
    362 	static int nanowait;
    363 	struct sys_nanosleep_args/* {
    364 		syscallarg(struct timespec *) rqtp;
    365 		syscallarg(struct timespec *) rmtp;
    366 	} */ *uap = v;
    367 	struct timespec rqt;
    368 	struct timespec rmt;
    369 	struct timeval atv, utv;
    370 	int error, s, timo;
    371 
    372 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    373 	if (error)
    374 		return (error);
    375 
    376 	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
    377 	if (itimerfix(&atv))
    378 		return (EINVAL);
    379 
    380 	s = splclock();
    381 	timeradd(&atv,&time,&atv);
    382 	timo = hzto(&atv);
    383 	/*
    384 	 * Avoid inadvertantly sleeping forever
    385 	 */
    386 	if (timo == 0)
    387 		timo = 1;
    388 	splx(s);
    389 
    390 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    391 	if (error == ERESTART)
    392 		error = EINTR;
    393 	if (error == EWOULDBLOCK)
    394 		error = 0;
    395 
    396 	if (SCARG(uap, rmtp)) {
    397 		int error1;
    398 
    399 		s = splclock();
    400 		utv = time;
    401 		splx(s);
    402 
    403 		timersub(&atv, &utv, &utv);
    404 		if (utv.tv_sec < 0)
    405 			timerclear(&utv);
    406 
    407 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    408 		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    409 			sizeof(rmt));
    410 		if (error1)
    411 			return (error1);
    412 	}
    413 
    414 	return error;
    415 #endif /* !__HAVE_TIMECOUNTER */
    416 }
    417 
    418 /* ARGSUSED */
    419 int
    420 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    421 {
    422 	struct sys_gettimeofday_args /* {
    423 		syscallarg(struct timeval *) tp;
    424 		syscallarg(void *) tzp;		really "struct timezone *"
    425 	} */ *uap = v;
    426 	struct timeval atv;
    427 	int error = 0;
    428 	struct timezone tzfake;
    429 
    430 	if (SCARG(uap, tp)) {
    431 		microtime(&atv);
    432 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    433 		if (error)
    434 			return (error);
    435 	}
    436 	if (SCARG(uap, tzp)) {
    437 		/*
    438 		 * NetBSD has no kernel notion of time zone, so we just
    439 		 * fake up a timezone struct and return it if demanded.
    440 		 */
    441 		tzfake.tz_minuteswest = 0;
    442 		tzfake.tz_dsttime = 0;
    443 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    444 	}
    445 	return (error);
    446 }
    447 
    448 /* ARGSUSED */
    449 int
    450 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    451 {
    452 	struct sys_settimeofday_args /* {
    453 		syscallarg(const struct timeval *) tv;
    454 		syscallarg(const void *) tzp;	really "const struct timezone *"
    455 	} */ *uap = v;
    456 	struct proc *p = l->l_proc;
    457 	int error;
    458 
    459 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    460 		return (error);
    461 
    462 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
    463 }
    464 
    465 int
    466 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
    467     struct proc *p)
    468 {
    469 	struct timeval atv;
    470 	struct timespec ts;
    471 	int error;
    472 
    473 	/* Verify all parameters before changing time. */
    474 	/*
    475 	 * NetBSD has no kernel notion of time zone, and only an
    476 	 * obsolete program would try to set it, so we log a warning.
    477 	 */
    478 	if (utzp)
    479 		log(LOG_WARNING, "pid %d attempted to set the "
    480 		    "(obsolete) kernel time zone\n", p->p_pid);
    481 
    482 	if (utv == NULL)
    483 		return 0;
    484 
    485 	if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    486 		return error;
    487 	TIMEVAL_TO_TIMESPEC(&atv, &ts);
    488 	return settime(p, &ts);
    489 }
    490 
    491 #ifndef __HAVE_TIMECOUNTER
    492 int	tickdelta;			/* current clock skew, us. per tick */
    493 long	timedelta;			/* unapplied time correction, us. */
    494 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    495 #endif
    496 
    497 int	time_adjusted;			/* set if an adjustment is made */
    498 
    499 /* ARGSUSED */
    500 int
    501 sys_adjtime(struct lwp *l, void *v, register_t *retval)
    502 {
    503 	struct sys_adjtime_args /* {
    504 		syscallarg(const struct timeval *) delta;
    505 		syscallarg(struct timeval *) olddelta;
    506 	} */ *uap = v;
    507 	struct proc *p = l->l_proc;
    508 	int error;
    509 
    510 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    511 		return (error);
    512 
    513 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
    514 }
    515 
    516 int
    517 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    518 {
    519 	struct timeval atv;
    520 	int error = 0;
    521 
    522 #ifdef __HAVE_TIMECOUNTER
    523 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    524 #else /* !__HAVE_TIMECOUNTER */
    525 	long ndelta, ntickdelta, odelta;
    526 	int s;
    527 #endif /* !__HAVE_TIMECOUNTER */
    528 
    529 #ifdef __HAVE_TIMECOUNTER
    530 	if (olddelta) {
    531 		atv.tv_sec = time_adjtime / 1000000;
    532 		atv.tv_usec = time_adjtime % 1000000;
    533 		if (atv.tv_usec < 0) {
    534 			atv.tv_usec += 1000000;
    535 			atv.tv_sec--;
    536 		}
    537 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    538 		if (error)
    539 			return (error);
    540 	}
    541 
    542 	if (delta) {
    543 		error = copyin(delta, &atv, sizeof(struct timeval));
    544 		if (error)
    545 			return (error);
    546 
    547 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    548 			atv.tv_usec;
    549 
    550 		if (time_adjtime)
    551 			/* We need to save the system time during shutdown */
    552 			time_adjusted |= 1;
    553 	}
    554 #else /* !__HAVE_TIMECOUNTER */
    555 	error = copyin(delta, &atv, sizeof(struct timeval));
    556 	if (error)
    557 		return (error);
    558 
    559 	/*
    560 	 * Compute the total correction and the rate at which to apply it.
    561 	 * Round the adjustment down to a whole multiple of the per-tick
    562 	 * delta, so that after some number of incremental changes in
    563 	 * hardclock(), tickdelta will become zero, lest the correction
    564 	 * overshoot and start taking us away from the desired final time.
    565 	 */
    566 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    567 	if (ndelta > bigadj || ndelta < -bigadj)
    568 		ntickdelta = 10 * tickadj;
    569 	else
    570 		ntickdelta = tickadj;
    571 	if (ndelta % ntickdelta)
    572 		ndelta = ndelta / ntickdelta * ntickdelta;
    573 
    574 	/*
    575 	 * To make hardclock()'s job easier, make the per-tick delta negative
    576 	 * if we want time to run slower; then hardclock can simply compute
    577 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    578 	 */
    579 	if (ndelta < 0)
    580 		ntickdelta = -ntickdelta;
    581 	if (ndelta != 0)
    582 		/* We need to save the system clock time during shutdown */
    583 		time_adjusted |= 1;
    584 	s = splclock();
    585 	odelta = timedelta;
    586 	timedelta = ndelta;
    587 	tickdelta = ntickdelta;
    588 	splx(s);
    589 
    590 	if (olddelta) {
    591 		atv.tv_sec = odelta / 1000000;
    592 		atv.tv_usec = odelta % 1000000;
    593 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    594 	}
    595 #endif /* __HAVE_TIMECOUNTER */
    596 
    597 	return error;
    598 }
    599 
    600 /*
    601  * Interval timer support. Both the BSD getitimer() family and the POSIX
    602  * timer_*() family of routines are supported.
    603  *
    604  * All timers are kept in an array pointed to by p_timers, which is
    605  * allocated on demand - many processes don't use timers at all. The
    606  * first three elements in this array are reserved for the BSD timers:
    607  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    608  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    609  * syscall.
    610  *
    611  * Realtime timers are kept in the ptimer structure as an absolute
    612  * time; virtual time timers are kept as a linked list of deltas.
    613  * Virtual time timers are processed in the hardclock() routine of
    614  * kern_clock.c.  The real time timer is processed by a callout
    615  * routine, called from the softclock() routine.  Since a callout may
    616  * be delayed in real time due to interrupt processing in the system,
    617  * it is possible for the real time timeout routine (realtimeexpire,
    618  * given below), to be delayed in real time past when it is supposed
    619  * to occur.  It does not suffice, therefore, to reload the real timer
    620  * .it_value from the real time timers .it_interval.  Rather, we
    621  * compute the next time in absolute time the timer should go off.  */
    622 
    623 /* Allocate a POSIX realtime timer. */
    624 int
    625 sys_timer_create(struct lwp *l, void *v, register_t *retval)
    626 {
    627 	struct sys_timer_create_args /* {
    628 		syscallarg(clockid_t) clock_id;
    629 		syscallarg(struct sigevent *) evp;
    630 		syscallarg(timer_t *) timerid;
    631 	} */ *uap = v;
    632 
    633 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    634 	    SCARG(uap, evp), copyin, l->l_proc);
    635 }
    636 
    637 int
    638 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    639     copyin_t fetch_event, struct proc *p)
    640 {
    641 	int error;
    642 	timer_t timerid;
    643 	struct ptimer *pt;
    644 
    645 	if (id < CLOCK_REALTIME ||
    646 	    id > CLOCK_PROF)
    647 		return (EINVAL);
    648 
    649 	if (p->p_timers == NULL)
    650 		timers_alloc(p);
    651 
    652 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    653 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    654 		if (p->p_timers->pts_timers[timerid] == NULL)
    655 			break;
    656 
    657 	if (timerid == TIMER_MAX)
    658 		return EAGAIN;
    659 
    660 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    661 	if (evp) {
    662 		if (((error =
    663 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    664 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    665 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    666 			pool_put(&ptimer_pool, pt);
    667 			return (error ? error : EINVAL);
    668 		}
    669 	} else {
    670 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    671 		switch (id) {
    672 		case CLOCK_REALTIME:
    673 			pt->pt_ev.sigev_signo = SIGALRM;
    674 			break;
    675 		case CLOCK_VIRTUAL:
    676 			pt->pt_ev.sigev_signo = SIGVTALRM;
    677 			break;
    678 		case CLOCK_PROF:
    679 			pt->pt_ev.sigev_signo = SIGPROF;
    680 			break;
    681 		}
    682 		pt->pt_ev.sigev_value.sival_int = timerid;
    683 	}
    684 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    685 	pt->pt_info.ksi_errno = 0;
    686 	pt->pt_info.ksi_code = 0;
    687 	pt->pt_info.ksi_pid = p->p_pid;
    688 	pt->pt_info.ksi_uid = p->p_cred->p_ruid;
    689 	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
    690 
    691 	pt->pt_type = id;
    692 	pt->pt_proc = p;
    693 	pt->pt_overruns = 0;
    694 	pt->pt_poverruns = 0;
    695 	pt->pt_entry = timerid;
    696 	timerclear(&pt->pt_time.it_value);
    697 	if (id == CLOCK_REALTIME)
    698 		callout_init(&pt->pt_ch);
    699 	else
    700 		pt->pt_active = 0;
    701 
    702 	p->p_timers->pts_timers[timerid] = pt;
    703 
    704 	return copyout(&timerid, tid, sizeof(timerid));
    705 }
    706 
    707 /* Delete a POSIX realtime timer */
    708 int
    709 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    710 {
    711 	struct sys_timer_delete_args /*  {
    712 		syscallarg(timer_t) timerid;
    713 	} */ *uap = v;
    714 	struct proc *p = l->l_proc;
    715 	timer_t timerid;
    716 	struct ptimer *pt, *ptn;
    717 	int s;
    718 
    719 	timerid = SCARG(uap, timerid);
    720 
    721 	if ((p->p_timers == NULL) ||
    722 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    723 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    724 		return (EINVAL);
    725 
    726 	if (pt->pt_type == CLOCK_REALTIME)
    727 		callout_stop(&pt->pt_ch);
    728 	else if (pt->pt_active) {
    729 		s = splclock();
    730 		ptn = LIST_NEXT(pt, pt_list);
    731 		LIST_REMOVE(pt, pt_list);
    732 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    733 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    734 			    &ptn->pt_time.it_value);
    735 		splx(s);
    736 	}
    737 
    738 	p->p_timers->pts_timers[timerid] = NULL;
    739 	pool_put(&ptimer_pool, pt);
    740 
    741 	return (0);
    742 }
    743 
    744 /*
    745  * Set up the given timer. The value in pt->pt_time.it_value is taken
    746  * to be an absolute time for CLOCK_REALTIME timers and a relative
    747  * time for virtual timers.
    748  * Must be called at splclock().
    749  */
    750 void
    751 timer_settime(struct ptimer *pt)
    752 {
    753 	struct ptimer *ptn, *pptn;
    754 	struct ptlist *ptl;
    755 
    756 	if (pt->pt_type == CLOCK_REALTIME) {
    757 		callout_stop(&pt->pt_ch);
    758 		if (timerisset(&pt->pt_time.it_value)) {
    759 			/*
    760 			 * Don't need to check hzto() return value, here.
    761 			 * callout_reset() does it for us.
    762 			 */
    763 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    764 			    realtimerexpire, pt);
    765 		}
    766 	} else {
    767 		if (pt->pt_active) {
    768 			ptn = LIST_NEXT(pt, pt_list);
    769 			LIST_REMOVE(pt, pt_list);
    770 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    771 				timeradd(&pt->pt_time.it_value,
    772 				    &ptn->pt_time.it_value,
    773 				    &ptn->pt_time.it_value);
    774 		}
    775 		if (timerisset(&pt->pt_time.it_value)) {
    776 			if (pt->pt_type == CLOCK_VIRTUAL)
    777 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    778 			else
    779 				ptl = &pt->pt_proc->p_timers->pts_prof;
    780 
    781 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    782 			     ptn && timercmp(&pt->pt_time.it_value,
    783 				 &ptn->pt_time.it_value, >);
    784 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    785 				timersub(&pt->pt_time.it_value,
    786 				    &ptn->pt_time.it_value,
    787 				    &pt->pt_time.it_value);
    788 
    789 			if (pptn)
    790 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    791 			else
    792 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    793 
    794 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    795 				timersub(&ptn->pt_time.it_value,
    796 				    &pt->pt_time.it_value,
    797 				    &ptn->pt_time.it_value);
    798 
    799 			pt->pt_active = 1;
    800 		} else
    801 			pt->pt_active = 0;
    802 	}
    803 }
    804 
    805 void
    806 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    807 {
    808 #ifdef __HAVE_TIMECOUNTER
    809 	struct timeval now;
    810 #endif
    811 	struct ptimer *ptn;
    812 
    813 	*aitv = pt->pt_time;
    814 	if (pt->pt_type == CLOCK_REALTIME) {
    815 		/*
    816 		 * Convert from absolute to relative time in .it_value
    817 		 * part of real time timer.  If time for real time
    818 		 * timer has passed return 0, else return difference
    819 		 * between current time and time for the timer to go
    820 		 * off.
    821 		 */
    822 		if (timerisset(&aitv->it_value)) {
    823 #ifdef __HAVE_TIMECOUNTER
    824 			getmicrotime(&now);
    825 			if (timercmp(&aitv->it_value, &now, <))
    826 				timerclear(&aitv->it_value);
    827 			else
    828 				timersub(&aitv->it_value, &now,
    829 				    &aitv->it_value);
    830 #else /* !__HAVE_TIMECOUNTER */
    831 			if (timercmp(&aitv->it_value, &time, <))
    832 				timerclear(&aitv->it_value);
    833 			else
    834 				timersub(&aitv->it_value, &time,
    835 				    &aitv->it_value);
    836 #endif /* !__HAVE_TIMECOUNTER */
    837 		}
    838 	} else if (pt->pt_active) {
    839 		if (pt->pt_type == CLOCK_VIRTUAL)
    840 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    841 		else
    842 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    843 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    844 			timeradd(&aitv->it_value,
    845 			    &ptn->pt_time.it_value, &aitv->it_value);
    846 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    847 	} else
    848 		timerclear(&aitv->it_value);
    849 }
    850 
    851 
    852 
    853 /* Set and arm a POSIX realtime timer */
    854 int
    855 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    856 {
    857 	struct sys_timer_settime_args /* {
    858 		syscallarg(timer_t) timerid;
    859 		syscallarg(int) flags;
    860 		syscallarg(const struct itimerspec *) value;
    861 		syscallarg(struct itimerspec *) ovalue;
    862 	} */ *uap = v;
    863 	int error;
    864 	struct itimerspec value, ovalue, *ovp = NULL;
    865 
    866 	if ((error = copyin(SCARG(uap, value), &value,
    867 	    sizeof(struct itimerspec))) != 0)
    868 		return (error);
    869 
    870 	if (SCARG(uap, ovalue))
    871 		ovp = &ovalue;
    872 
    873 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    874 	    SCARG(uap, flags), l->l_proc)) != 0)
    875 		return error;
    876 
    877 	if (ovp)
    878 		return copyout(&ovalue, SCARG(uap, ovalue),
    879 		    sizeof(struct itimerspec));
    880 	return 0;
    881 }
    882 
    883 int
    884 dotimer_settime(int timerid, struct itimerspec *value,
    885     struct itimerspec *ovalue, int flags, struct proc *p)
    886 {
    887 #ifdef __HAVE_TIMECOUNTER
    888 	struct timeval now;
    889 #endif
    890 	struct itimerval val, oval;
    891 	struct ptimer *pt;
    892 	int s;
    893 
    894 	if ((p->p_timers == NULL) ||
    895 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    896 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    897 		return (EINVAL);
    898 
    899 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    900 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    901 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    902 		return (EINVAL);
    903 
    904 	oval = pt->pt_time;
    905 	pt->pt_time = val;
    906 
    907 	s = splclock();
    908 	/*
    909 	 * If we've been passed a relative time for a realtime timer,
    910 	 * convert it to absolute; if an absolute time for a virtual
    911 	 * timer, convert it to relative and make sure we don't set it
    912 	 * to zero, which would cancel the timer, or let it go
    913 	 * negative, which would confuse the comparison tests.
    914 	 */
    915 	if (timerisset(&pt->pt_time.it_value)) {
    916 		if (pt->pt_type == CLOCK_REALTIME) {
    917 #ifdef __HAVE_TIMECOUNTER
    918 			if ((flags & TIMER_ABSTIME) == 0) {
    919 				getmicrotime(&now);
    920 				timeradd(&pt->pt_time.it_value, &now,
    921 				    &pt->pt_time.it_value);
    922 			}
    923 #else /* !__HAVE_TIMECOUNTER */
    924 			if ((flags & TIMER_ABSTIME) == 0)
    925 				timeradd(&pt->pt_time.it_value, &time,
    926 				    &pt->pt_time.it_value);
    927 #endif /* !__HAVE_TIMECOUNTER */
    928 		} else {
    929 			if ((flags & TIMER_ABSTIME) != 0) {
    930 #ifdef __HAVE_TIMECOUNTER
    931 				getmicrotime(&now);
    932 				timersub(&pt->pt_time.it_value, &now,
    933 				    &pt->pt_time.it_value);
    934 #else /* !__HAVE_TIMECOUNTER */
    935 				timersub(&pt->pt_time.it_value, &time,
    936 				    &pt->pt_time.it_value);
    937 #endif /* !__HAVE_TIMECOUNTER */
    938 				if (!timerisset(&pt->pt_time.it_value) ||
    939 				    pt->pt_time.it_value.tv_sec < 0) {
    940 					pt->pt_time.it_value.tv_sec = 0;
    941 					pt->pt_time.it_value.tv_usec = 1;
    942 				}
    943 			}
    944 		}
    945 	}
    946 
    947 	timer_settime(pt);
    948 	splx(s);
    949 
    950 	if (ovalue) {
    951 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    952 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    953 	}
    954 
    955 	return (0);
    956 }
    957 
    958 /* Return the time remaining until a POSIX timer fires. */
    959 int
    960 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    961 {
    962 	struct sys_timer_gettime_args /* {
    963 		syscallarg(timer_t) timerid;
    964 		syscallarg(struct itimerspec *) value;
    965 	} */ *uap = v;
    966 	struct itimerspec its;
    967 	int error;
    968 
    969 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    970 	    &its)) != 0)
    971 		return error;
    972 
    973 	return copyout(&its, SCARG(uap, value), sizeof(its));
    974 }
    975 
    976 int
    977 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    978 {
    979 	int s;
    980 	struct ptimer *pt;
    981 	struct itimerval aitv;
    982 
    983 	if ((p->p_timers == NULL) ||
    984 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    985 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    986 		return (EINVAL);
    987 
    988 	s = splclock();
    989 	timer_gettime(pt, &aitv);
    990 	splx(s);
    991 
    992 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    993 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    994 
    995 	return 0;
    996 }
    997 
    998 /*
    999  * Return the count of the number of times a periodic timer expired
   1000  * while a notification was already pending. The counter is reset when
   1001  * a timer expires and a notification can be posted.
   1002  */
   1003 int
   1004 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
   1005 {
   1006 	struct sys_timer_getoverrun_args /* {
   1007 		syscallarg(timer_t) timerid;
   1008 	} */ *uap = v;
   1009 	struct proc *p = l->l_proc;
   1010 	int timerid;
   1011 	struct ptimer *pt;
   1012 
   1013 	timerid = SCARG(uap, timerid);
   1014 
   1015 	if ((p->p_timers == NULL) ||
   1016 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
   1017 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1018 		return (EINVAL);
   1019 
   1020 	*retval = pt->pt_poverruns;
   1021 
   1022 	return (0);
   1023 }
   1024 
   1025 /* Glue function that triggers an upcall; called from userret(). */
   1026 static void
   1027 timerupcall(struct lwp *l, void *arg)
   1028 {
   1029 	struct ptimers *pt = (struct ptimers *)arg;
   1030 	unsigned int i, fired, done;
   1031 
   1032 	KDASSERT(l->l_proc->p_sa);
   1033 	/* Bail out if we do not own the virtual processor */
   1034 	if (l->l_savp->savp_lwp != l)
   1035 		return ;
   1036 
   1037 	KERNEL_PROC_LOCK(l);
   1038 
   1039 	fired = pt->pts_fired;
   1040 	done = 0;
   1041 	while ((i = ffs(fired)) != 0) {
   1042 		siginfo_t *si;
   1043 		int mask = 1 << --i;
   1044 		int f;
   1045 
   1046 		f = l->l_flag & L_SA;
   1047 		l->l_flag &= ~L_SA;
   1048 		si = siginfo_alloc(PR_WAITOK);
   1049 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
   1050 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
   1051 		    sizeof(*si), si, siginfo_free) != 0) {
   1052 			siginfo_free(si);
   1053 			/* XXX What do we do here?? */
   1054 		} else
   1055 			done |= mask;
   1056 		fired &= ~mask;
   1057 		l->l_flag |= f;
   1058 	}
   1059 	pt->pts_fired &= ~done;
   1060 	if (pt->pts_fired == 0)
   1061 		l->l_proc->p_userret = NULL;
   1062 
   1063 	KERNEL_PROC_UNLOCK(l);
   1064 }
   1065 
   1066 /*
   1067  * Real interval timer expired:
   1068  * send process whose timer expired an alarm signal.
   1069  * If time is not set up to reload, then just return.
   1070  * Else compute next time timer should go off which is > current time.
   1071  * This is where delay in processing this timeout causes multiple
   1072  * SIGALRM calls to be compressed into one.
   1073  */
   1074 void
   1075 realtimerexpire(void *arg)
   1076 {
   1077 #ifdef __HAVE_TIMECOUNTER
   1078 	struct timeval now;
   1079 #endif
   1080 	struct ptimer *pt;
   1081 	int s;
   1082 
   1083 	pt = (struct ptimer *)arg;
   1084 
   1085 	itimerfire(pt);
   1086 
   1087 	if (!timerisset(&pt->pt_time.it_interval)) {
   1088 		timerclear(&pt->pt_time.it_value);
   1089 		return;
   1090 	}
   1091 #ifdef __HAVE_TIMECOUNTER
   1092 	for (;;) {
   1093 		s = splclock();	/* XXX need spl now? */
   1094 		timeradd(&pt->pt_time.it_value,
   1095 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1096 		getmicrotime(&now);
   1097 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
   1098 			/*
   1099 			 * Don't need to check hzto() return value, here.
   1100 			 * callout_reset() does it for us.
   1101 			 */
   1102 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1103 			    realtimerexpire, pt);
   1104 			splx(s);
   1105 			return;
   1106 		}
   1107 		splx(s);
   1108 		pt->pt_overruns++;
   1109 	}
   1110 #else /* !__HAVE_TIMECOUNTER */
   1111 	for (;;) {
   1112 		s = splclock();
   1113 		timeradd(&pt->pt_time.it_value,
   1114 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1115 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
   1116 			/*
   1117 			 * Don't need to check hzto() return value, here.
   1118 			 * callout_reset() does it for us.
   1119 			 */
   1120 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1121 			    realtimerexpire, pt);
   1122 			splx(s);
   1123 			return;
   1124 		}
   1125 		splx(s);
   1126 		pt->pt_overruns++;
   1127 	}
   1128 #endif /* !__HAVE_TIMECOUNTER */
   1129 }
   1130 
   1131 /* BSD routine to get the value of an interval timer. */
   1132 /* ARGSUSED */
   1133 int
   1134 sys_getitimer(struct lwp *l, void *v, register_t *retval)
   1135 {
   1136 	struct sys_getitimer_args /* {
   1137 		syscallarg(int) which;
   1138 		syscallarg(struct itimerval *) itv;
   1139 	} */ *uap = v;
   1140 	struct proc *p = l->l_proc;
   1141 	struct itimerval aitv;
   1142 	int error;
   1143 
   1144 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1145 	if (error)
   1146 		return error;
   1147 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1148 }
   1149 
   1150 int
   1151 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1152 {
   1153 	int s;
   1154 
   1155 	if ((u_int)which > ITIMER_PROF)
   1156 		return (EINVAL);
   1157 
   1158 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
   1159 		timerclear(&itvp->it_value);
   1160 		timerclear(&itvp->it_interval);
   1161 	} else {
   1162 		s = splclock();
   1163 		timer_gettime(p->p_timers->pts_timers[which], itvp);
   1164 		splx(s);
   1165 	}
   1166 
   1167 	return 0;
   1168 }
   1169 
   1170 /* BSD routine to set/arm an interval timer. */
   1171 /* ARGSUSED */
   1172 int
   1173 sys_setitimer(struct lwp *l, void *v, register_t *retval)
   1174 {
   1175 	struct sys_setitimer_args /* {
   1176 		syscallarg(int) which;
   1177 		syscallarg(const struct itimerval *) itv;
   1178 		syscallarg(struct itimerval *) oitv;
   1179 	} */ *uap = v;
   1180 	struct proc *p = l->l_proc;
   1181 	int which = SCARG(uap, which);
   1182 	struct sys_getitimer_args getargs;
   1183 	const struct itimerval *itvp;
   1184 	struct itimerval aitv;
   1185 	int error;
   1186 
   1187 	if ((u_int)which > ITIMER_PROF)
   1188 		return (EINVAL);
   1189 	itvp = SCARG(uap, itv);
   1190 	if (itvp &&
   1191 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1192 		return (error);
   1193 	if (SCARG(uap, oitv) != NULL) {
   1194 		SCARG(&getargs, which) = which;
   1195 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1196 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1197 			return (error);
   1198 	}
   1199 	if (itvp == 0)
   1200 		return (0);
   1201 
   1202 	return dosetitimer(p, which, &aitv);
   1203 }
   1204 
   1205 int
   1206 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1207 {
   1208 #ifdef __HAVE_TIMECOUNTER
   1209 	struct timeval now;
   1210 #endif
   1211 	struct ptimer *pt;
   1212 	int s;
   1213 
   1214 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1215 		return (EINVAL);
   1216 
   1217 	/*
   1218 	 * Don't bother allocating data structures if the process just
   1219 	 * wants to clear the timer.
   1220 	 */
   1221 	if (!timerisset(&itvp->it_value) &&
   1222 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1223 		return (0);
   1224 
   1225 	if (p->p_timers == NULL)
   1226 		timers_alloc(p);
   1227 	if (p->p_timers->pts_timers[which] == NULL) {
   1228 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1229 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1230 		pt->pt_ev.sigev_value.sival_int = which;
   1231 		pt->pt_overruns = 0;
   1232 		pt->pt_proc = p;
   1233 		pt->pt_type = which;
   1234 		pt->pt_entry = which;
   1235 		switch (which) {
   1236 		case ITIMER_REAL:
   1237 			callout_init(&pt->pt_ch);
   1238 			pt->pt_ev.sigev_signo = SIGALRM;
   1239 			break;
   1240 		case ITIMER_VIRTUAL:
   1241 			pt->pt_active = 0;
   1242 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1243 			break;
   1244 		case ITIMER_PROF:
   1245 			pt->pt_active = 0;
   1246 			pt->pt_ev.sigev_signo = SIGPROF;
   1247 			break;
   1248 		}
   1249 	} else
   1250 		pt = p->p_timers->pts_timers[which];
   1251 
   1252 	pt->pt_time = *itvp;
   1253 	p->p_timers->pts_timers[which] = pt;
   1254 
   1255 	s = splclock();
   1256 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1257 		/* Convert to absolute time */
   1258 #ifdef __HAVE_TIMECOUNTER
   1259 		/* XXX need to wrap in splclock for timecounters case? */
   1260 		getmicrotime(&now);
   1261 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1262 #else /* !__HAVE_TIMECOUNTER */
   1263 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1264 #endif /* !__HAVE_TIMECOUNTER */
   1265 	}
   1266 	timer_settime(pt);
   1267 	splx(s);
   1268 
   1269 	return (0);
   1270 }
   1271 
   1272 /* Utility routines to manage the array of pointers to timers. */
   1273 void
   1274 timers_alloc(struct proc *p)
   1275 {
   1276 	int i;
   1277 	struct ptimers *pts;
   1278 
   1279 	pts = pool_get(&ptimers_pool, 0);
   1280 	LIST_INIT(&pts->pts_virtual);
   1281 	LIST_INIT(&pts->pts_prof);
   1282 	for (i = 0; i < TIMER_MAX; i++)
   1283 		pts->pts_timers[i] = NULL;
   1284 	pts->pts_fired = 0;
   1285 	p->p_timers = pts;
   1286 }
   1287 
   1288 /*
   1289  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1290  * then clean up all timers and free all the data structures. If
   1291  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1292  * by timer_create(), not the BSD setitimer() timers, and only free the
   1293  * structure if none of those remain.
   1294  */
   1295 void
   1296 timers_free(struct proc *p, int which)
   1297 {
   1298 	int i, s;
   1299 	struct ptimers *pts;
   1300 	struct ptimer *pt, *ptn;
   1301 	struct timeval tv;
   1302 
   1303 	if (p->p_timers) {
   1304 		pts = p->p_timers;
   1305 		if (which == TIMERS_ALL)
   1306 			i = 0;
   1307 		else {
   1308 			s = splclock();
   1309 			timerclear(&tv);
   1310 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1311 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1312 			     ptn = LIST_NEXT(ptn, pt_list))
   1313 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1314 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1315 			if (ptn) {
   1316 				timeradd(&tv, &ptn->pt_time.it_value,
   1317 				    &ptn->pt_time.it_value);
   1318 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1319 				    ptn, pt_list);
   1320 			}
   1321 
   1322 			timerclear(&tv);
   1323 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1324 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1325 			     ptn = LIST_NEXT(ptn, pt_list))
   1326 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1327 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1328 			if (ptn) {
   1329 				timeradd(&tv, &ptn->pt_time.it_value,
   1330 				    &ptn->pt_time.it_value);
   1331 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1332 				    pt_list);
   1333 			}
   1334 			splx(s);
   1335 			i = 3;
   1336 		}
   1337 		for ( ; i < TIMER_MAX; i++)
   1338 			if ((pt = pts->pts_timers[i]) != NULL) {
   1339 				if (pt->pt_type == CLOCK_REALTIME)
   1340 					callout_stop(&pt->pt_ch);
   1341 				pts->pts_timers[i] = NULL;
   1342 				pool_put(&ptimer_pool, pt);
   1343 			}
   1344 		if ((pts->pts_timers[0] == NULL) &&
   1345 		    (pts->pts_timers[1] == NULL) &&
   1346 		    (pts->pts_timers[2] == NULL)) {
   1347 			p->p_timers = NULL;
   1348 			pool_put(&ptimers_pool, pts);
   1349 		}
   1350 	}
   1351 }
   1352 
   1353 /*
   1354  * Check that a proposed value to load into the .it_value or
   1355  * .it_interval part of an interval timer is acceptable, and
   1356  * fix it to have at least minimal value (i.e. if it is less
   1357  * than the resolution of the clock, round it up.)
   1358  */
   1359 int
   1360 itimerfix(struct timeval *tv)
   1361 {
   1362 
   1363 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1364 		return (EINVAL);
   1365 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1366 		tv->tv_usec = tick;
   1367 	return (0);
   1368 }
   1369 
   1370 #ifdef __HAVE_TIMECOUNTER
   1371 int
   1372 itimespecfix(struct timespec *ts)
   1373 {
   1374 
   1375 	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
   1376 		return (EINVAL);
   1377 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
   1378 		ts->tv_nsec = tick * 1000;
   1379 	return (0);
   1380 }
   1381 #endif /* __HAVE_TIMECOUNTER */
   1382 
   1383 /*
   1384  * Decrement an interval timer by a specified number
   1385  * of microseconds, which must be less than a second,
   1386  * i.e. < 1000000.  If the timer expires, then reload
   1387  * it.  In this case, carry over (usec - old value) to
   1388  * reduce the value reloaded into the timer so that
   1389  * the timer does not drift.  This routine assumes
   1390  * that it is called in a context where the timers
   1391  * on which it is operating cannot change in value.
   1392  */
   1393 int
   1394 itimerdecr(struct ptimer *pt, int usec)
   1395 {
   1396 	struct itimerval *itp;
   1397 
   1398 	itp = &pt->pt_time;
   1399 	if (itp->it_value.tv_usec < usec) {
   1400 		if (itp->it_value.tv_sec == 0) {
   1401 			/* expired, and already in next interval */
   1402 			usec -= itp->it_value.tv_usec;
   1403 			goto expire;
   1404 		}
   1405 		itp->it_value.tv_usec += 1000000;
   1406 		itp->it_value.tv_sec--;
   1407 	}
   1408 	itp->it_value.tv_usec -= usec;
   1409 	usec = 0;
   1410 	if (timerisset(&itp->it_value))
   1411 		return (1);
   1412 	/* expired, exactly at end of interval */
   1413 expire:
   1414 	if (timerisset(&itp->it_interval)) {
   1415 		itp->it_value = itp->it_interval;
   1416 		itp->it_value.tv_usec -= usec;
   1417 		if (itp->it_value.tv_usec < 0) {
   1418 			itp->it_value.tv_usec += 1000000;
   1419 			itp->it_value.tv_sec--;
   1420 		}
   1421 		timer_settime(pt);
   1422 	} else
   1423 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1424 	return (0);
   1425 }
   1426 
   1427 void
   1428 itimerfire(struct ptimer *pt)
   1429 {
   1430 	struct proc *p = pt->pt_proc;
   1431 	struct sadata_vp *vp;
   1432 	int s;
   1433 	unsigned int i;
   1434 
   1435 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1436 		/*
   1437 		 * No RT signal infrastructure exists at this time;
   1438 		 * just post the signal number and throw away the
   1439 		 * value.
   1440 		 */
   1441 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
   1442 			pt->pt_overruns++;
   1443 		else {
   1444 			ksiginfo_t ksi;
   1445 			(void)memset(&ksi, 0, sizeof(ksi));
   1446 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1447 			ksi.ksi_code = SI_TIMER;
   1448 			ksi.ksi_sigval = pt->pt_ev.sigev_value;
   1449 			pt->pt_poverruns = pt->pt_overruns;
   1450 			pt->pt_overruns = 0;
   1451 			kpsignal(p, &ksi, NULL);
   1452 		}
   1453 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
   1454 		/* Cause the process to generate an upcall when it returns. */
   1455 
   1456 		if (p->p_userret == NULL) {
   1457 			/*
   1458 			 * XXX stop signals can be processed inside tsleep,
   1459 			 * which can be inside sa_yield's inner loop, which
   1460 			 * makes testing for sa_idle alone insuffucent to
   1461 			 * determine if we really should call setrunnable.
   1462 			 */
   1463 			pt->pt_poverruns = pt->pt_overruns;
   1464 			pt->pt_overruns = 0;
   1465 			i = 1 << pt->pt_entry;
   1466 			p->p_timers->pts_fired = i;
   1467 			p->p_userret = timerupcall;
   1468 			p->p_userret_arg = p->p_timers;
   1469 
   1470 			SCHED_LOCK(s);
   1471 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1472 				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
   1473 					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
   1474 					sched_wakeup(vp->savp_lwp);
   1475 					break;
   1476 				}
   1477 			}
   1478 			SCHED_UNLOCK(s);
   1479 		} else if (p->p_userret == timerupcall) {
   1480 			i = 1 << pt->pt_entry;
   1481 			if ((p->p_timers->pts_fired & i) == 0) {
   1482 				pt->pt_poverruns = pt->pt_overruns;
   1483 				pt->pt_overruns = 0;
   1484 				p->p_timers->pts_fired |= i;
   1485 			} else
   1486 				pt->pt_overruns++;
   1487 		} else {
   1488 			pt->pt_overruns++;
   1489 			if ((p->p_flag & P_WEXIT) == 0)
   1490 				printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
   1491 				    p->p_pid, pt->pt_overruns,
   1492 				    pt->pt_ev.sigev_value.sival_int,
   1493 				    p->p_userret);
   1494 		}
   1495 	}
   1496 
   1497 }
   1498 
   1499 /*
   1500  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1501  * for usage and rationale.
   1502  */
   1503 int
   1504 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1505 {
   1506 	struct timeval tv, delta;
   1507 	int rv = 0;
   1508 #ifndef __HAVE_TIMECOUNTER
   1509 	int s;
   1510 #endif
   1511 
   1512 #ifdef __HAVE_TIMECOUNTER
   1513 	getmicrouptime(&tv);
   1514 #else /* !__HAVE_TIMECOUNTER */
   1515 	s = splclock();
   1516 	tv = mono_time;
   1517 	splx(s);
   1518 #endif /* !__HAVE_TIMECOUNTER */
   1519 	timersub(&tv, lasttime, &delta);
   1520 
   1521 	/*
   1522 	 * check for 0,0 is so that the message will be seen at least once,
   1523 	 * even if interval is huge.
   1524 	 */
   1525 	if (timercmp(&delta, mininterval, >=) ||
   1526 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1527 		*lasttime = tv;
   1528 		rv = 1;
   1529 	}
   1530 
   1531 	return (rv);
   1532 }
   1533 
   1534 /*
   1535  * ppsratecheck(): packets (or events) per second limitation.
   1536  */
   1537 int
   1538 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1539 {
   1540 	struct timeval tv, delta;
   1541 	int rv;
   1542 #ifndef __HAVE_TIMECOUNTER
   1543 	int s;
   1544 #endif
   1545 
   1546 #ifdef __HAVE_TIMECOUNTER
   1547 	getmicrouptime(&tv);
   1548 #else /* !__HAVE_TIMECOUNTER */
   1549 	s = splclock();
   1550 	tv = mono_time;
   1551 	splx(s);
   1552 #endif /* !__HAVE_TIMECOUNTER */
   1553 	timersub(&tv, lasttime, &delta);
   1554 
   1555 	/*
   1556 	 * check for 0,0 is so that the message will be seen at least once.
   1557 	 * if more than one second have passed since the last update of
   1558 	 * lasttime, reset the counter.
   1559 	 *
   1560 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1561 	 * try to use *curpps for stat purposes as well.
   1562 	 */
   1563 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1564 	    delta.tv_sec >= 1) {
   1565 		*lasttime = tv;
   1566 		*curpps = 0;
   1567 	}
   1568 	if (maxpps < 0)
   1569 		rv = 1;
   1570 	else if (*curpps < maxpps)
   1571 		rv = 1;
   1572 	else
   1573 		rv = 0;
   1574 
   1575 #if 1 /*DIAGNOSTIC?*/
   1576 	/* be careful about wrap-around */
   1577 	if (*curpps + 1 > *curpps)
   1578 		*curpps = *curpps + 1;
   1579 #else
   1580 	/*
   1581 	 * assume that there's not too many calls to this function.
   1582 	 * not sure if the assumption holds, as it depends on *caller's*
   1583 	 * behavior, not the behavior of this function.
   1584 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1585 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1586 	 */
   1587 	*curpps = *curpps + 1;
   1588 #endif
   1589 
   1590 	return (rv);
   1591 }
   1592