Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.99
      1 /*	$NetBSD: kern_time.c,v 1.99 2006/05/14 21:15:11 elad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.99 2006/05/14 21:15:11 elad Exp $");
     72 
     73 #include "fs_nfs.h"
     74 #include "opt_nfs.h"
     75 #include "opt_nfsserver.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/kernel.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/sa.h>
     83 #include <sys/savar.h>
     84 #include <sys/vnode.h>
     85 #include <sys/signalvar.h>
     86 #include <sys/syslog.h>
     87 #include <sys/timevar.h>
     88 #include <sys/kauth.h>
     89 
     90 #include <sys/mount.h>
     91 #include <sys/syscallargs.h>
     92 
     93 #include <uvm/uvm_extern.h>
     94 
     95 #if defined(NFS) || defined(NFSSERVER)
     96 #include <nfs/rpcv2.h>
     97 #include <nfs/nfsproto.h>
     98 #include <nfs/nfs.h>
     99 #include <nfs/nfs_var.h>
    100 #endif
    101 
    102 #include <machine/cpu.h>
    103 
    104 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    105     &pool_allocator_nointr);
    106 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    107     &pool_allocator_nointr);
    108 
    109 static void timerupcall(struct lwp *, void *);
    110 
    111 /* Time of day and interval timer support.
    112  *
    113  * These routines provide the kernel entry points to get and set
    114  * the time-of-day and per-process interval timers.  Subroutines
    115  * here provide support for adding and subtracting timeval structures
    116  * and decrementing interval timers, optionally reloading the interval
    117  * timers when they expire.
    118  */
    119 
    120 /* This function is used by clock_settime and settimeofday */
    121 int
    122 settime(struct proc *p, struct timespec *ts)
    123 {
    124 	struct timeval delta, tv;
    125 	struct cpu_info *ci;
    126 	int s;
    127 
    128 	/*
    129 	 * Don't allow the time to be set forward so far it will wrap
    130 	 * and become negative, thus allowing an attacker to bypass
    131 	 * the next check below.  The cutoff is 1 year before rollover
    132 	 * occurs, so even if the attacker uses adjtime(2) to move
    133 	 * the time past the cutoff, it will take a very long time
    134 	 * to get to the wrap point.
    135 	 *
    136 	 * XXX: we check against INT_MAX since on 64-bit
    137 	 *	platforms, sizeof(int) != sizeof(long) and
    138 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
    139 	 */
    140 	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
    141 		struct proc *pp = p->p_pptr;
    142 		log(LOG_WARNING, "pid %d (%s) "
    143 		    "invoked by uid %d ppid %d (%s) "
    144 		    "tried to set clock forward to %ld\n",
    145 		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
    146 		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
    147 		return (EPERM);
    148 	}
    149 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    150 
    151 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    152 	s = splclock();
    153 	timersub(&tv, &time, &delta);
    154 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    155 		splx(s);
    156 		return (EPERM);
    157 	}
    158 #ifdef notyet
    159 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    160 		splx(s);
    161 		return (EPERM);
    162 	}
    163 #endif
    164 	time = tv;
    165 	(void) spllowersoftclock();
    166 	timeradd(&boottime, &delta, &boottime);
    167 	/*
    168 	 * XXXSMP
    169 	 * This is wrong.  We should traverse a list of all
    170 	 * CPUs and add the delta to the runtime of those
    171 	 * CPUs which have a process on them.
    172 	 */
    173 	ci = curcpu();
    174 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    175 	    &ci->ci_schedstate.spc_runtime);
    176 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    177 		nqnfs_lease_updatetime(delta.tv_sec);
    178 #	endif
    179 	splx(s);
    180 	resettodr();
    181 	return (0);
    182 }
    183 
    184 /* ARGSUSED */
    185 int
    186 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    187 {
    188 	struct sys_clock_gettime_args /* {
    189 		syscallarg(clockid_t) clock_id;
    190 		syscallarg(struct timespec *) tp;
    191 	} */ *uap = v;
    192 	clockid_t clock_id;
    193 	struct timeval atv;
    194 	struct timespec ats;
    195 	int s;
    196 
    197 	clock_id = SCARG(uap, clock_id);
    198 	switch (clock_id) {
    199 	case CLOCK_REALTIME:
    200 		nanotime(&ats);
    201 		break;
    202 	case CLOCK_MONOTONIC:
    203 		/* XXX "hz" granularity */
    204 		s = splclock();
    205 		atv = mono_time;
    206 		splx(s);
    207 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    208 		break;
    209 	default:
    210 		return (EINVAL);
    211 	}
    212 
    213 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    214 }
    215 
    216 /* ARGSUSED */
    217 int
    218 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
    219 {
    220 	struct sys_clock_settime_args /* {
    221 		syscallarg(clockid_t) clock_id;
    222 		syscallarg(const struct timespec *) tp;
    223 	} */ *uap = v;
    224 	struct proc *p = l->l_proc;
    225 	int error;
    226 
    227 	if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
    228 				       &p->p_acflag)) != 0)
    229 		return (error);
    230 
    231 	return (clock_settime1(p, SCARG(uap, clock_id), SCARG(uap, tp)));
    232 }
    233 
    234 
    235 int
    236 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
    237 {
    238 	struct timespec ats;
    239 	int error;
    240 
    241 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    242 		return (error);
    243 
    244 	switch (clock_id) {
    245 	case CLOCK_REALTIME:
    246 		if ((error = settime(p, &ats)) != 0)
    247 			return (error);
    248 		break;
    249 	case CLOCK_MONOTONIC:
    250 		return (EINVAL);	/* read-only clock */
    251 	default:
    252 		return (EINVAL);
    253 	}
    254 
    255 	return 0;
    256 }
    257 
    258 int
    259 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    260 {
    261 	struct sys_clock_getres_args /* {
    262 		syscallarg(clockid_t) clock_id;
    263 		syscallarg(struct timespec *) tp;
    264 	} */ *uap = v;
    265 	clockid_t clock_id;
    266 	struct timespec ts;
    267 	int error = 0;
    268 
    269 	clock_id = SCARG(uap, clock_id);
    270 	switch (clock_id) {
    271 	case CLOCK_REALTIME:
    272 	case CLOCK_MONOTONIC:
    273 		ts.tv_sec = 0;
    274 		ts.tv_nsec = 1000000000 / hz;
    275 		break;
    276 	default:
    277 		return (EINVAL);
    278 	}
    279 
    280 	if (SCARG(uap, tp))
    281 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    282 
    283 	return error;
    284 }
    285 
    286 /* ARGSUSED */
    287 int
    288 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    289 {
    290 	static int nanowait;
    291 	struct sys_nanosleep_args/* {
    292 		syscallarg(struct timespec *) rqtp;
    293 		syscallarg(struct timespec *) rmtp;
    294 	} */ *uap = v;
    295 	struct timespec rqt;
    296 	struct timespec rmt;
    297 	struct timeval atv, utv;
    298 	int error, s, timo;
    299 
    300 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    301 	if (error)
    302 		return (error);
    303 
    304 	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
    305 	if (itimerfix(&atv))
    306 		return (EINVAL);
    307 
    308 	s = splclock();
    309 	timeradd(&atv,&time,&atv);
    310 	timo = hzto(&atv);
    311 	/*
    312 	 * Avoid inadvertantly sleeping forever
    313 	 */
    314 	if (timo == 0)
    315 		timo = 1;
    316 	splx(s);
    317 
    318 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    319 	if (error == ERESTART)
    320 		error = EINTR;
    321 	if (error == EWOULDBLOCK)
    322 		error = 0;
    323 
    324 	if (SCARG(uap, rmtp)) {
    325 		int error1;
    326 
    327 		s = splclock();
    328 		utv = time;
    329 		splx(s);
    330 
    331 		timersub(&atv, &utv, &utv);
    332 		if (utv.tv_sec < 0)
    333 			timerclear(&utv);
    334 
    335 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    336 		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    337 			sizeof(rmt));
    338 		if (error1)
    339 			return (error1);
    340 	}
    341 
    342 	return error;
    343 }
    344 
    345 /* ARGSUSED */
    346 int
    347 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    348 {
    349 	struct sys_gettimeofday_args /* {
    350 		syscallarg(struct timeval *) tp;
    351 		syscallarg(void *) tzp;		really "struct timezone *"
    352 	} */ *uap = v;
    353 	struct timeval atv;
    354 	int error = 0;
    355 	struct timezone tzfake;
    356 
    357 	if (SCARG(uap, tp)) {
    358 		microtime(&atv);
    359 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    360 		if (error)
    361 			return (error);
    362 	}
    363 	if (SCARG(uap, tzp)) {
    364 		/*
    365 		 * NetBSD has no kernel notion of time zone, so we just
    366 		 * fake up a timezone struct and return it if demanded.
    367 		 */
    368 		tzfake.tz_minuteswest = 0;
    369 		tzfake.tz_dsttime = 0;
    370 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    371 	}
    372 	return (error);
    373 }
    374 
    375 /* ARGSUSED */
    376 int
    377 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    378 {
    379 	struct sys_settimeofday_args /* {
    380 		syscallarg(const struct timeval *) tv;
    381 		syscallarg(const void *) tzp;	really "const struct timezone *"
    382 	} */ *uap = v;
    383 	struct proc *p = l->l_proc;
    384 	int error;
    385 
    386 	if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
    387 				       &p->p_acflag)) != 0)
    388 		return (error);
    389 
    390 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
    391 }
    392 
    393 int
    394 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
    395     struct proc *p)
    396 {
    397 	struct timeval atv;
    398 	struct timespec ts;
    399 	int error;
    400 
    401 	/* Verify all parameters before changing time. */
    402 	/*
    403 	 * NetBSD has no kernel notion of time zone, and only an
    404 	 * obsolete program would try to set it, so we log a warning.
    405 	 */
    406 	if (utzp)
    407 		log(LOG_WARNING, "pid %d attempted to set the "
    408 		    "(obsolete) kernel time zone\n", p->p_pid);
    409 
    410 	if (utv == NULL)
    411 		return 0;
    412 
    413 	if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    414 		return error;
    415 	TIMEVAL_TO_TIMESPEC(&atv, &ts);
    416 	return settime(p, &ts);
    417 }
    418 
    419 int	tickdelta;			/* current clock skew, us. per tick */
    420 long	timedelta;			/* unapplied time correction, us. */
    421 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    422 int	time_adjusted;			/* set if an adjustment is made */
    423 
    424 /* ARGSUSED */
    425 int
    426 sys_adjtime(struct lwp *l, void *v, register_t *retval)
    427 {
    428 	struct sys_adjtime_args /* {
    429 		syscallarg(const struct timeval *) delta;
    430 		syscallarg(struct timeval *) olddelta;
    431 	} */ *uap = v;
    432 	struct proc *p = l->l_proc;
    433 	int error;
    434 
    435 	if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
    436 				       &p->p_acflag)) != 0)
    437 		return (error);
    438 
    439 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
    440 }
    441 
    442 int
    443 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    444 {
    445 	struct timeval atv;
    446 	long ndelta, ntickdelta, odelta;
    447 	int error;
    448 	int s;
    449 
    450 	error = copyin(delta, &atv, sizeof(struct timeval));
    451 	if (error)
    452 		return (error);
    453 
    454 	/*
    455 	 * Compute the total correction and the rate at which to apply it.
    456 	 * Round the adjustment down to a whole multiple of the per-tick
    457 	 * delta, so that after some number of incremental changes in
    458 	 * hardclock(), tickdelta will become zero, lest the correction
    459 	 * overshoot and start taking us away from the desired final time.
    460 	 */
    461 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    462 	if (ndelta > bigadj || ndelta < -bigadj)
    463 		ntickdelta = 10 * tickadj;
    464 	else
    465 		ntickdelta = tickadj;
    466 	if (ndelta % ntickdelta)
    467 		ndelta = ndelta / ntickdelta * ntickdelta;
    468 
    469 	/*
    470 	 * To make hardclock()'s job easier, make the per-tick delta negative
    471 	 * if we want time to run slower; then hardclock can simply compute
    472 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    473 	 */
    474 	if (ndelta < 0)
    475 		ntickdelta = -ntickdelta;
    476 	if (ndelta != 0)
    477 		/* We need to save the system clock time during shutdown */
    478 		time_adjusted |= 1;
    479 	s = splclock();
    480 	odelta = timedelta;
    481 	timedelta = ndelta;
    482 	tickdelta = ntickdelta;
    483 	splx(s);
    484 
    485 	if (olddelta) {
    486 		atv.tv_sec = odelta / 1000000;
    487 		atv.tv_usec = odelta % 1000000;
    488 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    489 	}
    490 	return error;
    491 }
    492 
    493 /*
    494  * Interval timer support. Both the BSD getitimer() family and the POSIX
    495  * timer_*() family of routines are supported.
    496  *
    497  * All timers are kept in an array pointed to by p_timers, which is
    498  * allocated on demand - many processes don't use timers at all. The
    499  * first three elements in this array are reserved for the BSD timers:
    500  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    501  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    502  * syscall.
    503  *
    504  * Realtime timers are kept in the ptimer structure as an absolute
    505  * time; virtual time timers are kept as a linked list of deltas.
    506  * Virtual time timers are processed in the hardclock() routine of
    507  * kern_clock.c.  The real time timer is processed by a callout
    508  * routine, called from the softclock() routine.  Since a callout may
    509  * be delayed in real time due to interrupt processing in the system,
    510  * it is possible for the real time timeout routine (realtimeexpire,
    511  * given below), to be delayed in real time past when it is supposed
    512  * to occur.  It does not suffice, therefore, to reload the real timer
    513  * .it_value from the real time timers .it_interval.  Rather, we
    514  * compute the next time in absolute time the timer should go off.  */
    515 
    516 /* Allocate a POSIX realtime timer. */
    517 int
    518 sys_timer_create(struct lwp *l, void *v, register_t *retval)
    519 {
    520 	struct sys_timer_create_args /* {
    521 		syscallarg(clockid_t) clock_id;
    522 		syscallarg(struct sigevent *) evp;
    523 		syscallarg(timer_t *) timerid;
    524 	} */ *uap = v;
    525 
    526 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    527 	    SCARG(uap, evp), copyin, l->l_proc);
    528 }
    529 
    530 int
    531 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    532     copyin_t fetch_event, struct proc *p)
    533 {
    534 	int error;
    535 	timer_t timerid;
    536 	struct ptimer *pt;
    537 
    538 	if (id < CLOCK_REALTIME ||
    539 	    id > CLOCK_PROF)
    540 		return (EINVAL);
    541 
    542 	if (p->p_timers == NULL)
    543 		timers_alloc(p);
    544 
    545 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    546 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    547 		if (p->p_timers->pts_timers[timerid] == NULL)
    548 			break;
    549 
    550 	if (timerid == TIMER_MAX)
    551 		return EAGAIN;
    552 
    553 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    554 	if (evp) {
    555 		if (((error =
    556 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    557 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    558 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    559 			pool_put(&ptimer_pool, pt);
    560 			return (error ? error : EINVAL);
    561 		}
    562 	} else {
    563 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    564 		switch (id) {
    565 		case CLOCK_REALTIME:
    566 			pt->pt_ev.sigev_signo = SIGALRM;
    567 			break;
    568 		case CLOCK_VIRTUAL:
    569 			pt->pt_ev.sigev_signo = SIGVTALRM;
    570 			break;
    571 		case CLOCK_PROF:
    572 			pt->pt_ev.sigev_signo = SIGPROF;
    573 			break;
    574 		}
    575 		pt->pt_ev.sigev_value.sival_int = timerid;
    576 	}
    577 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    578 	pt->pt_info.ksi_errno = 0;
    579 	pt->pt_info.ksi_code = 0;
    580 	pt->pt_info.ksi_pid = p->p_pid;
    581 	pt->pt_info.ksi_uid = kauth_cred_getuid(p->p_cred);
    582 	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
    583 
    584 	pt->pt_type = id;
    585 	pt->pt_proc = p;
    586 	pt->pt_overruns = 0;
    587 	pt->pt_poverruns = 0;
    588 	pt->pt_entry = timerid;
    589 	timerclear(&pt->pt_time.it_value);
    590 	if (id == CLOCK_REALTIME)
    591 		callout_init(&pt->pt_ch);
    592 	else
    593 		pt->pt_active = 0;
    594 
    595 	p->p_timers->pts_timers[timerid] = pt;
    596 
    597 	return copyout(&timerid, tid, sizeof(timerid));
    598 }
    599 
    600 /* Delete a POSIX realtime timer */
    601 int
    602 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    603 {
    604 	struct sys_timer_delete_args /*  {
    605 		syscallarg(timer_t) timerid;
    606 	} */ *uap = v;
    607 	struct proc *p = l->l_proc;
    608 	timer_t timerid;
    609 	struct ptimer *pt, *ptn;
    610 	int s;
    611 
    612 	timerid = SCARG(uap, timerid);
    613 
    614 	if ((p->p_timers == NULL) ||
    615 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    616 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    617 		return (EINVAL);
    618 
    619 	if (pt->pt_type == CLOCK_REALTIME)
    620 		callout_stop(&pt->pt_ch);
    621 	else if (pt->pt_active) {
    622 		s = splclock();
    623 		ptn = LIST_NEXT(pt, pt_list);
    624 		LIST_REMOVE(pt, pt_list);
    625 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    626 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    627 			    &ptn->pt_time.it_value);
    628 		splx(s);
    629 	}
    630 
    631 	p->p_timers->pts_timers[timerid] = NULL;
    632 	pool_put(&ptimer_pool, pt);
    633 
    634 	return (0);
    635 }
    636 
    637 /*
    638  * Set up the given timer. The value in pt->pt_time.it_value is taken
    639  * to be an absolute time for CLOCK_REALTIME timers and a relative
    640  * time for virtual timers.
    641  * Must be called at splclock().
    642  */
    643 void
    644 timer_settime(struct ptimer *pt)
    645 {
    646 	struct ptimer *ptn, *pptn;
    647 	struct ptlist *ptl;
    648 
    649 	if (pt->pt_type == CLOCK_REALTIME) {
    650 		callout_stop(&pt->pt_ch);
    651 		if (timerisset(&pt->pt_time.it_value)) {
    652 			/*
    653 			 * Don't need to check hzto() return value, here.
    654 			 * callout_reset() does it for us.
    655 			 */
    656 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    657 			    realtimerexpire, pt);
    658 		}
    659 	} else {
    660 		if (pt->pt_active) {
    661 			ptn = LIST_NEXT(pt, pt_list);
    662 			LIST_REMOVE(pt, pt_list);
    663 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    664 				timeradd(&pt->pt_time.it_value,
    665 				    &ptn->pt_time.it_value,
    666 				    &ptn->pt_time.it_value);
    667 		}
    668 		if (timerisset(&pt->pt_time.it_value)) {
    669 			if (pt->pt_type == CLOCK_VIRTUAL)
    670 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    671 			else
    672 				ptl = &pt->pt_proc->p_timers->pts_prof;
    673 
    674 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    675 			     ptn && timercmp(&pt->pt_time.it_value,
    676 				 &ptn->pt_time.it_value, >);
    677 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    678 				timersub(&pt->pt_time.it_value,
    679 				    &ptn->pt_time.it_value,
    680 				    &pt->pt_time.it_value);
    681 
    682 			if (pptn)
    683 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    684 			else
    685 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    686 
    687 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    688 				timersub(&ptn->pt_time.it_value,
    689 				    &pt->pt_time.it_value,
    690 				    &ptn->pt_time.it_value);
    691 
    692 			pt->pt_active = 1;
    693 		} else
    694 			pt->pt_active = 0;
    695 	}
    696 }
    697 
    698 void
    699 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    700 {
    701 	struct ptimer *ptn;
    702 
    703 	*aitv = pt->pt_time;
    704 	if (pt->pt_type == CLOCK_REALTIME) {
    705 		/*
    706 		 * Convert from absolute to relative time in .it_value
    707 		 * part of real time timer.  If time for real time
    708 		 * timer has passed return 0, else return difference
    709 		 * between current time and time for the timer to go
    710 		 * off.
    711 		 */
    712 		if (timerisset(&aitv->it_value)) {
    713 			if (timercmp(&aitv->it_value, &time, <))
    714 				timerclear(&aitv->it_value);
    715 			else
    716 				timersub(&aitv->it_value, &time,
    717 				    &aitv->it_value);
    718 		}
    719 	} else if (pt->pt_active) {
    720 		if (pt->pt_type == CLOCK_VIRTUAL)
    721 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    722 		else
    723 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    724 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    725 			timeradd(&aitv->it_value,
    726 			    &ptn->pt_time.it_value, &aitv->it_value);
    727 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    728 	} else
    729 		timerclear(&aitv->it_value);
    730 }
    731 
    732 
    733 
    734 /* Set and arm a POSIX realtime timer */
    735 int
    736 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    737 {
    738 	struct sys_timer_settime_args /* {
    739 		syscallarg(timer_t) timerid;
    740 		syscallarg(int) flags;
    741 		syscallarg(const struct itimerspec *) value;
    742 		syscallarg(struct itimerspec *) ovalue;
    743 	} */ *uap = v;
    744 	int error;
    745 	struct itimerspec value, ovalue, *ovp = NULL;
    746 
    747 	if ((error = copyin(SCARG(uap, value), &value,
    748 	    sizeof(struct itimerspec))) != 0)
    749 		return (error);
    750 
    751 	if (SCARG(uap, ovalue))
    752 		ovp = &ovalue;
    753 
    754 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    755 	    SCARG(uap, flags), l->l_proc)) != 0)
    756 		return error;
    757 
    758 	if (ovp)
    759 		return copyout(&ovalue, SCARG(uap, ovalue),
    760 		    sizeof(struct itimerspec));
    761 	return 0;
    762 }
    763 
    764 int
    765 dotimer_settime(int timerid, struct itimerspec *value,
    766     struct itimerspec *ovalue, int flags, struct proc *p)
    767 {
    768 	int s;
    769 	struct itimerval val, oval;
    770 	struct ptimer *pt;
    771 
    772 	if ((p->p_timers == NULL) ||
    773 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    774 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    775 		return (EINVAL);
    776 
    777 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    778 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    779 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    780 		return (EINVAL);
    781 
    782 	oval = pt->pt_time;
    783 	pt->pt_time = val;
    784 
    785 	s = splclock();
    786 	/*
    787 	 * If we've been passed a relative time for a realtime timer,
    788 	 * convert it to absolute; if an absolute time for a virtual
    789 	 * timer, convert it to relative and make sure we don't set it
    790 	 * to zero, which would cancel the timer, or let it go
    791 	 * negative, which would confuse the comparison tests.
    792 	 */
    793 	if (timerisset(&pt->pt_time.it_value)) {
    794 		if (pt->pt_type == CLOCK_REALTIME) {
    795 			if ((flags & TIMER_ABSTIME) == 0)
    796 				timeradd(&pt->pt_time.it_value, &time,
    797 				    &pt->pt_time.it_value);
    798 		} else {
    799 			if ((flags & TIMER_ABSTIME) != 0) {
    800 				timersub(&pt->pt_time.it_value, &time,
    801 				    &pt->pt_time.it_value);
    802 				if (!timerisset(&pt->pt_time.it_value) ||
    803 				    pt->pt_time.it_value.tv_sec < 0) {
    804 					pt->pt_time.it_value.tv_sec = 0;
    805 					pt->pt_time.it_value.tv_usec = 1;
    806 				}
    807 			}
    808 		}
    809 	}
    810 
    811 	timer_settime(pt);
    812 	splx(s);
    813 
    814 	if (ovalue) {
    815 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    816 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    817 	}
    818 
    819 	return (0);
    820 }
    821 
    822 /* Return the time remaining until a POSIX timer fires. */
    823 int
    824 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    825 {
    826 	struct sys_timer_gettime_args /* {
    827 		syscallarg(timer_t) timerid;
    828 		syscallarg(struct itimerspec *) value;
    829 	} */ *uap = v;
    830 	struct itimerspec its;
    831 	int error;
    832 
    833 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    834 	    &its)) != 0)
    835 		return error;
    836 
    837 	return copyout(&its, SCARG(uap, value), sizeof(its));
    838 }
    839 
    840 int
    841 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    842 {
    843 	int s;
    844 	struct ptimer *pt;
    845 	struct itimerval aitv;
    846 
    847 	if ((p->p_timers == NULL) ||
    848 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    849 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    850 		return (EINVAL);
    851 
    852 	s = splclock();
    853 	timer_gettime(pt, &aitv);
    854 	splx(s);
    855 
    856 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    857 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    858 
    859 	return 0;
    860 }
    861 
    862 /*
    863  * Return the count of the number of times a periodic timer expired
    864  * while a notification was already pending. The counter is reset when
    865  * a timer expires and a notification can be posted.
    866  */
    867 int
    868 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    869 {
    870 	struct sys_timer_getoverrun_args /* {
    871 		syscallarg(timer_t) timerid;
    872 	} */ *uap = v;
    873 	struct proc *p = l->l_proc;
    874 	int timerid;
    875 	struct ptimer *pt;
    876 
    877 	timerid = SCARG(uap, timerid);
    878 
    879 	if ((p->p_timers == NULL) ||
    880 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    881 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    882 		return (EINVAL);
    883 
    884 	*retval = pt->pt_poverruns;
    885 
    886 	return (0);
    887 }
    888 
    889 /* Glue function that triggers an upcall; called from userret(). */
    890 static void
    891 timerupcall(struct lwp *l, void *arg)
    892 {
    893 	struct ptimers *pt = (struct ptimers *)arg;
    894 	unsigned int i, fired, done;
    895 
    896 	KDASSERT(l->l_proc->p_sa);
    897 	/* Bail out if we do not own the virtual processor */
    898 	if (l->l_savp->savp_lwp != l)
    899 		return ;
    900 
    901 	KERNEL_PROC_LOCK(l);
    902 
    903 	fired = pt->pts_fired;
    904 	done = 0;
    905 	while ((i = ffs(fired)) != 0) {
    906 		siginfo_t *si;
    907 		int mask = 1 << --i;
    908 		int f;
    909 
    910 		f = l->l_flag & L_SA;
    911 		l->l_flag &= ~L_SA;
    912 		si = siginfo_alloc(PR_WAITOK);
    913 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    914 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    915 		    sizeof(*si), si, siginfo_free) != 0) {
    916 			siginfo_free(si);
    917 			/* XXX What do we do here?? */
    918 		} else
    919 			done |= mask;
    920 		fired &= ~mask;
    921 		l->l_flag |= f;
    922 	}
    923 	pt->pts_fired &= ~done;
    924 	if (pt->pts_fired == 0)
    925 		l->l_proc->p_userret = NULL;
    926 
    927 	KERNEL_PROC_UNLOCK(l);
    928 }
    929 
    930 
    931 /*
    932  * Real interval timer expired:
    933  * send process whose timer expired an alarm signal.
    934  * If time is not set up to reload, then just return.
    935  * Else compute next time timer should go off which is > current time.
    936  * This is where delay in processing this timeout causes multiple
    937  * SIGALRM calls to be compressed into one.
    938  */
    939 void
    940 realtimerexpire(void *arg)
    941 {
    942 	struct ptimer *pt;
    943 	int s;
    944 
    945 	pt = (struct ptimer *)arg;
    946 
    947 	itimerfire(pt);
    948 
    949 	if (!timerisset(&pt->pt_time.it_interval)) {
    950 		timerclear(&pt->pt_time.it_value);
    951 		return;
    952 	}
    953 	for (;;) {
    954 		s = splclock();
    955 		timeradd(&pt->pt_time.it_value,
    956 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    957 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
    958 			/*
    959 			 * Don't need to check hzto() return value, here.
    960 			 * callout_reset() does it for us.
    961 			 */
    962 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    963 			    realtimerexpire, pt);
    964 			splx(s);
    965 			return;
    966 		}
    967 		splx(s);
    968 		pt->pt_overruns++;
    969 	}
    970 }
    971 
    972 /* BSD routine to get the value of an interval timer. */
    973 /* ARGSUSED */
    974 int
    975 sys_getitimer(struct lwp *l, void *v, register_t *retval)
    976 {
    977 	struct sys_getitimer_args /* {
    978 		syscallarg(int) which;
    979 		syscallarg(struct itimerval *) itv;
    980 	} */ *uap = v;
    981 	struct proc *p = l->l_proc;
    982 	struct itimerval aitv;
    983 	int error;
    984 
    985 	error = dogetitimer(p, SCARG(uap, which), &aitv);
    986 	if (error)
    987 		return error;
    988 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    989 }
    990 
    991 int
    992 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
    993 {
    994 	int s;
    995 
    996 	if ((u_int)which > ITIMER_PROF)
    997 		return (EINVAL);
    998 
    999 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
   1000 		timerclear(&itvp->it_value);
   1001 		timerclear(&itvp->it_interval);
   1002 	} else {
   1003 		s = splclock();
   1004 		timer_gettime(p->p_timers->pts_timers[which], itvp);
   1005 		splx(s);
   1006 	}
   1007 
   1008 	return 0;
   1009 }
   1010 
   1011 /* BSD routine to set/arm an interval timer. */
   1012 /* ARGSUSED */
   1013 int
   1014 sys_setitimer(struct lwp *l, void *v, register_t *retval)
   1015 {
   1016 	struct sys_setitimer_args /* {
   1017 		syscallarg(int) which;
   1018 		syscallarg(const struct itimerval *) itv;
   1019 		syscallarg(struct itimerval *) oitv;
   1020 	} */ *uap = v;
   1021 	struct proc *p = l->l_proc;
   1022 	int which = SCARG(uap, which);
   1023 	struct sys_getitimer_args getargs;
   1024 	const struct itimerval *itvp;
   1025 	struct itimerval aitv;
   1026 	int error;
   1027 
   1028 	if ((u_int)which > ITIMER_PROF)
   1029 		return (EINVAL);
   1030 	itvp = SCARG(uap, itv);
   1031 	if (itvp &&
   1032 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1033 		return (error);
   1034 	if (SCARG(uap, oitv) != NULL) {
   1035 		SCARG(&getargs, which) = which;
   1036 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1037 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1038 			return (error);
   1039 	}
   1040 	if (itvp == 0)
   1041 		return (0);
   1042 
   1043 	return dosetitimer(p, which, &aitv);
   1044 }
   1045 
   1046 int
   1047 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1048 {
   1049 	struct ptimer *pt;
   1050 	int s;
   1051 
   1052 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1053 		return (EINVAL);
   1054 
   1055 	/*
   1056 	 * Don't bother allocating data structures if the process just
   1057 	 * wants to clear the timer.
   1058 	 */
   1059 	if (!timerisset(&itvp->it_value) &&
   1060 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1061 		return (0);
   1062 
   1063 	if (p->p_timers == NULL)
   1064 		timers_alloc(p);
   1065 	if (p->p_timers->pts_timers[which] == NULL) {
   1066 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1067 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1068 		pt->pt_ev.sigev_value.sival_int = which;
   1069 		pt->pt_overruns = 0;
   1070 		pt->pt_proc = p;
   1071 		pt->pt_type = which;
   1072 		pt->pt_entry = which;
   1073 		switch (which) {
   1074 		case ITIMER_REAL:
   1075 			callout_init(&pt->pt_ch);
   1076 			pt->pt_ev.sigev_signo = SIGALRM;
   1077 			break;
   1078 		case ITIMER_VIRTUAL:
   1079 			pt->pt_active = 0;
   1080 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1081 			break;
   1082 		case ITIMER_PROF:
   1083 			pt->pt_active = 0;
   1084 			pt->pt_ev.sigev_signo = SIGPROF;
   1085 			break;
   1086 		}
   1087 	} else
   1088 		pt = p->p_timers->pts_timers[which];
   1089 
   1090 	pt->pt_time = *itvp;
   1091 	p->p_timers->pts_timers[which] = pt;
   1092 
   1093 	s = splclock();
   1094 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1095 		/* Convert to absolute time */
   1096 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1097 	}
   1098 	timer_settime(pt);
   1099 	splx(s);
   1100 
   1101 	return (0);
   1102 }
   1103 
   1104 /* Utility routines to manage the array of pointers to timers. */
   1105 void
   1106 timers_alloc(struct proc *p)
   1107 {
   1108 	int i;
   1109 	struct ptimers *pts;
   1110 
   1111 	pts = pool_get(&ptimers_pool, 0);
   1112 	LIST_INIT(&pts->pts_virtual);
   1113 	LIST_INIT(&pts->pts_prof);
   1114 	for (i = 0; i < TIMER_MAX; i++)
   1115 		pts->pts_timers[i] = NULL;
   1116 	pts->pts_fired = 0;
   1117 	p->p_timers = pts;
   1118 }
   1119 
   1120 /*
   1121  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1122  * then clean up all timers and free all the data structures. If
   1123  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1124  * by timer_create(), not the BSD setitimer() timers, and only free the
   1125  * structure if none of those remain.
   1126  */
   1127 void
   1128 timers_free(struct proc *p, int which)
   1129 {
   1130 	int i, s;
   1131 	struct ptimers *pts;
   1132 	struct ptimer *pt, *ptn;
   1133 	struct timeval tv;
   1134 
   1135 	if (p->p_timers) {
   1136 		pts = p->p_timers;
   1137 		if (which == TIMERS_ALL)
   1138 			i = 0;
   1139 		else {
   1140 			s = splclock();
   1141 			timerclear(&tv);
   1142 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1143 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1144 			     ptn = LIST_NEXT(ptn, pt_list))
   1145 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1146 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1147 			if (ptn) {
   1148 				timeradd(&tv, &ptn->pt_time.it_value,
   1149 				    &ptn->pt_time.it_value);
   1150 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1151 				    ptn, pt_list);
   1152 			}
   1153 
   1154 			timerclear(&tv);
   1155 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1156 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1157 			     ptn = LIST_NEXT(ptn, pt_list))
   1158 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1159 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1160 			if (ptn) {
   1161 				timeradd(&tv, &ptn->pt_time.it_value,
   1162 				    &ptn->pt_time.it_value);
   1163 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1164 				    pt_list);
   1165 			}
   1166 			splx(s);
   1167 			i = 3;
   1168 		}
   1169 		for ( ; i < TIMER_MAX; i++)
   1170 			if ((pt = pts->pts_timers[i]) != NULL) {
   1171 				if (pt->pt_type == CLOCK_REALTIME)
   1172 					callout_stop(&pt->pt_ch);
   1173 				pts->pts_timers[i] = NULL;
   1174 				pool_put(&ptimer_pool, pt);
   1175 			}
   1176 		if ((pts->pts_timers[0] == NULL) &&
   1177 		    (pts->pts_timers[1] == NULL) &&
   1178 		    (pts->pts_timers[2] == NULL)) {
   1179 			p->p_timers = NULL;
   1180 			pool_put(&ptimers_pool, pts);
   1181 		}
   1182 	}
   1183 }
   1184 
   1185 /*
   1186  * Check that a proposed value to load into the .it_value or
   1187  * .it_interval part of an interval timer is acceptable, and
   1188  * fix it to have at least minimal value (i.e. if it is less
   1189  * than the resolution of the clock, round it up.)
   1190  */
   1191 int
   1192 itimerfix(struct timeval *tv)
   1193 {
   1194 
   1195 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1196 		return (EINVAL);
   1197 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1198 		tv->tv_usec = tick;
   1199 	return (0);
   1200 }
   1201 
   1202 /*
   1203  * Decrement an interval timer by a specified number
   1204  * of microseconds, which must be less than a second,
   1205  * i.e. < 1000000.  If the timer expires, then reload
   1206  * it.  In this case, carry over (usec - old value) to
   1207  * reduce the value reloaded into the timer so that
   1208  * the timer does not drift.  This routine assumes
   1209  * that it is called in a context where the timers
   1210  * on which it is operating cannot change in value.
   1211  */
   1212 int
   1213 itimerdecr(struct ptimer *pt, int usec)
   1214 {
   1215 	struct itimerval *itp;
   1216 
   1217 	itp = &pt->pt_time;
   1218 	if (itp->it_value.tv_usec < usec) {
   1219 		if (itp->it_value.tv_sec == 0) {
   1220 			/* expired, and already in next interval */
   1221 			usec -= itp->it_value.tv_usec;
   1222 			goto expire;
   1223 		}
   1224 		itp->it_value.tv_usec += 1000000;
   1225 		itp->it_value.tv_sec--;
   1226 	}
   1227 	itp->it_value.tv_usec -= usec;
   1228 	usec = 0;
   1229 	if (timerisset(&itp->it_value))
   1230 		return (1);
   1231 	/* expired, exactly at end of interval */
   1232 expire:
   1233 	if (timerisset(&itp->it_interval)) {
   1234 		itp->it_value = itp->it_interval;
   1235 		itp->it_value.tv_usec -= usec;
   1236 		if (itp->it_value.tv_usec < 0) {
   1237 			itp->it_value.tv_usec += 1000000;
   1238 			itp->it_value.tv_sec--;
   1239 		}
   1240 		timer_settime(pt);
   1241 	} else
   1242 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1243 	return (0);
   1244 }
   1245 
   1246 void
   1247 itimerfire(struct ptimer *pt)
   1248 {
   1249 	struct proc *p = pt->pt_proc;
   1250 	struct sadata_vp *vp;
   1251 	int s;
   1252 	unsigned int i;
   1253 
   1254 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1255 		/*
   1256 		 * No RT signal infrastructure exists at this time;
   1257 		 * just post the signal number and throw away the
   1258 		 * value.
   1259 		 */
   1260 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
   1261 			pt->pt_overruns++;
   1262 		else {
   1263 			ksiginfo_t ksi;
   1264 			(void)memset(&ksi, 0, sizeof(ksi));
   1265 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1266 			ksi.ksi_code = SI_TIMER;
   1267 			ksi.ksi_sigval = pt->pt_ev.sigev_value;
   1268 			pt->pt_poverruns = pt->pt_overruns;
   1269 			pt->pt_overruns = 0;
   1270 			kpsignal(p, &ksi, NULL);
   1271 		}
   1272 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
   1273 		/* Cause the process to generate an upcall when it returns. */
   1274 
   1275 		if (p->p_userret == NULL) {
   1276 			/*
   1277 			 * XXX stop signals can be processed inside tsleep,
   1278 			 * which can be inside sa_yield's inner loop, which
   1279 			 * makes testing for sa_idle alone insuffucent to
   1280 			 * determine if we really should call setrunnable.
   1281 			 */
   1282 			pt->pt_poverruns = pt->pt_overruns;
   1283 			pt->pt_overruns = 0;
   1284 			i = 1 << pt->pt_entry;
   1285 			p->p_timers->pts_fired = i;
   1286 			p->p_userret = timerupcall;
   1287 			p->p_userret_arg = p->p_timers;
   1288 
   1289 			SCHED_LOCK(s);
   1290 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1291 				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
   1292 					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
   1293 					sched_wakeup(vp->savp_lwp);
   1294 					break;
   1295 				}
   1296 			}
   1297 			SCHED_UNLOCK(s);
   1298 		} else if (p->p_userret == timerupcall) {
   1299 			i = 1 << pt->pt_entry;
   1300 			if ((p->p_timers->pts_fired & i) == 0) {
   1301 				pt->pt_poverruns = pt->pt_overruns;
   1302 				pt->pt_overruns = 0;
   1303 				p->p_timers->pts_fired |= i;
   1304 			} else
   1305 				pt->pt_overruns++;
   1306 		} else {
   1307 			pt->pt_overruns++;
   1308 			if ((p->p_flag & P_WEXIT) == 0)
   1309 				printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
   1310 				    p->p_pid, pt->pt_overruns,
   1311 				    pt->pt_ev.sigev_value.sival_int,
   1312 				    p->p_userret);
   1313 		}
   1314 	}
   1315 
   1316 }
   1317 
   1318 /*
   1319  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1320  * for usage and rationale.
   1321  */
   1322 int
   1323 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1324 {
   1325 	struct timeval tv, delta;
   1326 	int s, rv = 0;
   1327 
   1328 	s = splclock();
   1329 	tv = mono_time;
   1330 	splx(s);
   1331 
   1332 	timersub(&tv, lasttime, &delta);
   1333 
   1334 	/*
   1335 	 * check for 0,0 is so that the message will be seen at least once,
   1336 	 * even if interval is huge.
   1337 	 */
   1338 	if (timercmp(&delta, mininterval, >=) ||
   1339 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1340 		*lasttime = tv;
   1341 		rv = 1;
   1342 	}
   1343 
   1344 	return (rv);
   1345 }
   1346 
   1347 /*
   1348  * ppsratecheck(): packets (or events) per second limitation.
   1349  */
   1350 int
   1351 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1352 {
   1353 	struct timeval tv, delta;
   1354 	int s, rv;
   1355 
   1356 	s = splclock();
   1357 	tv = mono_time;
   1358 	splx(s);
   1359 
   1360 	timersub(&tv, lasttime, &delta);
   1361 
   1362 	/*
   1363 	 * check for 0,0 is so that the message will be seen at least once.
   1364 	 * if more than one second have passed since the last update of
   1365 	 * lasttime, reset the counter.
   1366 	 *
   1367 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1368 	 * try to use *curpps for stat purposes as well.
   1369 	 */
   1370 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1371 	    delta.tv_sec >= 1) {
   1372 		*lasttime = tv;
   1373 		*curpps = 0;
   1374 	}
   1375 	if (maxpps < 0)
   1376 		rv = 1;
   1377 	else if (*curpps < maxpps)
   1378 		rv = 1;
   1379 	else
   1380 		rv = 0;
   1381 
   1382 #if 1 /*DIAGNOSTIC?*/
   1383 	/* be careful about wrap-around */
   1384 	if (*curpps + 1 > *curpps)
   1385 		*curpps = *curpps + 1;
   1386 #else
   1387 	/*
   1388 	 * assume that there's not too many calls to this function.
   1389 	 * not sure if the assumption holds, as it depends on *caller's*
   1390 	 * behavior, not the behavior of this function.
   1391 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1392 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1393 	 */
   1394 	*curpps = *curpps + 1;
   1395 #endif
   1396 
   1397 	return (rv);
   1398 }
   1399