Home | History | Annotate | Line # | Download | only in kern
      1  1.79        ad /*	$NetBSD: kern_timeout.c,v 1.79 2023/10/08 13:23:05 ad Exp $	*/
      2   1.1   thorpej 
      3   1.1   thorpej /*-
      4  1.78        ad  * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019, 2023
      5  1.78        ad  *     The NetBSD Foundation, Inc.
      6   1.1   thorpej  * All rights reserved.
      7   1.1   thorpej  *
      8   1.1   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      9  1.22        ad  * by Jason R. Thorpe, and by Andrew Doran.
     10   1.1   thorpej  *
     11   1.1   thorpej  * Redistribution and use in source and binary forms, with or without
     12   1.1   thorpej  * modification, are permitted provided that the following conditions
     13   1.1   thorpej  * are met:
     14   1.1   thorpej  * 1. Redistributions of source code must retain the above copyright
     15   1.1   thorpej  *    notice, this list of conditions and the following disclaimer.
     16   1.1   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18   1.1   thorpej  *    documentation and/or other materials provided with the distribution.
     19   1.1   thorpej  *
     20   1.1   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21   1.1   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22   1.1   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23   1.1   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24   1.1   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   1.1   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   1.1   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   1.1   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   1.1   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   1.1   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   1.1   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     31   1.1   thorpej  */
     32   1.1   thorpej 
     33   1.1   thorpej /*
     34   1.1   thorpej  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     35   1.1   thorpej  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     36  1.14     perry  * All rights reserved.
     37  1.14     perry  *
     38  1.14     perry  * Redistribution and use in source and binary forms, with or without
     39  1.14     perry  * modification, are permitted provided that the following conditions
     40  1.14     perry  * are met:
     41   1.1   thorpej  *
     42  1.14     perry  * 1. Redistributions of source code must retain the above copyright
     43  1.14     perry  *    notice, this list of conditions and the following disclaimer.
     44  1.14     perry  * 2. Redistributions in binary form must reproduce the above copyright
     45  1.14     perry  *    notice, this list of conditions and the following disclaimer in the
     46  1.14     perry  *    documentation and/or other materials provided with the distribution.
     47   1.1   thorpej  * 3. The name of the author may not be used to endorse or promote products
     48  1.14     perry  *    derived from this software without specific prior written permission.
     49   1.1   thorpej  *
     50   1.1   thorpej  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     51   1.1   thorpej  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     52   1.1   thorpej  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     53   1.1   thorpej  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     54   1.1   thorpej  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     55   1.1   thorpej  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     56   1.1   thorpej  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     57   1.1   thorpej  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     58   1.1   thorpej  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     59  1.14     perry  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     60   1.1   thorpej  */
     61   1.7     lukem 
     62   1.7     lukem #include <sys/cdefs.h>
     63  1.79        ad __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.79 2023/10/08 13:23:05 ad Exp $");
     64   1.1   thorpej 
     65   1.1   thorpej /*
     66  1.22        ad  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     67  1.36        ad  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     68  1.36        ad  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     69  1.36        ad  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     70  1.36        ad  * a Timer Facility" by George Varghese and Tony Lauck.
     71  1.22        ad  *
     72  1.22        ad  * Some of the "math" in here is a bit tricky.  We have to beware of
     73  1.22        ad  * wrapping ints.
     74  1.22        ad  *
     75  1.22        ad  * We use the fact that any element added to the queue must be added with
     76  1.22        ad  * a positive time.  That means that any element `to' on the queue cannot
     77  1.22        ad  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     78  1.71  riastrad  * be positive or negative so comparing it with anything is dangerous.
     79  1.22        ad  * The only way we can use the c->c_time value in any predictable way is
     80  1.22        ad  * when we calculate how far in the future `to' will timeout - "c->c_time
     81  1.36        ad  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     82  1.22        ad  * timeouts and 0 or negative for due timeouts.
     83   1.1   thorpej  */
     84   1.1   thorpej 
     85  1.24        ad #define	_CALLOUT_PRIVATE
     86  1.24        ad 
     87   1.1   thorpej #include <sys/param.h>
     88   1.1   thorpej #include <sys/systm.h>
     89   1.1   thorpej #include <sys/kernel.h>
     90   1.1   thorpej #include <sys/callout.h>
     91  1.45     rmind #include <sys/lwp.h>
     92  1.20        ad #include <sys/mutex.h>
     93  1.22        ad #include <sys/proc.h>
     94  1.22        ad #include <sys/sleepq.h>
     95  1.22        ad #include <sys/syncobj.h>
     96  1.22        ad #include <sys/evcnt.h>
     97  1.27        ad #include <sys/intr.h>
     98  1.33        ad #include <sys/cpu.h>
     99  1.36        ad #include <sys/kmem.h>
    100  1.72  riastrad #include <sys/sdt.h>
    101   1.1   thorpej 
    102   1.1   thorpej #ifdef DDB
    103   1.1   thorpej #include <machine/db_machdep.h>
    104   1.1   thorpej #include <ddb/db_interface.h>
    105   1.1   thorpej #include <ddb/db_access.h>
    106  1.49  christos #include <ddb/db_cpu.h>
    107   1.1   thorpej #include <ddb/db_sym.h>
    108   1.1   thorpej #include <ddb/db_output.h>
    109   1.1   thorpej #endif
    110   1.1   thorpej 
    111  1.22        ad #define BUCKETS		1024
    112  1.22        ad #define WHEELSIZE	256
    113  1.22        ad #define WHEELMASK	255
    114  1.22        ad #define WHEELBITS	8
    115  1.22        ad 
    116   1.1   thorpej #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    117   1.1   thorpej 
    118  1.36        ad #define BUCKET(cc, rel, abs)						\
    119   1.1   thorpej     (((rel) <= (1 << (2*WHEELBITS)))					\
    120   1.1   thorpej     	? ((rel) <= (1 << WHEELBITS))					\
    121  1.36        ad             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    122  1.36        ad             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    123   1.1   thorpej         : ((rel) <= (1 << (3*WHEELBITS)))				\
    124  1.36        ad             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    125  1.36        ad             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    126   1.1   thorpej 
    127  1.36        ad #define MOVEBUCKET(cc, wheel, time)					\
    128  1.36        ad     CIRCQ_APPEND(&(cc)->cc_todo,					\
    129  1.36        ad         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    130   1.1   thorpej 
    131   1.1   thorpej /*
    132   1.1   thorpej  * Circular queue definitions.
    133   1.1   thorpej  */
    134   1.1   thorpej 
    135  1.11       scw #define CIRCQ_INIT(list)						\
    136   1.1   thorpej do {									\
    137  1.11       scw         (list)->cq_next_l = (list);					\
    138  1.11       scw         (list)->cq_prev_l = (list);					\
    139   1.1   thorpej } while (/*CONSTCOND*/0)
    140   1.1   thorpej 
    141   1.1   thorpej #define CIRCQ_INSERT(elem, list)					\
    142   1.1   thorpej do {									\
    143  1.11       scw         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    144  1.11       scw         (elem)->cq_next_l = (list);					\
    145  1.11       scw         (list)->cq_prev_l->cq_next_l = (elem);				\
    146  1.11       scw         (list)->cq_prev_l = (elem);					\
    147   1.1   thorpej } while (/*CONSTCOND*/0)
    148   1.1   thorpej 
    149   1.1   thorpej #define CIRCQ_APPEND(fst, snd)						\
    150   1.1   thorpej do {									\
    151   1.1   thorpej         if (!CIRCQ_EMPTY(snd)) {					\
    152  1.11       scw                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    153  1.11       scw                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    154  1.11       scw                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    155  1.11       scw                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    156   1.1   thorpej                 CIRCQ_INIT(snd);					\
    157   1.1   thorpej         }								\
    158   1.1   thorpej } while (/*CONSTCOND*/0)
    159   1.1   thorpej 
    160   1.1   thorpej #define CIRCQ_REMOVE(elem)						\
    161   1.1   thorpej do {									\
    162  1.11       scw         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    163  1.11       scw         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    164   1.1   thorpej } while (/*CONSTCOND*/0)
    165   1.1   thorpej 
    166  1.11       scw #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    167  1.11       scw #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    168  1.11       scw #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    169  1.11       scw #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    170   1.1   thorpej 
    171  1.36        ad struct callout_cpu {
    172  1.44        ad 	kmutex_t	*cc_lock;
    173  1.36        ad 	sleepq_t	cc_sleepq;
    174  1.36        ad 	u_int		cc_nwait;
    175  1.36        ad 	u_int		cc_ticks;
    176  1.36        ad 	lwp_t		*cc_lwp;
    177  1.36        ad 	callout_impl_t	*cc_active;
    178  1.36        ad 	struct evcnt	cc_ev_late;
    179  1.36        ad 	struct evcnt	cc_ev_block;
    180  1.36        ad 	struct callout_circq cc_todo;		/* Worklist */
    181  1.36        ad 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    182  1.36        ad 	char		cc_name1[12];
    183  1.36        ad 	char		cc_name2[12];
    184  1.72  riastrad 	struct cpu_info	*cc_cpu;
    185  1.36        ad };
    186  1.36        ad 
    187  1.65       rin #ifdef DDB
    188  1.65       rin static struct callout_cpu ccb;
    189  1.65       rin #endif
    190  1.49  christos 
    191  1.65       rin #ifndef CRASH /* _KERNEL */
    192  1.49  christos static void	callout_softclock(void *);
    193  1.57        ad static void	callout_wait(callout_impl_t *, void *, kmutex_t *);
    194  1.57        ad 
    195  1.57        ad static struct callout_cpu callout_cpu0 __cacheline_aligned;
    196  1.57        ad static void *callout_sih __read_mostly;
    197  1.36        ad 
    198  1.72  riastrad SDT_PROBE_DEFINE2(sdt, kernel, callout, init,
    199  1.72  riastrad     "struct callout *"/*ch*/,
    200  1.72  riastrad     "unsigned"/*flags*/);
    201  1.72  riastrad SDT_PROBE_DEFINE1(sdt, kernel, callout, destroy,
    202  1.72  riastrad     "struct callout *"/*ch*/);
    203  1.72  riastrad SDT_PROBE_DEFINE4(sdt, kernel, callout, setfunc,
    204  1.72  riastrad     "struct callout *"/*ch*/,
    205  1.72  riastrad     "void (*)(void *)"/*func*/,
    206  1.72  riastrad     "void *"/*arg*/,
    207  1.72  riastrad     "unsigned"/*flags*/);
    208  1.72  riastrad SDT_PROBE_DEFINE5(sdt, kernel, callout, schedule,
    209  1.72  riastrad     "struct callout *"/*ch*/,
    210  1.72  riastrad     "void (*)(void *)"/*func*/,
    211  1.72  riastrad     "void *"/*arg*/,
    212  1.72  riastrad     "unsigned"/*flags*/,
    213  1.72  riastrad     "int"/*ticks*/);
    214  1.72  riastrad SDT_PROBE_DEFINE6(sdt, kernel, callout, migrate,
    215  1.72  riastrad     "struct callout *"/*ch*/,
    216  1.72  riastrad     "void (*)(void *)"/*func*/,
    217  1.72  riastrad     "void *"/*arg*/,
    218  1.72  riastrad     "unsigned"/*flags*/,
    219  1.72  riastrad     "struct cpu_info *"/*ocpu*/,
    220  1.72  riastrad     "struct cpu_info *"/*ncpu*/);
    221  1.72  riastrad SDT_PROBE_DEFINE4(sdt, kernel, callout, entry,
    222  1.72  riastrad     "struct callout *"/*ch*/,
    223  1.72  riastrad     "void (*)(void *)"/*func*/,
    224  1.72  riastrad     "void *"/*arg*/,
    225  1.72  riastrad     "unsigned"/*flags*/);
    226  1.72  riastrad SDT_PROBE_DEFINE4(sdt, kernel, callout, return,
    227  1.72  riastrad     "struct callout *"/*ch*/,
    228  1.72  riastrad     "void (*)(void *)"/*func*/,
    229  1.72  riastrad     "void *"/*arg*/,
    230  1.72  riastrad     "unsigned"/*flags*/);
    231  1.72  riastrad SDT_PROBE_DEFINE5(sdt, kernel, callout, stop,
    232  1.72  riastrad     "struct callout *"/*ch*/,
    233  1.72  riastrad     "void (*)(void *)"/*func*/,
    234  1.72  riastrad     "void *"/*arg*/,
    235  1.72  riastrad     "unsigned"/*flags*/,
    236  1.72  riastrad     "bool"/*expired*/);
    237  1.72  riastrad SDT_PROBE_DEFINE4(sdt, kernel, callout, halt,
    238  1.72  riastrad     "struct callout *"/*ch*/,
    239  1.72  riastrad     "void (*)(void *)"/*func*/,
    240  1.72  riastrad     "void *"/*arg*/,
    241  1.72  riastrad     "unsigned"/*flags*/);
    242  1.72  riastrad SDT_PROBE_DEFINE5(sdt, kernel, callout, halt__done,
    243  1.72  riastrad     "struct callout *"/*ch*/,
    244  1.72  riastrad     "void (*)(void *)"/*func*/,
    245  1.72  riastrad     "void *"/*arg*/,
    246  1.72  riastrad     "unsigned"/*flags*/,
    247  1.72  riastrad     "bool"/*expired*/);
    248  1.72  riastrad 
    249  1.79        ad syncobj_t callout_syncobj = {
    250  1.79        ad 	.sobj_name	= "callout",
    251  1.79        ad 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    252  1.79        ad 	.sobj_boostpri  = PRI_KERNEL,
    253  1.79        ad 	.sobj_unsleep	= sleepq_unsleep,
    254  1.79        ad 	.sobj_changepri	= sleepq_changepri,
    255  1.79        ad 	.sobj_lendpri	= sleepq_lendpri,
    256  1.79        ad 	.sobj_owner	= syncobj_noowner,
    257  1.79        ad };
    258  1.79        ad 
    259  1.36        ad static inline kmutex_t *
    260  1.36        ad callout_lock(callout_impl_t *c)
    261  1.36        ad {
    262  1.44        ad 	struct callout_cpu *cc;
    263  1.36        ad 	kmutex_t *lock;
    264  1.36        ad 
    265  1.36        ad 	for (;;) {
    266  1.44        ad 		cc = c->c_cpu;
    267  1.44        ad 		lock = cc->cc_lock;
    268  1.36        ad 		mutex_spin_enter(lock);
    269  1.44        ad 		if (__predict_true(cc == c->c_cpu))
    270  1.36        ad 			return lock;
    271  1.36        ad 		mutex_spin_exit(lock);
    272  1.36        ad 	}
    273  1.36        ad }
    274   1.5   thorpej 
    275   1.1   thorpej /*
    276  1.75       pho  * Check if the callout is currently running on an LWP that isn't curlwp.
    277  1.75       pho  */
    278  1.75       pho static inline bool
    279  1.75       pho callout_running_somewhere_else(callout_impl_t *c, struct callout_cpu *cc)
    280  1.75       pho {
    281  1.75       pho 	KASSERT(c->c_cpu == cc);
    282  1.75       pho 
    283  1.75       pho 	return cc->cc_active == c && cc->cc_lwp != curlwp;
    284  1.75       pho }
    285  1.75       pho 
    286  1.75       pho /*
    287   1.1   thorpej  * callout_startup:
    288   1.1   thorpej  *
    289   1.1   thorpej  *	Initialize the callout facility, called at system startup time.
    290  1.36        ad  *	Do just enough to allow callouts to be safely registered.
    291   1.1   thorpej  */
    292   1.1   thorpej void
    293   1.1   thorpej callout_startup(void)
    294   1.1   thorpej {
    295  1.36        ad 	struct callout_cpu *cc;
    296   1.1   thorpej 	int b;
    297   1.1   thorpej 
    298  1.36        ad 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    299  1.22        ad 
    300  1.36        ad 	cc = &callout_cpu0;
    301  1.44        ad 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    302  1.36        ad 	CIRCQ_INIT(&cc->cc_todo);
    303   1.1   thorpej 	for (b = 0; b < BUCKETS; b++)
    304  1.36        ad 		CIRCQ_INIT(&cc->cc_wheel[b]);
    305  1.36        ad 	curcpu()->ci_data.cpu_callout = cc;
    306  1.22        ad }
    307  1.22        ad 
    308  1.22        ad /*
    309  1.36        ad  * callout_init_cpu:
    310  1.22        ad  *
    311  1.36        ad  *	Per-CPU initialization.
    312  1.22        ad  */
    313  1.47    martin CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    314  1.47    martin 
    315  1.22        ad void
    316  1.36        ad callout_init_cpu(struct cpu_info *ci)
    317  1.22        ad {
    318  1.36        ad 	struct callout_cpu *cc;
    319  1.36        ad 	int b;
    320  1.22        ad 
    321  1.36        ad 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    322  1.36        ad 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    323  1.44        ad 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    324  1.36        ad 		CIRCQ_INIT(&cc->cc_todo);
    325  1.36        ad 		for (b = 0; b < BUCKETS; b++)
    326  1.36        ad 			CIRCQ_INIT(&cc->cc_wheel[b]);
    327  1.36        ad 	} else {
    328  1.36        ad 		/* Boot CPU, one time only. */
    329  1.36        ad 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    330  1.36        ad 		    callout_softclock, NULL);
    331  1.36        ad 		if (callout_sih == NULL)
    332  1.36        ad 			panic("callout_init_cpu (2)");
    333  1.36        ad 	}
    334  1.36        ad 
    335  1.40        ad 	sleepq_init(&cc->cc_sleepq);
    336  1.36        ad 
    337  1.36        ad 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    338  1.36        ad 	    cpu_index(ci));
    339  1.36        ad 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    340  1.36        ad 	    NULL, "callout", cc->cc_name1);
    341  1.36        ad 
    342  1.36        ad 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    343  1.36        ad 	    cpu_index(ci));
    344  1.36        ad 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    345  1.36        ad 	    NULL, "callout", cc->cc_name2);
    346  1.36        ad 
    347  1.72  riastrad 	cc->cc_cpu = ci;
    348  1.36        ad 	ci->ci_data.cpu_callout = cc;
    349   1.1   thorpej }
    350   1.1   thorpej 
    351   1.1   thorpej /*
    352   1.1   thorpej  * callout_init:
    353   1.1   thorpej  *
    354  1.36        ad  *	Initialize a callout structure.  This must be quick, so we fill
    355  1.36        ad  *	only the minimum number of fields.
    356   1.1   thorpej  */
    357   1.1   thorpej void
    358  1.22        ad callout_init(callout_t *cs, u_int flags)
    359   1.1   thorpej {
    360  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    361  1.36        ad 	struct callout_cpu *cc;
    362  1.22        ad 
    363  1.22        ad 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    364   1.1   thorpej 
    365  1.72  riastrad 	SDT_PROBE2(sdt, kernel, callout, init,  cs, flags);
    366  1.72  riastrad 
    367  1.36        ad 	cc = curcpu()->ci_data.cpu_callout;
    368  1.36        ad 	c->c_func = NULL;
    369  1.22        ad 	c->c_magic = CALLOUT_MAGIC;
    370  1.36        ad 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    371  1.36        ad 		c->c_flags = flags;
    372  1.36        ad 		c->c_cpu = cc;
    373  1.36        ad 		return;
    374  1.36        ad 	}
    375  1.36        ad 	c->c_flags = flags | CALLOUT_BOUND;
    376  1.36        ad 	c->c_cpu = &callout_cpu0;
    377  1.22        ad }
    378  1.22        ad 
    379  1.22        ad /*
    380  1.22        ad  * callout_destroy:
    381  1.22        ad  *
    382  1.22        ad  *	Destroy a callout structure.  The callout must be stopped.
    383  1.22        ad  */
    384  1.22        ad void
    385  1.22        ad callout_destroy(callout_t *cs)
    386  1.22        ad {
    387  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    388  1.22        ad 
    389  1.72  riastrad 	SDT_PROBE1(sdt, kernel, callout, destroy,  cs);
    390  1.72  riastrad 
    391  1.53  christos 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
    392  1.53  christos 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
    393  1.53  christos 	    c, c->c_magic, CALLOUT_MAGIC);
    394  1.22        ad 	/*
    395  1.22        ad 	 * It's not necessary to lock in order to see the correct value
    396  1.22        ad 	 * of c->c_flags.  If the callout could potentially have been
    397  1.22        ad 	 * running, the current thread should have stopped it.
    398  1.22        ad 	 */
    399  1.48    martin 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
    400  1.59        ad 	    "pending callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    401  1.59        ad 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    402  1.75       pho 	KASSERTMSG(!callout_running_somewhere_else(c, c->c_cpu),
    403  1.59        ad 	    "running callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    404  1.48    martin 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    405  1.22        ad 	c->c_magic = 0;
    406   1.1   thorpej }
    407   1.1   thorpej 
    408   1.1   thorpej /*
    409  1.29     joerg  * callout_schedule_locked:
    410   1.1   thorpej  *
    411  1.29     joerg  *	Schedule a callout to run.  The function and argument must
    412  1.29     joerg  *	already be set in the callout structure.  Must be called with
    413  1.29     joerg  *	callout_lock.
    414   1.1   thorpej  */
    415  1.29     joerg static void
    416  1.36        ad callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    417   1.1   thorpej {
    418  1.36        ad 	struct callout_cpu *cc, *occ;
    419  1.20        ad 	int old_time;
    420   1.1   thorpej 
    421  1.72  riastrad 	SDT_PROBE5(sdt, kernel, callout, schedule,
    422  1.72  riastrad 	    c, c->c_func, c->c_arg, c->c_flags, to_ticks);
    423  1.72  riastrad 
    424   1.1   thorpej 	KASSERT(to_ticks >= 0);
    425  1.29     joerg 	KASSERT(c->c_func != NULL);
    426   1.1   thorpej 
    427   1.1   thorpej 	/* Initialize the time here, it won't change. */
    428  1.36        ad 	occ = c->c_cpu;
    429  1.43        ad 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    430   1.1   thorpej 
    431   1.1   thorpej 	/*
    432   1.1   thorpej 	 * If this timeout is already scheduled and now is moved
    433  1.36        ad 	 * earlier, reschedule it now.  Otherwise leave it in place
    434   1.1   thorpej 	 * and let it be rescheduled later.
    435   1.1   thorpej 	 */
    436  1.22        ad 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    437  1.36        ad 		/* Leave on existing CPU. */
    438  1.36        ad 		old_time = c->c_time;
    439  1.36        ad 		c->c_time = to_ticks + occ->cc_ticks;
    440   1.4      yamt 		if (c->c_time - old_time < 0) {
    441   1.1   thorpej 			CIRCQ_REMOVE(&c->c_list);
    442  1.36        ad 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    443   1.1   thorpej 		}
    444  1.36        ad 		mutex_spin_exit(lock);
    445  1.36        ad 		return;
    446  1.36        ad 	}
    447  1.36        ad 
    448  1.36        ad 	cc = curcpu()->ci_data.cpu_callout;
    449  1.36        ad 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    450  1.44        ad 	    !mutex_tryenter(cc->cc_lock)) {
    451  1.36        ad 		/* Leave on existing CPU. */
    452  1.36        ad 		c->c_time = to_ticks + occ->cc_ticks;
    453  1.36        ad 		c->c_flags |= CALLOUT_PENDING;
    454  1.36        ad 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    455   1.1   thorpej 	} else {
    456  1.36        ad 		/* Move to this CPU. */
    457  1.36        ad 		c->c_cpu = cc;
    458  1.36        ad 		c->c_time = to_ticks + cc->cc_ticks;
    459   1.1   thorpej 		c->c_flags |= CALLOUT_PENDING;
    460  1.36        ad 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    461  1.44        ad 		mutex_spin_exit(cc->cc_lock);
    462  1.72  riastrad 		SDT_PROBE6(sdt, kernel, callout, migrate,
    463  1.72  riastrad 		    c, c->c_func, c->c_arg, c->c_flags,
    464  1.72  riastrad 		    occ->cc_cpu, cc->cc_cpu);
    465   1.1   thorpej 	}
    466  1.36        ad 	mutex_spin_exit(lock);
    467  1.29     joerg }
    468  1.29     joerg 
    469  1.29     joerg /*
    470  1.29     joerg  * callout_reset:
    471  1.29     joerg  *
    472  1.29     joerg  *	Reset a callout structure with a new function and argument, and
    473  1.29     joerg  *	schedule it to run.
    474  1.29     joerg  */
    475  1.29     joerg void
    476  1.29     joerg callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    477  1.29     joerg {
    478  1.29     joerg 	callout_impl_t *c = (callout_impl_t *)cs;
    479  1.36        ad 	kmutex_t *lock;
    480  1.29     joerg 
    481  1.29     joerg 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    482  1.42     rmind 	KASSERT(func != NULL);
    483  1.29     joerg 
    484  1.36        ad 	lock = callout_lock(c);
    485  1.72  riastrad 	SDT_PROBE4(sdt, kernel, callout, setfunc,  cs, func, arg, c->c_flags);
    486  1.29     joerg 	c->c_func = func;
    487  1.29     joerg 	c->c_arg = arg;
    488  1.36        ad 	callout_schedule_locked(c, lock, to_ticks);
    489   1.1   thorpej }
    490   1.1   thorpej 
    491   1.1   thorpej /*
    492   1.1   thorpej  * callout_schedule:
    493   1.1   thorpej  *
    494   1.1   thorpej  *	Schedule a callout to run.  The function and argument must
    495   1.1   thorpej  *	already be set in the callout structure.
    496   1.1   thorpej  */
    497   1.1   thorpej void
    498  1.22        ad callout_schedule(callout_t *cs, int to_ticks)
    499   1.1   thorpej {
    500  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    501  1.36        ad 	kmutex_t *lock;
    502   1.1   thorpej 
    503  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    504   1.1   thorpej 
    505  1.36        ad 	lock = callout_lock(c);
    506  1.36        ad 	callout_schedule_locked(c, lock, to_ticks);
    507   1.1   thorpej }
    508   1.1   thorpej 
    509   1.1   thorpej /*
    510   1.1   thorpej  * callout_stop:
    511   1.1   thorpej  *
    512  1.36        ad  *	Try to cancel a pending callout.  It may be too late: the callout
    513  1.36        ad  *	could be running on another CPU.  If called from interrupt context,
    514  1.36        ad  *	the callout could already be in progress at a lower priority.
    515   1.1   thorpej  */
    516  1.22        ad bool
    517  1.22        ad callout_stop(callout_t *cs)
    518   1.1   thorpej {
    519  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    520  1.36        ad 	kmutex_t *lock;
    521  1.22        ad 	bool expired;
    522  1.22        ad 
    523  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    524   1.1   thorpej 
    525  1.36        ad 	lock = callout_lock(c);
    526  1.20        ad 
    527  1.22        ad 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    528   1.1   thorpej 		CIRCQ_REMOVE(&c->c_list);
    529  1.32        ad 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    530  1.32        ad 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    531  1.32        ad 
    532  1.72  riastrad 	SDT_PROBE5(sdt, kernel, callout, stop,
    533  1.72  riastrad 	    c, c->c_func, c->c_arg, c->c_flags, expired);
    534  1.72  riastrad 
    535  1.36        ad 	mutex_spin_exit(lock);
    536  1.32        ad 
    537  1.32        ad 	return expired;
    538  1.32        ad }
    539  1.32        ad 
    540  1.32        ad /*
    541  1.32        ad  * callout_halt:
    542  1.32        ad  *
    543  1.32        ad  *	Cancel a pending callout.  If in-flight, block until it completes.
    544  1.36        ad  *	May not be called from a hard interrupt handler.  If the callout
    545  1.36        ad  * 	can take locks, the caller of callout_halt() must not hold any of
    546  1.37        ad  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    547  1.37        ad  *	non-NULL and we must wait for the callout to complete, it will be
    548  1.37        ad  *	released and re-acquired before returning.
    549  1.32        ad  */
    550  1.32        ad bool
    551  1.38        ad callout_halt(callout_t *cs, void *interlock)
    552  1.32        ad {
    553  1.32        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    554  1.57        ad 	kmutex_t *lock;
    555  1.32        ad 
    556  1.32        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    557  1.32        ad 	KASSERT(!cpu_intr_p());
    558  1.54     ozaki 	KASSERT(interlock == NULL || mutex_owned(interlock));
    559  1.32        ad 
    560  1.57        ad 	/* Fast path. */
    561  1.36        ad 	lock = callout_lock(c);
    562  1.72  riastrad 	SDT_PROBE4(sdt, kernel, callout, halt,
    563  1.72  riastrad 	    c, c->c_func, c->c_arg, c->c_flags);
    564  1.74       pho 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    565  1.57        ad 		CIRCQ_REMOVE(&c->c_list);
    566  1.74       pho 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    567  1.75       pho 	if (__predict_false(callout_running_somewhere_else(c, c->c_cpu))) {
    568  1.57        ad 		callout_wait(c, interlock, lock);
    569  1.57        ad 		return true;
    570  1.57        ad 	}
    571  1.72  riastrad 	SDT_PROBE5(sdt, kernel, callout, halt__done,
    572  1.72  riastrad 	    c, c->c_func, c->c_arg, c->c_flags, /*expired*/false);
    573  1.57        ad 	mutex_spin_exit(lock);
    574  1.57        ad 	return false;
    575  1.57        ad }
    576   1.1   thorpej 
    577  1.57        ad /*
    578  1.57        ad  * callout_wait:
    579  1.57        ad  *
    580  1.57        ad  *	Slow path for callout_halt().  Deliberately marked __noinline to
    581  1.57        ad  *	prevent unneeded overhead in the caller.
    582  1.57        ad  */
    583  1.57        ad static void __noinline
    584  1.57        ad callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
    585  1.57        ad {
    586  1.57        ad 	struct callout_cpu *cc;
    587  1.57        ad 	struct lwp *l;
    588  1.57        ad 	kmutex_t *relock;
    589  1.78        ad 	int nlocks;
    590   1.1   thorpej 
    591  1.32        ad 	l = curlwp;
    592  1.57        ad 	relock = NULL;
    593  1.36        ad 	for (;;) {
    594  1.58        ad 		/*
    595  1.58        ad 		 * At this point we know the callout is not pending, but it
    596  1.58        ad 		 * could be running on a CPU somewhere.  That can be curcpu
    597  1.58        ad 		 * in a few cases:
    598  1.58        ad 		 *
    599  1.58        ad 		 * - curlwp is a higher priority soft interrupt
    600  1.58        ad 		 * - the callout blocked on a lock and is currently asleep
    601  1.58        ad 		 * - the callout itself has called callout_halt() (nice!)
    602  1.58        ad 		 */
    603  1.36        ad 		cc = c->c_cpu;
    604  1.75       pho 		if (__predict_true(!callout_running_somewhere_else(c, cc)))
    605  1.36        ad 			break;
    606  1.58        ad 
    607  1.58        ad 		/* It's running - need to wait for it to complete. */
    608  1.37        ad 		if (interlock != NULL) {
    609  1.37        ad 			/*
    610  1.37        ad 			 * Avoid potential scheduler lock order problems by
    611  1.37        ad 			 * dropping the interlock without the callout lock
    612  1.58        ad 			 * held; then retry.
    613  1.37        ad 			 */
    614  1.37        ad 			mutex_spin_exit(lock);
    615  1.37        ad 			mutex_exit(interlock);
    616  1.37        ad 			relock = interlock;
    617  1.37        ad 			interlock = NULL;
    618  1.37        ad 		} else {
    619  1.37        ad 			/* XXX Better to do priority inheritance. */
    620  1.37        ad 			KASSERT(l->l_wchan == NULL);
    621  1.37        ad 			cc->cc_nwait++;
    622  1.37        ad 			cc->cc_ev_block.ev_count++;
    623  1.78        ad 			nlocks = sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    624  1.37        ad 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    625  1.79        ad 			    &callout_syncobj, false);
    626  1.79        ad 			sleepq_block(0, false, &callout_syncobj, nlocks);
    627  1.37        ad 		}
    628  1.58        ad 
    629  1.58        ad 		/*
    630  1.71  riastrad 		 * Re-lock the callout and check the state of play again.
    631  1.58        ad 		 * It's a common design pattern for callouts to re-schedule
    632  1.58        ad 		 * themselves so put a stop to it again if needed.
    633  1.58        ad 		 */
    634  1.36        ad 		lock = callout_lock(c);
    635  1.58        ad 		if ((c->c_flags & CALLOUT_PENDING) != 0)
    636  1.58        ad 			CIRCQ_REMOVE(&c->c_list);
    637  1.58        ad 		c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    638  1.32        ad 	}
    639  1.32        ad 
    640  1.72  riastrad 	SDT_PROBE5(sdt, kernel, callout, halt__done,
    641  1.72  riastrad 	    c, c->c_func, c->c_arg, c->c_flags, /*expired*/true);
    642  1.72  riastrad 
    643  1.36        ad 	mutex_spin_exit(lock);
    644  1.37        ad 	if (__predict_false(relock != NULL))
    645  1.37        ad 		mutex_enter(relock);
    646  1.22        ad }
    647  1.22        ad 
    648  1.36        ad #ifdef notyet
    649  1.36        ad /*
    650  1.36        ad  * callout_bind:
    651  1.36        ad  *
    652  1.36        ad  *	Bind a callout so that it will only execute on one CPU.
    653  1.36        ad  *	The callout must be stopped, and must be MPSAFE.
    654  1.36        ad  *
    655  1.36        ad  *	XXX Disabled for now until it is decided how to handle
    656  1.36        ad  *	offlined CPUs.  We may want weak+strong binding.
    657  1.36        ad  */
    658  1.36        ad void
    659  1.36        ad callout_bind(callout_t *cs, struct cpu_info *ci)
    660  1.36        ad {
    661  1.36        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    662  1.36        ad 	struct callout_cpu *cc;
    663  1.36        ad 	kmutex_t *lock;
    664  1.36        ad 
    665  1.36        ad 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    666  1.36        ad 	KASSERT(c->c_cpu->cc_active != c);
    667  1.36        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    668  1.36        ad 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    669  1.36        ad 
    670  1.36        ad 	lock = callout_lock(c);
    671  1.36        ad 	cc = ci->ci_data.cpu_callout;
    672  1.36        ad 	c->c_flags |= CALLOUT_BOUND;
    673  1.36        ad 	if (c->c_cpu != cc) {
    674  1.36        ad 		/*
    675  1.36        ad 		 * Assigning c_cpu effectively unlocks the callout
    676  1.36        ad 		 * structure, as we don't hold the new CPU's lock.
    677  1.36        ad 		 * Issue memory barrier to prevent accesses being
    678  1.36        ad 		 * reordered.
    679  1.36        ad 		 */
    680  1.36        ad 		membar_exit();
    681  1.36        ad 		c->c_cpu = cc;
    682  1.36        ad 	}
    683  1.36        ad 	mutex_spin_exit(lock);
    684  1.36        ad }
    685  1.36        ad #endif
    686  1.36        ad 
    687  1.22        ad void
    688  1.22        ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    689  1.22        ad {
    690  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    691  1.36        ad 	kmutex_t *lock;
    692  1.22        ad 
    693  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    694  1.42     rmind 	KASSERT(func != NULL);
    695  1.22        ad 
    696  1.36        ad 	lock = callout_lock(c);
    697  1.72  riastrad 	SDT_PROBE4(sdt, kernel, callout, setfunc,  cs, func, arg, c->c_flags);
    698  1.22        ad 	c->c_func = func;
    699  1.22        ad 	c->c_arg = arg;
    700  1.36        ad 	mutex_spin_exit(lock);
    701  1.22        ad }
    702  1.22        ad 
    703  1.22        ad bool
    704  1.22        ad callout_expired(callout_t *cs)
    705  1.22        ad {
    706  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    707  1.36        ad 	kmutex_t *lock;
    708  1.22        ad 	bool rv;
    709  1.22        ad 
    710  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    711  1.22        ad 
    712  1.36        ad 	lock = callout_lock(c);
    713  1.22        ad 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    714  1.36        ad 	mutex_spin_exit(lock);
    715  1.22        ad 
    716  1.22        ad 	return rv;
    717  1.22        ad }
    718  1.22        ad 
    719  1.22        ad bool
    720  1.22        ad callout_active(callout_t *cs)
    721  1.22        ad {
    722  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    723  1.36        ad 	kmutex_t *lock;
    724  1.22        ad 	bool rv;
    725  1.22        ad 
    726  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    727  1.22        ad 
    728  1.36        ad 	lock = callout_lock(c);
    729  1.22        ad 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    730  1.36        ad 	mutex_spin_exit(lock);
    731  1.22        ad 
    732  1.22        ad 	return rv;
    733  1.22        ad }
    734  1.22        ad 
    735  1.22        ad bool
    736  1.22        ad callout_pending(callout_t *cs)
    737  1.22        ad {
    738  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    739  1.36        ad 	kmutex_t *lock;
    740  1.22        ad 	bool rv;
    741  1.22        ad 
    742  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    743  1.22        ad 
    744  1.36        ad 	lock = callout_lock(c);
    745  1.22        ad 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    746  1.36        ad 	mutex_spin_exit(lock);
    747  1.22        ad 
    748  1.22        ad 	return rv;
    749  1.22        ad }
    750  1.22        ad 
    751  1.22        ad bool
    752  1.22        ad callout_invoking(callout_t *cs)
    753  1.22        ad {
    754  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    755  1.36        ad 	kmutex_t *lock;
    756  1.22        ad 	bool rv;
    757  1.22        ad 
    758  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    759  1.22        ad 
    760  1.36        ad 	lock = callout_lock(c);
    761  1.22        ad 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    762  1.36        ad 	mutex_spin_exit(lock);
    763  1.22        ad 
    764  1.22        ad 	return rv;
    765  1.22        ad }
    766  1.22        ad 
    767  1.22        ad void
    768  1.22        ad callout_ack(callout_t *cs)
    769  1.22        ad {
    770  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    771  1.36        ad 	kmutex_t *lock;
    772  1.22        ad 
    773  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    774  1.22        ad 
    775  1.36        ad 	lock = callout_lock(c);
    776  1.22        ad 	c->c_flags &= ~CALLOUT_INVOKING;
    777  1.36        ad 	mutex_spin_exit(lock);
    778   1.1   thorpej }
    779   1.1   thorpej 
    780   1.1   thorpej /*
    781  1.36        ad  * callout_hardclock:
    782  1.36        ad  *
    783  1.36        ad  *	Called from hardclock() once every tick.  We schedule a soft
    784  1.36        ad  *	interrupt if there is work to be done.
    785   1.1   thorpej  */
    786  1.22        ad void
    787   1.1   thorpej callout_hardclock(void)
    788   1.1   thorpej {
    789  1.36        ad 	struct callout_cpu *cc;
    790  1.36        ad 	int needsoftclock, ticks;
    791   1.1   thorpej 
    792  1.36        ad 	cc = curcpu()->ci_data.cpu_callout;
    793  1.44        ad 	mutex_spin_enter(cc->cc_lock);
    794   1.1   thorpej 
    795  1.36        ad 	ticks = ++cc->cc_ticks;
    796  1.36        ad 
    797  1.36        ad 	MOVEBUCKET(cc, 0, ticks);
    798  1.36        ad 	if (MASKWHEEL(0, ticks) == 0) {
    799  1.36        ad 		MOVEBUCKET(cc, 1, ticks);
    800  1.36        ad 		if (MASKWHEEL(1, ticks) == 0) {
    801  1.36        ad 			MOVEBUCKET(cc, 2, ticks);
    802  1.36        ad 			if (MASKWHEEL(2, ticks) == 0)
    803  1.36        ad 				MOVEBUCKET(cc, 3, ticks);
    804   1.1   thorpej 		}
    805   1.1   thorpej 	}
    806   1.1   thorpej 
    807  1.36        ad 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    808  1.44        ad 	mutex_spin_exit(cc->cc_lock);
    809   1.1   thorpej 
    810  1.22        ad 	if (needsoftclock)
    811  1.36        ad 		softint_schedule(callout_sih);
    812   1.1   thorpej }
    813   1.1   thorpej 
    814  1.36        ad /*
    815  1.36        ad  * callout_softclock:
    816  1.36        ad  *
    817  1.36        ad  *	Soft interrupt handler, scheduled above if there is work to
    818  1.36        ad  * 	be done.  Callouts are made in soft interrupt context.
    819  1.36        ad  */
    820  1.22        ad static void
    821  1.22        ad callout_softclock(void *v)
    822   1.1   thorpej {
    823  1.22        ad 	callout_impl_t *c;
    824  1.36        ad 	struct callout_cpu *cc;
    825   1.1   thorpej 	void (*func)(void *);
    826   1.1   thorpej 	void *arg;
    827  1.68  riastrad 	int mpsafe, count, ticks, delta;
    828  1.73  riastrad 	u_int flags __unused;
    829  1.22        ad 	lwp_t *l;
    830   1.1   thorpej 
    831  1.22        ad 	l = curlwp;
    832  1.36        ad 	KASSERT(l->l_cpu == curcpu());
    833  1.36        ad 	cc = l->l_cpu->ci_data.cpu_callout;
    834   1.1   thorpej 
    835  1.44        ad 	mutex_spin_enter(cc->cc_lock);
    836  1.36        ad 	cc->cc_lwp = l;
    837  1.36        ad 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    838  1.36        ad 		c = CIRCQ_FIRST(&cc->cc_todo);
    839  1.22        ad 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    840  1.22        ad 		KASSERT(c->c_func != NULL);
    841  1.36        ad 		KASSERT(c->c_cpu == cc);
    842  1.26        ad 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    843  1.26        ad 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    844   1.1   thorpej 		CIRCQ_REMOVE(&c->c_list);
    845   1.1   thorpej 
    846   1.1   thorpej 		/* If due run it, otherwise insert it into the right bucket. */
    847  1.36        ad 		ticks = cc->cc_ticks;
    848  1.56       kre 		delta = (int)((unsigned)c->c_time - (unsigned)ticks);
    849  1.56       kre 		if (delta > 0) {
    850  1.36        ad 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    851  1.36        ad 			continue;
    852  1.36        ad 		}
    853  1.56       kre 		if (delta < 0)
    854  1.36        ad 			cc->cc_ev_late.ev_count++;
    855  1.36        ad 
    856  1.43        ad 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    857  1.43        ad 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    858  1.36        ad 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    859  1.36        ad 		func = c->c_func;
    860  1.36        ad 		arg = c->c_arg;
    861  1.36        ad 		cc->cc_active = c;
    862  1.72  riastrad 		flags = c->c_flags;
    863  1.36        ad 
    864  1.44        ad 		mutex_spin_exit(cc->cc_lock);
    865  1.42     rmind 		KASSERT(func != NULL);
    866  1.72  riastrad 		SDT_PROBE4(sdt, kernel, callout, entry,  c, func, arg, flags);
    867  1.44        ad 		if (__predict_false(!mpsafe)) {
    868  1.36        ad 			KERNEL_LOCK(1, NULL);
    869  1.36        ad 			(*func)(arg);
    870  1.36        ad 			KERNEL_UNLOCK_ONE(NULL);
    871  1.36        ad 		} else
    872  1.36        ad 			(*func)(arg);
    873  1.72  riastrad 		SDT_PROBE4(sdt, kernel, callout, return,  c, func, arg, flags);
    874  1.69  riastrad 		KASSERTMSG(l->l_blcnt == 0,
    875  1.69  riastrad 		    "callout %p func %p leaked %d biglocks",
    876  1.69  riastrad 		    c, func, l->l_blcnt);
    877  1.44        ad 		mutex_spin_enter(cc->cc_lock);
    878  1.36        ad 
    879  1.36        ad 		/*
    880  1.36        ad 		 * We can't touch 'c' here because it might be
    881  1.36        ad 		 * freed already.  If LWPs waiting for callout
    882  1.36        ad 		 * to complete, awaken them.
    883  1.36        ad 		 */
    884  1.36        ad 		cc->cc_active = NULL;
    885  1.36        ad 		if ((count = cc->cc_nwait) != 0) {
    886  1.36        ad 			cc->cc_nwait = 0;
    887  1.36        ad 			/* sleepq_wake() drops the lock. */
    888  1.44        ad 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    889  1.44        ad 			mutex_spin_enter(cc->cc_lock);
    890   1.1   thorpej 		}
    891   1.1   thorpej 	}
    892  1.36        ad 	cc->cc_lwp = NULL;
    893  1.44        ad 	mutex_spin_exit(cc->cc_lock);
    894   1.1   thorpej }
    895  1.63       rin #endif /* !CRASH */
    896   1.1   thorpej 
    897   1.1   thorpej #ifdef DDB
    898   1.1   thorpej static void
    899  1.51  christos db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
    900  1.51  christos     struct callout_circq *bucket)
    901   1.1   thorpej {
    902  1.49  christos 	callout_impl_t *c, ci;
    903   1.1   thorpej 	db_expr_t offset;
    904  1.15  christos 	const char *name;
    905  1.15  christos 	static char question[] = "?";
    906  1.36        ad 	int b;
    907   1.1   thorpej 
    908  1.51  christos 	if (CIRCQ_LAST(bucket, kbucket))
    909  1.11       scw 		return;
    910  1.11       scw 
    911  1.51  christos 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    912  1.49  christos 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
    913  1.49  christos 		c = &ci;
    914  1.10       scw 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    915  1.10       scw 		    &offset);
    916  1.15  christos 		name = name ? name : question;
    917  1.36        ad 		b = (bucket - cc->cc_wheel);
    918  1.36        ad 		if (b < 0)
    919  1.36        ad 			b = -WHEELSIZE;
    920  1.36        ad 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    921  1.36        ad 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    922  1.36        ad 		    (u_long)c->c_arg, name);
    923  1.51  christos 		if (CIRCQ_LAST(&c->c_list, kbucket))
    924  1.11       scw 			break;
    925   1.1   thorpej 	}
    926   1.1   thorpej }
    927   1.1   thorpej 
    928   1.1   thorpej void
    929  1.21      matt db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    930   1.1   thorpej {
    931  1.64       rin 	struct callout_cpu *cc;
    932  1.64       rin 	struct cpu_info *ci;
    933   1.1   thorpej 	int b;
    934   1.1   thorpej 
    935  1.49  christos #ifndef CRASH
    936  1.60      maxv 	db_printf("hardclock_ticks now: %d\n", getticks());
    937  1.49  christos #endif
    938   1.1   thorpej 	db_printf("    ticks  wheel               arg  func\n");
    939   1.1   thorpej 
    940   1.1   thorpej 	/*
    941   1.1   thorpej 	 * Don't lock the callwheel; all the other CPUs are paused
    942   1.1   thorpej 	 * anyhow, and we might be called in a circumstance where
    943   1.1   thorpej 	 * some other CPU was paused while holding the lock.
    944   1.1   thorpej 	 */
    945  1.49  christos 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    946  1.66       rin 		db_read_bytes((db_addr_t)ci +
    947  1.66       rin 		    offsetof(struct cpu_info, ci_data.cpu_callout),
    948  1.66       rin 		    sizeof(cc), (char *)&cc);
    949  1.64       rin 		db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    950  1.64       rin 		db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
    951  1.36        ad 	}
    952  1.36        ad 	for (b = 0; b < BUCKETS; b++) {
    953  1.49  christos 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    954  1.66       rin 			db_read_bytes((db_addr_t)ci +
    955  1.66       rin 			    offsetof(struct cpu_info, ci_data.cpu_callout),
    956  1.66       rin 			    sizeof(cc), (char *)&cc);
    957  1.64       rin 			db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    958  1.64       rin 			db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
    959  1.64       rin 			    &ccb.cc_wheel[b]);
    960  1.36        ad 		}
    961  1.36        ad 	}
    962   1.1   thorpej }
    963   1.1   thorpej #endif /* DDB */
    964