kern_timeout.c revision 1.24 1 1.24 ad /* $NetBSD: kern_timeout.c,v 1.24 2007/07/10 21:26:00 ad Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*-
4 1.22 ad * Copyright (c) 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.22 ad * by Jason R. Thorpe, and by Andrew Doran.
9 1.1 thorpej *
10 1.1 thorpej * Redistribution and use in source and binary forms, with or without
11 1.1 thorpej * modification, are permitted provided that the following conditions
12 1.1 thorpej * are met:
13 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.1 thorpej * notice, this list of conditions and the following disclaimer.
15 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.1 thorpej * documentation and/or other materials provided with the distribution.
18 1.1 thorpej * 3. All advertising materials mentioning features or use of this software
19 1.1 thorpej * must display the following acknowledgement:
20 1.1 thorpej * This product includes software developed by the NetBSD
21 1.1 thorpej * Foundation, Inc. and its contributors.
22 1.1 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 thorpej * contributors may be used to endorse or promote products derived
24 1.1 thorpej * from this software without specific prior written permission.
25 1.1 thorpej *
26 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
37 1.1 thorpej */
38 1.1 thorpej
39 1.1 thorpej /*
40 1.1 thorpej * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
41 1.1 thorpej * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
42 1.14 perry * All rights reserved.
43 1.14 perry *
44 1.14 perry * Redistribution and use in source and binary forms, with or without
45 1.14 perry * modification, are permitted provided that the following conditions
46 1.14 perry * are met:
47 1.1 thorpej *
48 1.14 perry * 1. Redistributions of source code must retain the above copyright
49 1.14 perry * notice, this list of conditions and the following disclaimer.
50 1.14 perry * 2. Redistributions in binary form must reproduce the above copyright
51 1.14 perry * notice, this list of conditions and the following disclaimer in the
52 1.14 perry * documentation and/or other materials provided with the distribution.
53 1.1 thorpej * 3. The name of the author may not be used to endorse or promote products
54 1.14 perry * derived from this software without specific prior written permission.
55 1.1 thorpej *
56 1.1 thorpej * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
57 1.1 thorpej * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
58 1.1 thorpej * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
59 1.1 thorpej * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
60 1.1 thorpej * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
61 1.1 thorpej * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
62 1.1 thorpej * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
63 1.1 thorpej * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
64 1.1 thorpej * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
65 1.14 perry * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 1.1 thorpej */
67 1.7 lukem
68 1.7 lukem #include <sys/cdefs.h>
69 1.24 ad __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.24 2007/07/10 21:26:00 ad Exp $");
70 1.1 thorpej
71 1.1 thorpej /*
72 1.22 ad * Timeouts are kept in a hierarchical timing wheel. The c_time is the
73 1.22 ad * value of the global variable "hardclock_ticks" when the timeout should
74 1.22 ad * be called. There are four levels with 256 buckets each. See 'Scheme 7'
75 1.22 ad * in "Hashed and Hierarchical Timing Wheels: Efficient Data Structures
76 1.22 ad * for Implementing a Timer Facility" by George Varghese and Tony Lauck.
77 1.22 ad *
78 1.22 ad * Some of the "math" in here is a bit tricky. We have to beware of
79 1.22 ad * wrapping ints.
80 1.22 ad *
81 1.22 ad * We use the fact that any element added to the queue must be added with
82 1.22 ad * a positive time. That means that any element `to' on the queue cannot
83 1.22 ad * be scheduled to timeout further in time than INT_MAX, but c->c_time can
84 1.22 ad * be positive or negative so comparing it with anything is dangerous.
85 1.22 ad * The only way we can use the c->c_time value in any predictable way is
86 1.22 ad * when we calculate how far in the future `to' will timeout - "c->c_time
87 1.22 ad * - hardclock_ticks". The result will always be positive for future
88 1.22 ad * timeouts and 0 or negative for due timeouts.
89 1.1 thorpej */
90 1.1 thorpej
91 1.24 ad #define _CALLOUT_PRIVATE
92 1.24 ad
93 1.1 thorpej #include <sys/param.h>
94 1.1 thorpej #include <sys/systm.h>
95 1.1 thorpej #include <sys/kernel.h>
96 1.1 thorpej #include <sys/lock.h>
97 1.1 thorpej #include <sys/callout.h>
98 1.20 ad #include <sys/mutex.h>
99 1.22 ad #include <sys/proc.h>
100 1.22 ad #include <sys/sleepq.h>
101 1.22 ad #include <sys/syncobj.h>
102 1.22 ad #include <sys/evcnt.h>
103 1.22 ad
104 1.22 ad #include <machine/intr.h>
105 1.1 thorpej
106 1.1 thorpej #ifdef DDB
107 1.1 thorpej #include <machine/db_machdep.h>
108 1.1 thorpej #include <ddb/db_interface.h>
109 1.1 thorpej #include <ddb/db_access.h>
110 1.1 thorpej #include <ddb/db_sym.h>
111 1.1 thorpej #include <ddb/db_output.h>
112 1.1 thorpej #endif
113 1.1 thorpej
114 1.22 ad #define BUCKETS 1024
115 1.22 ad #define WHEELSIZE 256
116 1.22 ad #define WHEELMASK 255
117 1.22 ad #define WHEELBITS 8
118 1.22 ad
119 1.1 thorpej static struct callout_circq timeout_wheel[BUCKETS]; /* Queues of timeouts */
120 1.1 thorpej static struct callout_circq timeout_todo; /* Worklist */
121 1.1 thorpej
122 1.1 thorpej #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
123 1.1 thorpej
124 1.1 thorpej #define BUCKET(rel, abs) \
125 1.1 thorpej (((rel) <= (1 << (2*WHEELBITS))) \
126 1.1 thorpej ? ((rel) <= (1 << WHEELBITS)) \
127 1.3 drochner ? &timeout_wheel[MASKWHEEL(0, (abs))] \
128 1.3 drochner : &timeout_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
129 1.1 thorpej : ((rel) <= (1 << (3*WHEELBITS))) \
130 1.3 drochner ? &timeout_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
131 1.3 drochner : &timeout_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
132 1.1 thorpej
133 1.1 thorpej #define MOVEBUCKET(wheel, time) \
134 1.1 thorpej CIRCQ_APPEND(&timeout_todo, \
135 1.1 thorpej &timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
136 1.1 thorpej
137 1.1 thorpej /*
138 1.1 thorpej * Circular queue definitions.
139 1.1 thorpej */
140 1.1 thorpej
141 1.11 scw #define CIRCQ_INIT(list) \
142 1.1 thorpej do { \
143 1.11 scw (list)->cq_next_l = (list); \
144 1.11 scw (list)->cq_prev_l = (list); \
145 1.1 thorpej } while (/*CONSTCOND*/0)
146 1.1 thorpej
147 1.1 thorpej #define CIRCQ_INSERT(elem, list) \
148 1.1 thorpej do { \
149 1.11 scw (elem)->cq_prev_e = (list)->cq_prev_e; \
150 1.11 scw (elem)->cq_next_l = (list); \
151 1.11 scw (list)->cq_prev_l->cq_next_l = (elem); \
152 1.11 scw (list)->cq_prev_l = (elem); \
153 1.1 thorpej } while (/*CONSTCOND*/0)
154 1.1 thorpej
155 1.1 thorpej #define CIRCQ_APPEND(fst, snd) \
156 1.1 thorpej do { \
157 1.1 thorpej if (!CIRCQ_EMPTY(snd)) { \
158 1.11 scw (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
159 1.11 scw (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
160 1.11 scw (snd)->cq_prev_l->cq_next_l = (fst); \
161 1.11 scw (fst)->cq_prev_l = (snd)->cq_prev_l; \
162 1.1 thorpej CIRCQ_INIT(snd); \
163 1.1 thorpej } \
164 1.1 thorpej } while (/*CONSTCOND*/0)
165 1.1 thorpej
166 1.1 thorpej #define CIRCQ_REMOVE(elem) \
167 1.1 thorpej do { \
168 1.11 scw (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
169 1.11 scw (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
170 1.1 thorpej } while (/*CONSTCOND*/0)
171 1.1 thorpej
172 1.11 scw #define CIRCQ_FIRST(list) ((list)->cq_next_e)
173 1.11 scw #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
174 1.11 scw #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
175 1.11 scw #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
176 1.1 thorpej
177 1.22 ad static void callout_softclock(void *);
178 1.22 ad
179 1.1 thorpej /*
180 1.22 ad * All wheels are locked with the same lock (which must also block out
181 1.22 ad * all interrupts). Eventually this should become per-CPU.
182 1.1 thorpej */
183 1.22 ad kmutex_t callout_lock;
184 1.22 ad sleepq_t callout_sleepq;
185 1.22 ad void *callout_si;
186 1.1 thorpej
187 1.5 thorpej static struct evcnt callout_ev_late;
188 1.22 ad static struct evcnt callout_ev_block;
189 1.5 thorpej
190 1.1 thorpej /*
191 1.20 ad * callout_barrier:
192 1.20 ad *
193 1.22 ad * If the callout is already running, wait until it completes.
194 1.22 ad * XXX This should do priority inheritance.
195 1.20 ad */
196 1.22 ad static void
197 1.22 ad callout_barrier(callout_impl_t *c)
198 1.20 ad {
199 1.22 ad extern syncobj_t sleep_syncobj;
200 1.22 ad struct cpu_info *ci;
201 1.22 ad struct lwp *l;
202 1.22 ad
203 1.22 ad l = curlwp;
204 1.22 ad
205 1.22 ad if ((c->c_flags & CALLOUT_MPSAFE) == 0) {
206 1.22 ad /*
207 1.22 ad * Note: we must be called with the kernel lock held,
208 1.22 ad * as we use it to synchronize with callout_softclock().
209 1.22 ad */
210 1.22 ad ci = c->c_oncpu;
211 1.22 ad ci->ci_data.cpu_callout_cancel = c;
212 1.22 ad return;
213 1.22 ad }
214 1.20 ad
215 1.22 ad while ((ci = c->c_oncpu) != NULL && ci->ci_data.cpu_callout == c) {
216 1.22 ad KASSERT(l->l_wchan == NULL);
217 1.20 ad
218 1.22 ad ci->ci_data.cpu_callout_nwait++;
219 1.22 ad callout_ev_block.ev_count++;
220 1.22 ad
221 1.22 ad lwp_lock(l);
222 1.22 ad lwp_unlock_to(l, &callout_lock);
223 1.22 ad sleepq_enqueue(&callout_sleepq, sched_kpri(l), ci,
224 1.22 ad "callout", &sleep_syncobj);
225 1.22 ad sleepq_block(0, false);
226 1.22 ad mutex_spin_enter(&callout_lock);
227 1.20 ad }
228 1.22 ad }
229 1.22 ad
230 1.22 ad /*
231 1.22 ad * callout_running:
232 1.22 ad *
233 1.22 ad * Return non-zero if callout 'c' is currently executing.
234 1.22 ad */
235 1.22 ad static inline bool
236 1.22 ad callout_running(callout_impl_t *c)
237 1.22 ad {
238 1.22 ad struct cpu_info *ci;
239 1.22 ad
240 1.22 ad if ((ci = c->c_oncpu) == NULL)
241 1.22 ad return false;
242 1.22 ad if (ci->ci_data.cpu_callout != c)
243 1.22 ad return false;
244 1.22 ad if (c->c_onlwp == curlwp)
245 1.22 ad return false;
246 1.22 ad return true;
247 1.20 ad }
248 1.20 ad
249 1.20 ad /*
250 1.1 thorpej * callout_startup:
251 1.1 thorpej *
252 1.1 thorpej * Initialize the callout facility, called at system startup time.
253 1.1 thorpej */
254 1.1 thorpej void
255 1.1 thorpej callout_startup(void)
256 1.1 thorpej {
257 1.1 thorpej int b;
258 1.1 thorpej
259 1.22 ad KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
260 1.22 ad
261 1.1 thorpej CIRCQ_INIT(&timeout_todo);
262 1.1 thorpej for (b = 0; b < BUCKETS; b++)
263 1.1 thorpej CIRCQ_INIT(&timeout_wheel[b]);
264 1.5 thorpej
265 1.22 ad mutex_init(&callout_lock, MUTEX_SPIN, IPL_SCHED);
266 1.22 ad sleepq_init(&callout_sleepq, &callout_lock);
267 1.22 ad
268 1.5 thorpej evcnt_attach_dynamic(&callout_ev_late, EVCNT_TYPE_MISC,
269 1.5 thorpej NULL, "callout", "late");
270 1.22 ad evcnt_attach_dynamic(&callout_ev_block, EVCNT_TYPE_MISC,
271 1.22 ad NULL, "callout", "block waiting");
272 1.22 ad }
273 1.22 ad
274 1.22 ad /*
275 1.22 ad * callout_startup2:
276 1.22 ad *
277 1.22 ad * Complete initialization once soft interrupts are available.
278 1.22 ad */
279 1.22 ad void
280 1.22 ad callout_startup2(void)
281 1.22 ad {
282 1.22 ad
283 1.22 ad callout_si = softintr_establish(IPL_SOFTCLOCK,
284 1.22 ad callout_softclock, NULL);
285 1.22 ad if (callout_si == NULL)
286 1.22 ad panic("callout_startup2: unable to register softclock intr");
287 1.1 thorpej }
288 1.1 thorpej
289 1.1 thorpej /*
290 1.1 thorpej * callout_init:
291 1.1 thorpej *
292 1.1 thorpej * Initialize a callout structure.
293 1.1 thorpej */
294 1.1 thorpej void
295 1.22 ad callout_init(callout_t *cs, u_int flags)
296 1.1 thorpej {
297 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
298 1.22 ad
299 1.22 ad KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
300 1.1 thorpej
301 1.1 thorpej memset(c, 0, sizeof(*c));
302 1.22 ad c->c_flags = flags;
303 1.22 ad c->c_magic = CALLOUT_MAGIC;
304 1.22 ad }
305 1.22 ad
306 1.22 ad /*
307 1.22 ad * callout_destroy:
308 1.22 ad *
309 1.22 ad * Destroy a callout structure. The callout must be stopped.
310 1.22 ad */
311 1.22 ad void
312 1.22 ad callout_destroy(callout_t *cs)
313 1.22 ad {
314 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
315 1.22 ad
316 1.22 ad /*
317 1.22 ad * It's not necessary to lock in order to see the correct value
318 1.22 ad * of c->c_flags. If the callout could potentially have been
319 1.22 ad * running, the current thread should have stopped it.
320 1.22 ad */
321 1.22 ad KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
322 1.22 ad if (c->c_oncpu != NULL) {
323 1.22 ad KASSERT(
324 1.22 ad ((struct cpu_info *)c->c_oncpu)->ci_data.cpu_callout != c);
325 1.22 ad }
326 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
327 1.22 ad
328 1.22 ad c->c_magic = 0;
329 1.1 thorpej }
330 1.1 thorpej
331 1.22 ad
332 1.1 thorpej /*
333 1.1 thorpej * callout_reset:
334 1.1 thorpej *
335 1.1 thorpej * Reset a callout structure with a new function and argument, and
336 1.1 thorpej * schedule it to run.
337 1.1 thorpej */
338 1.1 thorpej void
339 1.22 ad callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
340 1.1 thorpej {
341 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
342 1.20 ad int old_time;
343 1.1 thorpej
344 1.1 thorpej KASSERT(to_ticks >= 0);
345 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
346 1.22 ad KASSERT(func != NULL);
347 1.1 thorpej
348 1.22 ad mutex_spin_enter(&callout_lock);
349 1.1 thorpej
350 1.1 thorpej /* Initialize the time here, it won't change. */
351 1.1 thorpej old_time = c->c_time;
352 1.1 thorpej c->c_time = to_ticks + hardclock_ticks;
353 1.22 ad c->c_flags &= ~CALLOUT_FIRED;
354 1.1 thorpej
355 1.1 thorpej c->c_func = func;
356 1.1 thorpej c->c_arg = arg;
357 1.1 thorpej
358 1.1 thorpej /*
359 1.1 thorpej * If this timeout is already scheduled and now is moved
360 1.1 thorpej * earlier, reschedule it now. Otherwise leave it in place
361 1.1 thorpej * and let it be rescheduled later.
362 1.1 thorpej */
363 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0) {
364 1.4 yamt if (c->c_time - old_time < 0) {
365 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
366 1.1 thorpej CIRCQ_INSERT(&c->c_list, &timeout_todo);
367 1.1 thorpej }
368 1.1 thorpej } else {
369 1.1 thorpej c->c_flags |= CALLOUT_PENDING;
370 1.1 thorpej CIRCQ_INSERT(&c->c_list, &timeout_todo);
371 1.1 thorpej }
372 1.1 thorpej
373 1.22 ad mutex_spin_exit(&callout_lock);
374 1.1 thorpej }
375 1.1 thorpej
376 1.1 thorpej /*
377 1.1 thorpej * callout_schedule:
378 1.1 thorpej *
379 1.1 thorpej * Schedule a callout to run. The function and argument must
380 1.1 thorpej * already be set in the callout structure.
381 1.1 thorpej */
382 1.1 thorpej void
383 1.22 ad callout_schedule(callout_t *cs, int to_ticks)
384 1.1 thorpej {
385 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
386 1.20 ad int old_time;
387 1.1 thorpej
388 1.1 thorpej KASSERT(to_ticks >= 0);
389 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
390 1.22 ad KASSERT(c->c_func != NULL);
391 1.1 thorpej
392 1.22 ad mutex_spin_enter(&callout_lock);
393 1.1 thorpej
394 1.1 thorpej /* Initialize the time here, it won't change. */
395 1.1 thorpej old_time = c->c_time;
396 1.1 thorpej c->c_time = to_ticks + hardclock_ticks;
397 1.22 ad c->c_flags &= ~CALLOUT_FIRED;
398 1.1 thorpej
399 1.1 thorpej /*
400 1.1 thorpej * If this timeout is already scheduled and now is moved
401 1.1 thorpej * earlier, reschedule it now. Otherwise leave it in place
402 1.1 thorpej * and let it be rescheduled later.
403 1.1 thorpej */
404 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0) {
405 1.4 yamt if (c->c_time - old_time < 0) {
406 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
407 1.1 thorpej CIRCQ_INSERT(&c->c_list, &timeout_todo);
408 1.1 thorpej }
409 1.1 thorpej } else {
410 1.1 thorpej c->c_flags |= CALLOUT_PENDING;
411 1.1 thorpej CIRCQ_INSERT(&c->c_list, &timeout_todo);
412 1.1 thorpej }
413 1.1 thorpej
414 1.22 ad mutex_spin_exit(&callout_lock);
415 1.1 thorpej }
416 1.1 thorpej
417 1.1 thorpej /*
418 1.1 thorpej * callout_stop:
419 1.1 thorpej *
420 1.1 thorpej * Cancel a pending callout.
421 1.1 thorpej */
422 1.22 ad bool
423 1.22 ad callout_stop(callout_t *cs)
424 1.1 thorpej {
425 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
426 1.22 ad bool expired;
427 1.22 ad
428 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
429 1.1 thorpej
430 1.22 ad mutex_spin_enter(&callout_lock);
431 1.20 ad
432 1.22 ad if (callout_running(c))
433 1.22 ad callout_barrier(c);
434 1.1 thorpej
435 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
436 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
437 1.1 thorpej
438 1.22 ad expired = ((c->c_flags & CALLOUT_FIRED) != 0);
439 1.9 he c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
440 1.1 thorpej
441 1.22 ad mutex_spin_exit(&callout_lock);
442 1.22 ad
443 1.22 ad return expired;
444 1.22 ad }
445 1.22 ad
446 1.22 ad void
447 1.22 ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
448 1.22 ad {
449 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
450 1.22 ad
451 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
452 1.22 ad
453 1.22 ad mutex_spin_enter(&callout_lock);
454 1.22 ad c->c_func = func;
455 1.22 ad c->c_arg = arg;
456 1.22 ad mutex_spin_exit(&callout_lock);
457 1.22 ad }
458 1.22 ad
459 1.22 ad bool
460 1.22 ad callout_expired(callout_t *cs)
461 1.22 ad {
462 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
463 1.22 ad bool rv;
464 1.22 ad
465 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
466 1.22 ad
467 1.22 ad mutex_spin_enter(&callout_lock);
468 1.22 ad rv = ((c->c_flags & CALLOUT_FIRED) != 0);
469 1.22 ad mutex_spin_exit(&callout_lock);
470 1.22 ad
471 1.22 ad return rv;
472 1.22 ad }
473 1.22 ad
474 1.22 ad bool
475 1.22 ad callout_active(callout_t *cs)
476 1.22 ad {
477 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
478 1.22 ad bool rv;
479 1.22 ad
480 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
481 1.22 ad
482 1.22 ad mutex_spin_enter(&callout_lock);
483 1.22 ad rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
484 1.22 ad mutex_spin_exit(&callout_lock);
485 1.22 ad
486 1.22 ad return rv;
487 1.22 ad }
488 1.22 ad
489 1.22 ad bool
490 1.22 ad callout_pending(callout_t *cs)
491 1.22 ad {
492 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
493 1.22 ad bool rv;
494 1.22 ad
495 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
496 1.22 ad
497 1.22 ad mutex_spin_enter(&callout_lock);
498 1.22 ad rv = ((c->c_flags & CALLOUT_PENDING) != 0);
499 1.22 ad mutex_spin_exit(&callout_lock);
500 1.22 ad
501 1.22 ad return rv;
502 1.22 ad }
503 1.22 ad
504 1.22 ad bool
505 1.22 ad callout_invoking(callout_t *cs)
506 1.22 ad {
507 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
508 1.22 ad bool rv;
509 1.22 ad
510 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
511 1.22 ad
512 1.22 ad mutex_spin_enter(&callout_lock);
513 1.22 ad rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
514 1.22 ad mutex_spin_exit(&callout_lock);
515 1.22 ad
516 1.22 ad return rv;
517 1.22 ad }
518 1.22 ad
519 1.22 ad void
520 1.22 ad callout_ack(callout_t *cs)
521 1.22 ad {
522 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
523 1.22 ad
524 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
525 1.22 ad
526 1.22 ad mutex_spin_enter(&callout_lock);
527 1.22 ad c->c_flags &= ~CALLOUT_INVOKING;
528 1.22 ad mutex_spin_exit(&callout_lock);
529 1.1 thorpej }
530 1.1 thorpej
531 1.1 thorpej /*
532 1.1 thorpej * This is called from hardclock() once every tick.
533 1.22 ad * We schedule callout_softclock() if there is work
534 1.22 ad * to be done.
535 1.1 thorpej */
536 1.22 ad void
537 1.1 thorpej callout_hardclock(void)
538 1.1 thorpej {
539 1.4 yamt int needsoftclock;
540 1.1 thorpej
541 1.22 ad mutex_spin_enter(&callout_lock);
542 1.1 thorpej
543 1.1 thorpej MOVEBUCKET(0, hardclock_ticks);
544 1.1 thorpej if (MASKWHEEL(0, hardclock_ticks) == 0) {
545 1.1 thorpej MOVEBUCKET(1, hardclock_ticks);
546 1.1 thorpej if (MASKWHEEL(1, hardclock_ticks) == 0) {
547 1.1 thorpej MOVEBUCKET(2, hardclock_ticks);
548 1.1 thorpej if (MASKWHEEL(2, hardclock_ticks) == 0)
549 1.1 thorpej MOVEBUCKET(3, hardclock_ticks);
550 1.1 thorpej }
551 1.1 thorpej }
552 1.1 thorpej
553 1.4 yamt needsoftclock = !CIRCQ_EMPTY(&timeout_todo);
554 1.22 ad mutex_spin_exit(&callout_lock);
555 1.1 thorpej
556 1.22 ad if (needsoftclock)
557 1.22 ad softintr_schedule(callout_si);
558 1.1 thorpej }
559 1.1 thorpej
560 1.1 thorpej /* ARGSUSED */
561 1.22 ad static void
562 1.22 ad callout_softclock(void *v)
563 1.1 thorpej {
564 1.22 ad callout_impl_t *c;
565 1.22 ad struct cpu_info *ci;
566 1.1 thorpej void (*func)(void *);
567 1.1 thorpej void *arg;
568 1.22 ad u_int mpsafe, count;
569 1.22 ad lwp_t *l;
570 1.1 thorpej
571 1.22 ad l = curlwp;
572 1.22 ad ci = l->l_cpu;
573 1.22 ad
574 1.22 ad mutex_spin_enter(&callout_lock);
575 1.1 thorpej
576 1.1 thorpej while (!CIRCQ_EMPTY(&timeout_todo)) {
577 1.11 scw c = CIRCQ_FIRST(&timeout_todo);
578 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
579 1.22 ad KASSERT(c->c_func != NULL);
580 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
581 1.1 thorpej
582 1.1 thorpej /* If due run it, otherwise insert it into the right bucket. */
583 1.1 thorpej if (c->c_time - hardclock_ticks > 0) {
584 1.1 thorpej CIRCQ_INSERT(&c->c_list,
585 1.3 drochner BUCKET((c->c_time - hardclock_ticks), c->c_time));
586 1.1 thorpej } else {
587 1.1 thorpej if (c->c_time - hardclock_ticks < 0)
588 1.5 thorpej callout_ev_late.ev_count++;
589 1.1 thorpej
590 1.22 ad c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
591 1.22 ad mpsafe = (c->c_flags & CALLOUT_MPSAFE);
592 1.1 thorpej func = c->c_func;
593 1.1 thorpej arg = c->c_arg;
594 1.22 ad c->c_oncpu = ci;
595 1.22 ad c->c_onlwp = l;
596 1.22 ad
597 1.22 ad mutex_spin_exit(&callout_lock);
598 1.22 ad if (!mpsafe) {
599 1.22 ad KERNEL_LOCK(1, curlwp);
600 1.22 ad if (ci->ci_data.cpu_callout_cancel != c)
601 1.22 ad (*func)(arg);
602 1.22 ad KERNEL_UNLOCK_ONE(curlwp);
603 1.22 ad } else
604 1.22 ad (*func)(arg);
605 1.22 ad mutex_spin_enter(&callout_lock);
606 1.1 thorpej
607 1.20 ad /*
608 1.22 ad * We can't touch 'c' here because it might be
609 1.22 ad * freed already. If LWPs waiting for callout
610 1.22 ad * to complete, awaken them.
611 1.20 ad */
612 1.22 ad ci->ci_data.cpu_callout_cancel = NULL;
613 1.22 ad ci->ci_data.cpu_callout = NULL;
614 1.22 ad if ((count = ci->ci_data.cpu_callout_nwait) != 0) {
615 1.22 ad ci->ci_data.cpu_callout_nwait = 0;
616 1.22 ad /* sleepq_wake() drops the lock. */
617 1.22 ad sleepq_wake(&callout_sleepq, ci, count);
618 1.22 ad mutex_spin_enter(&callout_lock);
619 1.22 ad }
620 1.1 thorpej }
621 1.1 thorpej }
622 1.1 thorpej
623 1.22 ad mutex_spin_exit(&callout_lock);
624 1.1 thorpej }
625 1.1 thorpej
626 1.1 thorpej #ifdef DDB
627 1.1 thorpej static void
628 1.1 thorpej db_show_callout_bucket(struct callout_circq *bucket)
629 1.1 thorpej {
630 1.22 ad callout_impl_t *c;
631 1.1 thorpej db_expr_t offset;
632 1.15 christos const char *name;
633 1.15 christos static char question[] = "?";
634 1.1 thorpej
635 1.11 scw if (CIRCQ_EMPTY(bucket))
636 1.11 scw return;
637 1.11 scw
638 1.11 scw for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
639 1.10 scw db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
640 1.10 scw &offset);
641 1.15 christos name = name ? name : question;
642 1.1 thorpej #ifdef _LP64
643 1.1 thorpej #define POINTER_WIDTH "%16lx"
644 1.1 thorpej #else
645 1.1 thorpej #define POINTER_WIDTH "%8lx"
646 1.1 thorpej #endif
647 1.1 thorpej db_printf("%9d %2d/%-4d " POINTER_WIDTH " %s\n",
648 1.1 thorpej c->c_time - hardclock_ticks,
649 1.2 martin (int)((bucket - timeout_wheel) / WHEELSIZE),
650 1.2 martin (int)(bucket - timeout_wheel), (u_long) c->c_arg, name);
651 1.11 scw
652 1.11 scw if (CIRCQ_LAST(&c->c_list, bucket))
653 1.11 scw break;
654 1.1 thorpej }
655 1.1 thorpej }
656 1.1 thorpej
657 1.1 thorpej void
658 1.21 matt db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
659 1.1 thorpej {
660 1.1 thorpej int b;
661 1.1 thorpej
662 1.1 thorpej db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
663 1.1 thorpej #ifdef _LP64
664 1.1 thorpej db_printf(" ticks wheel arg func\n");
665 1.1 thorpej #else
666 1.1 thorpej db_printf(" ticks wheel arg func\n");
667 1.1 thorpej #endif
668 1.1 thorpej
669 1.1 thorpej /*
670 1.1 thorpej * Don't lock the callwheel; all the other CPUs are paused
671 1.1 thorpej * anyhow, and we might be called in a circumstance where
672 1.1 thorpej * some other CPU was paused while holding the lock.
673 1.1 thorpej */
674 1.1 thorpej
675 1.1 thorpej db_show_callout_bucket(&timeout_todo);
676 1.1 thorpej for (b = 0; b < BUCKETS; b++)
677 1.1 thorpej db_show_callout_bucket(&timeout_wheel[b]);
678 1.1 thorpej }
679 1.1 thorpej #endif /* DDB */
680