kern_timeout.c revision 1.26.2.4 1 1.26.2.4 jmcneill /* $NetBSD: kern_timeout.c,v 1.26.2.4 2007/12/09 19:38:21 jmcneill Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*-
4 1.22 ad * Copyright (c) 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.22 ad * by Jason R. Thorpe, and by Andrew Doran.
9 1.1 thorpej *
10 1.1 thorpej * Redistribution and use in source and binary forms, with or without
11 1.1 thorpej * modification, are permitted provided that the following conditions
12 1.1 thorpej * are met:
13 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.1 thorpej * notice, this list of conditions and the following disclaimer.
15 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.1 thorpej * documentation and/or other materials provided with the distribution.
18 1.1 thorpej * 3. All advertising materials mentioning features or use of this software
19 1.1 thorpej * must display the following acknowledgement:
20 1.1 thorpej * This product includes software developed by the NetBSD
21 1.1 thorpej * Foundation, Inc. and its contributors.
22 1.1 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 thorpej * contributors may be used to endorse or promote products derived
24 1.1 thorpej * from this software without specific prior written permission.
25 1.1 thorpej *
26 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
37 1.1 thorpej */
38 1.1 thorpej
39 1.1 thorpej /*
40 1.1 thorpej * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
41 1.1 thorpej * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
42 1.14 perry * All rights reserved.
43 1.14 perry *
44 1.14 perry * Redistribution and use in source and binary forms, with or without
45 1.14 perry * modification, are permitted provided that the following conditions
46 1.14 perry * are met:
47 1.1 thorpej *
48 1.14 perry * 1. Redistributions of source code must retain the above copyright
49 1.14 perry * notice, this list of conditions and the following disclaimer.
50 1.14 perry * 2. Redistributions in binary form must reproduce the above copyright
51 1.14 perry * notice, this list of conditions and the following disclaimer in the
52 1.14 perry * documentation and/or other materials provided with the distribution.
53 1.1 thorpej * 3. The name of the author may not be used to endorse or promote products
54 1.14 perry * derived from this software without specific prior written permission.
55 1.1 thorpej *
56 1.1 thorpej * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
57 1.1 thorpej * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
58 1.1 thorpej * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
59 1.1 thorpej * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
60 1.1 thorpej * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
61 1.1 thorpej * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
62 1.1 thorpej * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
63 1.1 thorpej * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
64 1.1 thorpej * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
65 1.14 perry * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 1.1 thorpej */
67 1.7 lukem
68 1.7 lukem #include <sys/cdefs.h>
69 1.26.2.4 jmcneill __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.26.2.4 2007/12/09 19:38:21 jmcneill Exp $");
70 1.1 thorpej
71 1.1 thorpej /*
72 1.22 ad * Timeouts are kept in a hierarchical timing wheel. The c_time is the
73 1.22 ad * value of the global variable "hardclock_ticks" when the timeout should
74 1.22 ad * be called. There are four levels with 256 buckets each. See 'Scheme 7'
75 1.22 ad * in "Hashed and Hierarchical Timing Wheels: Efficient Data Structures
76 1.22 ad * for Implementing a Timer Facility" by George Varghese and Tony Lauck.
77 1.22 ad *
78 1.22 ad * Some of the "math" in here is a bit tricky. We have to beware of
79 1.22 ad * wrapping ints.
80 1.22 ad *
81 1.22 ad * We use the fact that any element added to the queue must be added with
82 1.22 ad * a positive time. That means that any element `to' on the queue cannot
83 1.22 ad * be scheduled to timeout further in time than INT_MAX, but c->c_time can
84 1.22 ad * be positive or negative so comparing it with anything is dangerous.
85 1.22 ad * The only way we can use the c->c_time value in any predictable way is
86 1.22 ad * when we calculate how far in the future `to' will timeout - "c->c_time
87 1.22 ad * - hardclock_ticks". The result will always be positive for future
88 1.22 ad * timeouts and 0 or negative for due timeouts.
89 1.1 thorpej */
90 1.1 thorpej
91 1.24 ad #define _CALLOUT_PRIVATE
92 1.24 ad
93 1.1 thorpej #include <sys/param.h>
94 1.1 thorpej #include <sys/systm.h>
95 1.1 thorpej #include <sys/kernel.h>
96 1.1 thorpej #include <sys/lock.h>
97 1.1 thorpej #include <sys/callout.h>
98 1.20 ad #include <sys/mutex.h>
99 1.22 ad #include <sys/proc.h>
100 1.22 ad #include <sys/sleepq.h>
101 1.22 ad #include <sys/syncobj.h>
102 1.22 ad #include <sys/evcnt.h>
103 1.26.2.1 joerg #include <sys/intr.h>
104 1.1 thorpej
105 1.1 thorpej #ifdef DDB
106 1.1 thorpej #include <machine/db_machdep.h>
107 1.1 thorpej #include <ddb/db_interface.h>
108 1.1 thorpej #include <ddb/db_access.h>
109 1.1 thorpej #include <ddb/db_sym.h>
110 1.1 thorpej #include <ddb/db_output.h>
111 1.1 thorpej #endif
112 1.1 thorpej
113 1.22 ad #define BUCKETS 1024
114 1.22 ad #define WHEELSIZE 256
115 1.22 ad #define WHEELMASK 255
116 1.22 ad #define WHEELBITS 8
117 1.22 ad
118 1.1 thorpej static struct callout_circq timeout_wheel[BUCKETS]; /* Queues of timeouts */
119 1.1 thorpej static struct callout_circq timeout_todo; /* Worklist */
120 1.1 thorpej
121 1.1 thorpej #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
122 1.1 thorpej
123 1.1 thorpej #define BUCKET(rel, abs) \
124 1.1 thorpej (((rel) <= (1 << (2*WHEELBITS))) \
125 1.1 thorpej ? ((rel) <= (1 << WHEELBITS)) \
126 1.3 drochner ? &timeout_wheel[MASKWHEEL(0, (abs))] \
127 1.3 drochner : &timeout_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
128 1.1 thorpej : ((rel) <= (1 << (3*WHEELBITS))) \
129 1.3 drochner ? &timeout_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
130 1.3 drochner : &timeout_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
131 1.1 thorpej
132 1.1 thorpej #define MOVEBUCKET(wheel, time) \
133 1.1 thorpej CIRCQ_APPEND(&timeout_todo, \
134 1.1 thorpej &timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
135 1.1 thorpej
136 1.1 thorpej /*
137 1.1 thorpej * Circular queue definitions.
138 1.1 thorpej */
139 1.1 thorpej
140 1.11 scw #define CIRCQ_INIT(list) \
141 1.1 thorpej do { \
142 1.11 scw (list)->cq_next_l = (list); \
143 1.11 scw (list)->cq_prev_l = (list); \
144 1.1 thorpej } while (/*CONSTCOND*/0)
145 1.1 thorpej
146 1.1 thorpej #define CIRCQ_INSERT(elem, list) \
147 1.1 thorpej do { \
148 1.11 scw (elem)->cq_prev_e = (list)->cq_prev_e; \
149 1.11 scw (elem)->cq_next_l = (list); \
150 1.11 scw (list)->cq_prev_l->cq_next_l = (elem); \
151 1.11 scw (list)->cq_prev_l = (elem); \
152 1.1 thorpej } while (/*CONSTCOND*/0)
153 1.1 thorpej
154 1.1 thorpej #define CIRCQ_APPEND(fst, snd) \
155 1.1 thorpej do { \
156 1.1 thorpej if (!CIRCQ_EMPTY(snd)) { \
157 1.11 scw (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
158 1.11 scw (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
159 1.11 scw (snd)->cq_prev_l->cq_next_l = (fst); \
160 1.11 scw (fst)->cq_prev_l = (snd)->cq_prev_l; \
161 1.1 thorpej CIRCQ_INIT(snd); \
162 1.1 thorpej } \
163 1.1 thorpej } while (/*CONSTCOND*/0)
164 1.1 thorpej
165 1.1 thorpej #define CIRCQ_REMOVE(elem) \
166 1.1 thorpej do { \
167 1.11 scw (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
168 1.11 scw (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
169 1.1 thorpej } while (/*CONSTCOND*/0)
170 1.1 thorpej
171 1.11 scw #define CIRCQ_FIRST(list) ((list)->cq_next_e)
172 1.11 scw #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
173 1.11 scw #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
174 1.11 scw #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
175 1.1 thorpej
176 1.22 ad static void callout_softclock(void *);
177 1.22 ad
178 1.1 thorpej /*
179 1.22 ad * All wheels are locked with the same lock (which must also block out
180 1.22 ad * all interrupts). Eventually this should become per-CPU.
181 1.1 thorpej */
182 1.22 ad kmutex_t callout_lock;
183 1.22 ad sleepq_t callout_sleepq;
184 1.22 ad void *callout_si;
185 1.1 thorpej
186 1.5 thorpej static struct evcnt callout_ev_late;
187 1.22 ad static struct evcnt callout_ev_block;
188 1.5 thorpej
189 1.1 thorpej /*
190 1.20 ad * callout_barrier:
191 1.20 ad *
192 1.22 ad * If the callout is already running, wait until it completes.
193 1.22 ad * XXX This should do priority inheritance.
194 1.20 ad */
195 1.22 ad static void
196 1.22 ad callout_barrier(callout_impl_t *c)
197 1.20 ad {
198 1.22 ad extern syncobj_t sleep_syncobj;
199 1.22 ad struct cpu_info *ci;
200 1.22 ad struct lwp *l;
201 1.22 ad
202 1.22 ad l = curlwp;
203 1.22 ad
204 1.22 ad if ((c->c_flags & CALLOUT_MPSAFE) == 0) {
205 1.22 ad /*
206 1.22 ad * Note: we must be called with the kernel lock held,
207 1.22 ad * as we use it to synchronize with callout_softclock().
208 1.22 ad */
209 1.22 ad ci = c->c_oncpu;
210 1.22 ad ci->ci_data.cpu_callout_cancel = c;
211 1.22 ad return;
212 1.22 ad }
213 1.20 ad
214 1.22 ad while ((ci = c->c_oncpu) != NULL && ci->ci_data.cpu_callout == c) {
215 1.22 ad KASSERT(l->l_wchan == NULL);
216 1.20 ad
217 1.22 ad ci->ci_data.cpu_callout_nwait++;
218 1.22 ad callout_ev_block.ev_count++;
219 1.22 ad
220 1.26.2.2 joerg l->l_kpriority = true;
221 1.25 ad sleepq_enter(&callout_sleepq, l);
222 1.26.2.2 joerg sleepq_enqueue(&callout_sleepq, ci, "callout", &sleep_syncobj);
223 1.22 ad sleepq_block(0, false);
224 1.22 ad mutex_spin_enter(&callout_lock);
225 1.20 ad }
226 1.22 ad }
227 1.22 ad
228 1.22 ad /*
229 1.22 ad * callout_running:
230 1.22 ad *
231 1.22 ad * Return non-zero if callout 'c' is currently executing.
232 1.22 ad */
233 1.22 ad static inline bool
234 1.22 ad callout_running(callout_impl_t *c)
235 1.22 ad {
236 1.22 ad struct cpu_info *ci;
237 1.22 ad
238 1.22 ad if ((ci = c->c_oncpu) == NULL)
239 1.22 ad return false;
240 1.22 ad if (ci->ci_data.cpu_callout != c)
241 1.22 ad return false;
242 1.22 ad if (c->c_onlwp == curlwp)
243 1.22 ad return false;
244 1.22 ad return true;
245 1.20 ad }
246 1.20 ad
247 1.20 ad /*
248 1.1 thorpej * callout_startup:
249 1.1 thorpej *
250 1.1 thorpej * Initialize the callout facility, called at system startup time.
251 1.1 thorpej */
252 1.1 thorpej void
253 1.1 thorpej callout_startup(void)
254 1.1 thorpej {
255 1.1 thorpej int b;
256 1.1 thorpej
257 1.22 ad KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
258 1.22 ad
259 1.1 thorpej CIRCQ_INIT(&timeout_todo);
260 1.1 thorpej for (b = 0; b < BUCKETS; b++)
261 1.1 thorpej CIRCQ_INIT(&timeout_wheel[b]);
262 1.5 thorpej
263 1.26.2.4 jmcneill mutex_init(&callout_lock, MUTEX_DEFAULT, IPL_SCHED);
264 1.22 ad sleepq_init(&callout_sleepq, &callout_lock);
265 1.22 ad
266 1.5 thorpej evcnt_attach_dynamic(&callout_ev_late, EVCNT_TYPE_MISC,
267 1.5 thorpej NULL, "callout", "late");
268 1.22 ad evcnt_attach_dynamic(&callout_ev_block, EVCNT_TYPE_MISC,
269 1.22 ad NULL, "callout", "block waiting");
270 1.22 ad }
271 1.22 ad
272 1.22 ad /*
273 1.22 ad * callout_startup2:
274 1.22 ad *
275 1.22 ad * Complete initialization once soft interrupts are available.
276 1.22 ad */
277 1.22 ad void
278 1.22 ad callout_startup2(void)
279 1.22 ad {
280 1.22 ad
281 1.26.2.1 joerg callout_si = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
282 1.22 ad callout_softclock, NULL);
283 1.22 ad if (callout_si == NULL)
284 1.22 ad panic("callout_startup2: unable to register softclock intr");
285 1.1 thorpej }
286 1.1 thorpej
287 1.1 thorpej /*
288 1.1 thorpej * callout_init:
289 1.1 thorpej *
290 1.1 thorpej * Initialize a callout structure.
291 1.1 thorpej */
292 1.1 thorpej void
293 1.22 ad callout_init(callout_t *cs, u_int flags)
294 1.1 thorpej {
295 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
296 1.22 ad
297 1.22 ad KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
298 1.1 thorpej
299 1.1 thorpej memset(c, 0, sizeof(*c));
300 1.22 ad c->c_flags = flags;
301 1.22 ad c->c_magic = CALLOUT_MAGIC;
302 1.22 ad }
303 1.22 ad
304 1.22 ad /*
305 1.22 ad * callout_destroy:
306 1.22 ad *
307 1.22 ad * Destroy a callout structure. The callout must be stopped.
308 1.22 ad */
309 1.22 ad void
310 1.22 ad callout_destroy(callout_t *cs)
311 1.22 ad {
312 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
313 1.22 ad
314 1.22 ad /*
315 1.22 ad * It's not necessary to lock in order to see the correct value
316 1.22 ad * of c->c_flags. If the callout could potentially have been
317 1.22 ad * running, the current thread should have stopped it.
318 1.22 ad */
319 1.22 ad KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
320 1.22 ad if (c->c_oncpu != NULL) {
321 1.22 ad KASSERT(
322 1.22 ad ((struct cpu_info *)c->c_oncpu)->ci_data.cpu_callout != c);
323 1.22 ad }
324 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
325 1.22 ad
326 1.22 ad c->c_magic = 0;
327 1.1 thorpej }
328 1.1 thorpej
329 1.1 thorpej /*
330 1.26.2.3 joerg * callout_schedule_locked:
331 1.1 thorpej *
332 1.26.2.3 joerg * Schedule a callout to run. The function and argument must
333 1.26.2.3 joerg * already be set in the callout structure. Must be called with
334 1.26.2.3 joerg * callout_lock.
335 1.1 thorpej */
336 1.26.2.3 joerg static void
337 1.26.2.3 joerg callout_schedule_locked(callout_impl_t *c, int to_ticks)
338 1.1 thorpej {
339 1.20 ad int old_time;
340 1.1 thorpej
341 1.1 thorpej KASSERT(to_ticks >= 0);
342 1.26.2.3 joerg KASSERT(c->c_func != NULL);
343 1.1 thorpej
344 1.1 thorpej /* Initialize the time here, it won't change. */
345 1.1 thorpej old_time = c->c_time;
346 1.1 thorpej c->c_time = to_ticks + hardclock_ticks;
347 1.22 ad c->c_flags &= ~CALLOUT_FIRED;
348 1.1 thorpej
349 1.1 thorpej /*
350 1.1 thorpej * If this timeout is already scheduled and now is moved
351 1.1 thorpej * earlier, reschedule it now. Otherwise leave it in place
352 1.1 thorpej * and let it be rescheduled later.
353 1.1 thorpej */
354 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0) {
355 1.4 yamt if (c->c_time - old_time < 0) {
356 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
357 1.1 thorpej CIRCQ_INSERT(&c->c_list, &timeout_todo);
358 1.1 thorpej }
359 1.1 thorpej } else {
360 1.1 thorpej c->c_flags |= CALLOUT_PENDING;
361 1.1 thorpej CIRCQ_INSERT(&c->c_list, &timeout_todo);
362 1.1 thorpej }
363 1.26.2.3 joerg }
364 1.26.2.3 joerg
365 1.26.2.3 joerg /*
366 1.26.2.3 joerg * callout_reset:
367 1.26.2.3 joerg *
368 1.26.2.3 joerg * Reset a callout structure with a new function and argument, and
369 1.26.2.3 joerg * schedule it to run.
370 1.26.2.3 joerg */
371 1.26.2.3 joerg void
372 1.26.2.3 joerg callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
373 1.26.2.3 joerg {
374 1.26.2.3 joerg callout_impl_t *c = (callout_impl_t *)cs;
375 1.26.2.3 joerg
376 1.26.2.3 joerg KASSERT(c->c_magic == CALLOUT_MAGIC);
377 1.26.2.3 joerg
378 1.26.2.3 joerg mutex_spin_enter(&callout_lock);
379 1.26.2.3 joerg
380 1.26.2.3 joerg c->c_func = func;
381 1.26.2.3 joerg c->c_arg = arg;
382 1.26.2.3 joerg
383 1.26.2.3 joerg callout_schedule_locked(c, to_ticks);
384 1.1 thorpej
385 1.22 ad mutex_spin_exit(&callout_lock);
386 1.1 thorpej }
387 1.1 thorpej
388 1.1 thorpej /*
389 1.1 thorpej * callout_schedule:
390 1.1 thorpej *
391 1.1 thorpej * Schedule a callout to run. The function and argument must
392 1.1 thorpej * already be set in the callout structure.
393 1.1 thorpej */
394 1.1 thorpej void
395 1.22 ad callout_schedule(callout_t *cs, int to_ticks)
396 1.1 thorpej {
397 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
398 1.1 thorpej
399 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
400 1.1 thorpej
401 1.22 ad mutex_spin_enter(&callout_lock);
402 1.26.2.3 joerg callout_schedule_locked(c, to_ticks);
403 1.22 ad mutex_spin_exit(&callout_lock);
404 1.1 thorpej }
405 1.1 thorpej
406 1.1 thorpej /*
407 1.1 thorpej * callout_stop:
408 1.1 thorpej *
409 1.1 thorpej * Cancel a pending callout.
410 1.1 thorpej */
411 1.22 ad bool
412 1.22 ad callout_stop(callout_t *cs)
413 1.1 thorpej {
414 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
415 1.22 ad bool expired;
416 1.22 ad
417 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
418 1.1 thorpej
419 1.22 ad mutex_spin_enter(&callout_lock);
420 1.20 ad
421 1.22 ad if (callout_running(c))
422 1.22 ad callout_barrier(c);
423 1.1 thorpej
424 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
425 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
426 1.1 thorpej
427 1.22 ad expired = ((c->c_flags & CALLOUT_FIRED) != 0);
428 1.9 he c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
429 1.1 thorpej
430 1.22 ad mutex_spin_exit(&callout_lock);
431 1.22 ad
432 1.22 ad return expired;
433 1.22 ad }
434 1.22 ad
435 1.22 ad void
436 1.22 ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
437 1.22 ad {
438 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
439 1.22 ad
440 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
441 1.22 ad
442 1.22 ad mutex_spin_enter(&callout_lock);
443 1.22 ad c->c_func = func;
444 1.22 ad c->c_arg = arg;
445 1.22 ad mutex_spin_exit(&callout_lock);
446 1.22 ad }
447 1.22 ad
448 1.22 ad bool
449 1.22 ad callout_expired(callout_t *cs)
450 1.22 ad {
451 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
452 1.22 ad bool rv;
453 1.22 ad
454 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
455 1.22 ad
456 1.22 ad mutex_spin_enter(&callout_lock);
457 1.22 ad rv = ((c->c_flags & CALLOUT_FIRED) != 0);
458 1.22 ad mutex_spin_exit(&callout_lock);
459 1.22 ad
460 1.22 ad return rv;
461 1.22 ad }
462 1.22 ad
463 1.22 ad bool
464 1.22 ad callout_active(callout_t *cs)
465 1.22 ad {
466 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
467 1.22 ad bool rv;
468 1.22 ad
469 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
470 1.22 ad
471 1.22 ad mutex_spin_enter(&callout_lock);
472 1.22 ad rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
473 1.22 ad mutex_spin_exit(&callout_lock);
474 1.22 ad
475 1.22 ad return rv;
476 1.22 ad }
477 1.22 ad
478 1.22 ad bool
479 1.22 ad callout_pending(callout_t *cs)
480 1.22 ad {
481 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
482 1.22 ad bool rv;
483 1.22 ad
484 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
485 1.22 ad
486 1.22 ad mutex_spin_enter(&callout_lock);
487 1.22 ad rv = ((c->c_flags & CALLOUT_PENDING) != 0);
488 1.22 ad mutex_spin_exit(&callout_lock);
489 1.22 ad
490 1.22 ad return rv;
491 1.22 ad }
492 1.22 ad
493 1.22 ad bool
494 1.22 ad callout_invoking(callout_t *cs)
495 1.22 ad {
496 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
497 1.22 ad bool rv;
498 1.22 ad
499 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
500 1.22 ad
501 1.22 ad mutex_spin_enter(&callout_lock);
502 1.22 ad rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
503 1.22 ad mutex_spin_exit(&callout_lock);
504 1.22 ad
505 1.22 ad return rv;
506 1.22 ad }
507 1.22 ad
508 1.22 ad void
509 1.22 ad callout_ack(callout_t *cs)
510 1.22 ad {
511 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
512 1.22 ad
513 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
514 1.22 ad
515 1.22 ad mutex_spin_enter(&callout_lock);
516 1.22 ad c->c_flags &= ~CALLOUT_INVOKING;
517 1.22 ad mutex_spin_exit(&callout_lock);
518 1.1 thorpej }
519 1.1 thorpej
520 1.1 thorpej /*
521 1.1 thorpej * This is called from hardclock() once every tick.
522 1.22 ad * We schedule callout_softclock() if there is work
523 1.22 ad * to be done.
524 1.1 thorpej */
525 1.22 ad void
526 1.1 thorpej callout_hardclock(void)
527 1.1 thorpej {
528 1.4 yamt int needsoftclock;
529 1.1 thorpej
530 1.22 ad mutex_spin_enter(&callout_lock);
531 1.1 thorpej
532 1.1 thorpej MOVEBUCKET(0, hardclock_ticks);
533 1.1 thorpej if (MASKWHEEL(0, hardclock_ticks) == 0) {
534 1.1 thorpej MOVEBUCKET(1, hardclock_ticks);
535 1.1 thorpej if (MASKWHEEL(1, hardclock_ticks) == 0) {
536 1.1 thorpej MOVEBUCKET(2, hardclock_ticks);
537 1.1 thorpej if (MASKWHEEL(2, hardclock_ticks) == 0)
538 1.1 thorpej MOVEBUCKET(3, hardclock_ticks);
539 1.1 thorpej }
540 1.1 thorpej }
541 1.1 thorpej
542 1.4 yamt needsoftclock = !CIRCQ_EMPTY(&timeout_todo);
543 1.22 ad mutex_spin_exit(&callout_lock);
544 1.1 thorpej
545 1.22 ad if (needsoftclock)
546 1.26.2.1 joerg softint_schedule(callout_si);
547 1.1 thorpej }
548 1.1 thorpej
549 1.1 thorpej /* ARGSUSED */
550 1.22 ad static void
551 1.22 ad callout_softclock(void *v)
552 1.1 thorpej {
553 1.22 ad callout_impl_t *c;
554 1.22 ad struct cpu_info *ci;
555 1.1 thorpej void (*func)(void *);
556 1.1 thorpej void *arg;
557 1.22 ad u_int mpsafe, count;
558 1.22 ad lwp_t *l;
559 1.1 thorpej
560 1.22 ad l = curlwp;
561 1.22 ad ci = l->l_cpu;
562 1.22 ad
563 1.22 ad mutex_spin_enter(&callout_lock);
564 1.1 thorpej
565 1.1 thorpej while (!CIRCQ_EMPTY(&timeout_todo)) {
566 1.11 scw c = CIRCQ_FIRST(&timeout_todo);
567 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
568 1.22 ad KASSERT(c->c_func != NULL);
569 1.26 ad KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
570 1.26 ad KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
571 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
572 1.1 thorpej
573 1.1 thorpej /* If due run it, otherwise insert it into the right bucket. */
574 1.1 thorpej if (c->c_time - hardclock_ticks > 0) {
575 1.1 thorpej CIRCQ_INSERT(&c->c_list,
576 1.3 drochner BUCKET((c->c_time - hardclock_ticks), c->c_time));
577 1.1 thorpej } else {
578 1.1 thorpej if (c->c_time - hardclock_ticks < 0)
579 1.5 thorpej callout_ev_late.ev_count++;
580 1.1 thorpej
581 1.22 ad c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
582 1.22 ad mpsafe = (c->c_flags & CALLOUT_MPSAFE);
583 1.1 thorpej func = c->c_func;
584 1.1 thorpej arg = c->c_arg;
585 1.22 ad c->c_oncpu = ci;
586 1.22 ad c->c_onlwp = l;
587 1.22 ad
588 1.22 ad mutex_spin_exit(&callout_lock);
589 1.22 ad if (!mpsafe) {
590 1.22 ad KERNEL_LOCK(1, curlwp);
591 1.22 ad if (ci->ci_data.cpu_callout_cancel != c)
592 1.22 ad (*func)(arg);
593 1.22 ad KERNEL_UNLOCK_ONE(curlwp);
594 1.22 ad } else
595 1.22 ad (*func)(arg);
596 1.22 ad mutex_spin_enter(&callout_lock);
597 1.1 thorpej
598 1.20 ad /*
599 1.22 ad * We can't touch 'c' here because it might be
600 1.22 ad * freed already. If LWPs waiting for callout
601 1.22 ad * to complete, awaken them.
602 1.20 ad */
603 1.22 ad ci->ci_data.cpu_callout_cancel = NULL;
604 1.22 ad ci->ci_data.cpu_callout = NULL;
605 1.22 ad if ((count = ci->ci_data.cpu_callout_nwait) != 0) {
606 1.22 ad ci->ci_data.cpu_callout_nwait = 0;
607 1.22 ad /* sleepq_wake() drops the lock. */
608 1.22 ad sleepq_wake(&callout_sleepq, ci, count);
609 1.22 ad mutex_spin_enter(&callout_lock);
610 1.22 ad }
611 1.1 thorpej }
612 1.1 thorpej }
613 1.1 thorpej
614 1.22 ad mutex_spin_exit(&callout_lock);
615 1.1 thorpej }
616 1.1 thorpej
617 1.1 thorpej #ifdef DDB
618 1.1 thorpej static void
619 1.1 thorpej db_show_callout_bucket(struct callout_circq *bucket)
620 1.1 thorpej {
621 1.22 ad callout_impl_t *c;
622 1.1 thorpej db_expr_t offset;
623 1.15 christos const char *name;
624 1.15 christos static char question[] = "?";
625 1.1 thorpej
626 1.11 scw if (CIRCQ_EMPTY(bucket))
627 1.11 scw return;
628 1.11 scw
629 1.11 scw for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
630 1.10 scw db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
631 1.10 scw &offset);
632 1.15 christos name = name ? name : question;
633 1.1 thorpej #ifdef _LP64
634 1.1 thorpej #define POINTER_WIDTH "%16lx"
635 1.1 thorpej #else
636 1.1 thorpej #define POINTER_WIDTH "%8lx"
637 1.1 thorpej #endif
638 1.1 thorpej db_printf("%9d %2d/%-4d " POINTER_WIDTH " %s\n",
639 1.1 thorpej c->c_time - hardclock_ticks,
640 1.2 martin (int)((bucket - timeout_wheel) / WHEELSIZE),
641 1.2 martin (int)(bucket - timeout_wheel), (u_long) c->c_arg, name);
642 1.11 scw
643 1.11 scw if (CIRCQ_LAST(&c->c_list, bucket))
644 1.11 scw break;
645 1.1 thorpej }
646 1.1 thorpej }
647 1.1 thorpej
648 1.1 thorpej void
649 1.21 matt db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
650 1.1 thorpej {
651 1.1 thorpej int b;
652 1.1 thorpej
653 1.1 thorpej db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
654 1.1 thorpej #ifdef _LP64
655 1.1 thorpej db_printf(" ticks wheel arg func\n");
656 1.1 thorpej #else
657 1.1 thorpej db_printf(" ticks wheel arg func\n");
658 1.1 thorpej #endif
659 1.1 thorpej
660 1.1 thorpej /*
661 1.1 thorpej * Don't lock the callwheel; all the other CPUs are paused
662 1.1 thorpej * anyhow, and we might be called in a circumstance where
663 1.1 thorpej * some other CPU was paused while holding the lock.
664 1.1 thorpej */
665 1.1 thorpej
666 1.1 thorpej db_show_callout_bucket(&timeout_todo);
667 1.1 thorpej for (b = 0; b < BUCKETS; b++)
668 1.1 thorpej db_show_callout_bucket(&timeout_wheel[b]);
669 1.1 thorpej }
670 1.1 thorpej #endif /* DDB */
671