Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.26.8.2
      1  1.26.8.2  ad /*	$NetBSD: kern_timeout.c,v 1.26.8.2 2007/08/01 23:23:42 ad Exp $	*/
      2  1.26.8.2  ad 
      3  1.26.8.2  ad /*-
      4  1.26.8.2  ad  * Copyright (c) 2003, 2006, 2007 The NetBSD Foundation, Inc.
      5  1.26.8.2  ad  * All rights reserved.
      6  1.26.8.2  ad  *
      7  1.26.8.2  ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.26.8.2  ad  * by Jason R. Thorpe, and by Andrew Doran.
      9  1.26.8.2  ad  *
     10  1.26.8.2  ad  * Redistribution and use in source and binary forms, with or without
     11  1.26.8.2  ad  * modification, are permitted provided that the following conditions
     12  1.26.8.2  ad  * are met:
     13  1.26.8.2  ad  * 1. Redistributions of source code must retain the above copyright
     14  1.26.8.2  ad  *    notice, this list of conditions and the following disclaimer.
     15  1.26.8.2  ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.26.8.2  ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.26.8.2  ad  *    documentation and/or other materials provided with the distribution.
     18  1.26.8.2  ad  * 3. All advertising materials mentioning features or use of this software
     19  1.26.8.2  ad  *    must display the following acknowledgement:
     20  1.26.8.2  ad  *	This product includes software developed by the NetBSD
     21  1.26.8.2  ad  *	Foundation, Inc. and its contributors.
     22  1.26.8.2  ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  1.26.8.2  ad  *    contributors may be used to endorse or promote products derived
     24  1.26.8.2  ad  *    from this software without specific prior written permission.
     25  1.26.8.2  ad  *
     26  1.26.8.2  ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  1.26.8.2  ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  1.26.8.2  ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  1.26.8.2  ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  1.26.8.2  ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  1.26.8.2  ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  1.26.8.2  ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  1.26.8.2  ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  1.26.8.2  ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  1.26.8.2  ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  1.26.8.2  ad  * POSSIBILITY OF SUCH DAMAGE.
     37  1.26.8.2  ad  */
     38  1.26.8.2  ad 
     39  1.26.8.2  ad /*
     40  1.26.8.2  ad  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     41  1.26.8.2  ad  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     42  1.26.8.2  ad  * All rights reserved.
     43  1.26.8.2  ad  *
     44  1.26.8.2  ad  * Redistribution and use in source and binary forms, with or without
     45  1.26.8.2  ad  * modification, are permitted provided that the following conditions
     46  1.26.8.2  ad  * are met:
     47  1.26.8.2  ad  *
     48  1.26.8.2  ad  * 1. Redistributions of source code must retain the above copyright
     49  1.26.8.2  ad  *    notice, this list of conditions and the following disclaimer.
     50  1.26.8.2  ad  * 2. Redistributions in binary form must reproduce the above copyright
     51  1.26.8.2  ad  *    notice, this list of conditions and the following disclaimer in the
     52  1.26.8.2  ad  *    documentation and/or other materials provided with the distribution.
     53  1.26.8.2  ad  * 3. The name of the author may not be used to endorse or promote products
     54  1.26.8.2  ad  *    derived from this software without specific prior written permission.
     55  1.26.8.2  ad  *
     56  1.26.8.2  ad  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     57  1.26.8.2  ad  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     58  1.26.8.2  ad  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     59  1.26.8.2  ad  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     60  1.26.8.2  ad  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     61  1.26.8.2  ad  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     62  1.26.8.2  ad  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     63  1.26.8.2  ad  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     64  1.26.8.2  ad  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     65  1.26.8.2  ad  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  1.26.8.2  ad  */
     67  1.26.8.2  ad 
     68  1.26.8.2  ad #include <sys/cdefs.h>
     69  1.26.8.2  ad __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.26.8.2 2007/08/01 23:23:42 ad Exp $");
     70  1.26.8.2  ad 
     71  1.26.8.2  ad /*
     72  1.26.8.2  ad  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     73  1.26.8.2  ad  * value of the global variable "hardclock_ticks" when the timeout should
     74  1.26.8.2  ad  * be called.  There are four levels with 256 buckets each. See 'Scheme 7'
     75  1.26.8.2  ad  * in "Hashed and Hierarchical Timing Wheels: Efficient Data Structures
     76  1.26.8.2  ad  * for Implementing a Timer Facility" by George Varghese and Tony Lauck.
     77  1.26.8.2  ad  *
     78  1.26.8.2  ad  * Some of the "math" in here is a bit tricky.  We have to beware of
     79  1.26.8.2  ad  * wrapping ints.
     80  1.26.8.2  ad  *
     81  1.26.8.2  ad  * We use the fact that any element added to the queue must be added with
     82  1.26.8.2  ad  * a positive time.  That means that any element `to' on the queue cannot
     83  1.26.8.2  ad  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     84  1.26.8.2  ad  * be positive or negative so comparing it with anything is dangerous.
     85  1.26.8.2  ad  * The only way we can use the c->c_time value in any predictable way is
     86  1.26.8.2  ad  * when we calculate how far in the future `to' will timeout - "c->c_time
     87  1.26.8.2  ad  * - hardclock_ticks".  The result will always be positive for future
     88  1.26.8.2  ad  * timeouts and 0 or negative for due timeouts.
     89  1.26.8.2  ad  */
     90  1.26.8.2  ad 
     91  1.26.8.2  ad #define	_CALLOUT_PRIVATE
     92  1.26.8.2  ad 
     93  1.26.8.2  ad #include <sys/param.h>
     94  1.26.8.2  ad #include <sys/systm.h>
     95  1.26.8.2  ad #include <sys/kernel.h>
     96  1.26.8.2  ad #include <sys/lock.h>
     97  1.26.8.2  ad #include <sys/callout.h>
     98  1.26.8.2  ad #include <sys/mutex.h>
     99  1.26.8.2  ad #include <sys/proc.h>
    100  1.26.8.2  ad #include <sys/sleepq.h>
    101  1.26.8.2  ad #include <sys/syncobj.h>
    102  1.26.8.2  ad #include <sys/evcnt.h>
    103  1.26.8.2  ad 
    104  1.26.8.2  ad #include <machine/intr.h>
    105  1.26.8.2  ad 
    106  1.26.8.2  ad #ifdef DDB
    107  1.26.8.2  ad #include <machine/db_machdep.h>
    108  1.26.8.2  ad #include <ddb/db_interface.h>
    109  1.26.8.2  ad #include <ddb/db_access.h>
    110  1.26.8.2  ad #include <ddb/db_sym.h>
    111  1.26.8.2  ad #include <ddb/db_output.h>
    112  1.26.8.2  ad #endif
    113  1.26.8.2  ad 
    114  1.26.8.2  ad #define BUCKETS		1024
    115  1.26.8.2  ad #define WHEELSIZE	256
    116  1.26.8.2  ad #define WHEELMASK	255
    117  1.26.8.2  ad #define WHEELBITS	8
    118  1.26.8.2  ad 
    119  1.26.8.2  ad static struct callout_circq timeout_wheel[BUCKETS];	/* Queues of timeouts */
    120  1.26.8.2  ad static struct callout_circq timeout_todo;		/* Worklist */
    121  1.26.8.2  ad 
    122  1.26.8.2  ad #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    123  1.26.8.2  ad 
    124  1.26.8.2  ad #define BUCKET(rel, abs)						\
    125  1.26.8.2  ad     (((rel) <= (1 << (2*WHEELBITS)))					\
    126  1.26.8.2  ad     	? ((rel) <= (1 << WHEELBITS))					\
    127  1.26.8.2  ad             ? &timeout_wheel[MASKWHEEL(0, (abs))]			\
    128  1.26.8.2  ad             : &timeout_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    129  1.26.8.2  ad         : ((rel) <= (1 << (3*WHEELBITS)))				\
    130  1.26.8.2  ad             ? &timeout_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]		\
    131  1.26.8.2  ad             : &timeout_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    132  1.26.8.2  ad 
    133  1.26.8.2  ad #define MOVEBUCKET(wheel, time)						\
    134  1.26.8.2  ad     CIRCQ_APPEND(&timeout_todo,						\
    135  1.26.8.2  ad         &timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    136  1.26.8.2  ad 
    137  1.26.8.2  ad /*
    138  1.26.8.2  ad  * Circular queue definitions.
    139  1.26.8.2  ad  */
    140  1.26.8.2  ad 
    141  1.26.8.2  ad #define CIRCQ_INIT(list)						\
    142  1.26.8.2  ad do {									\
    143  1.26.8.2  ad         (list)->cq_next_l = (list);					\
    144  1.26.8.2  ad         (list)->cq_prev_l = (list);					\
    145  1.26.8.2  ad } while (/*CONSTCOND*/0)
    146  1.26.8.2  ad 
    147  1.26.8.2  ad #define CIRCQ_INSERT(elem, list)					\
    148  1.26.8.2  ad do {									\
    149  1.26.8.2  ad         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    150  1.26.8.2  ad         (elem)->cq_next_l = (list);					\
    151  1.26.8.2  ad         (list)->cq_prev_l->cq_next_l = (elem);				\
    152  1.26.8.2  ad         (list)->cq_prev_l = (elem);					\
    153  1.26.8.2  ad } while (/*CONSTCOND*/0)
    154  1.26.8.2  ad 
    155  1.26.8.2  ad #define CIRCQ_APPEND(fst, snd)						\
    156  1.26.8.2  ad do {									\
    157  1.26.8.2  ad         if (!CIRCQ_EMPTY(snd)) {					\
    158  1.26.8.2  ad                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    159  1.26.8.2  ad                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    160  1.26.8.2  ad                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    161  1.26.8.2  ad                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    162  1.26.8.2  ad                 CIRCQ_INIT(snd);					\
    163  1.26.8.2  ad         }								\
    164  1.26.8.2  ad } while (/*CONSTCOND*/0)
    165  1.26.8.2  ad 
    166  1.26.8.2  ad #define CIRCQ_REMOVE(elem)						\
    167  1.26.8.2  ad do {									\
    168  1.26.8.2  ad         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    169  1.26.8.2  ad         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    170  1.26.8.2  ad } while (/*CONSTCOND*/0)
    171  1.26.8.2  ad 
    172  1.26.8.2  ad #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    173  1.26.8.2  ad #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    174  1.26.8.2  ad #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    175  1.26.8.2  ad #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    176  1.26.8.2  ad 
    177  1.26.8.2  ad static void	callout_softclock(void *);
    178  1.26.8.2  ad 
    179  1.26.8.2  ad /*
    180  1.26.8.2  ad  * All wheels are locked with the same lock (which must also block out
    181  1.26.8.2  ad  * all interrupts).  Eventually this should become per-CPU.
    182  1.26.8.2  ad  */
    183  1.26.8.2  ad kmutex_t callout_lock;
    184  1.26.8.2  ad sleepq_t callout_sleepq;
    185  1.26.8.2  ad void	*callout_si;
    186  1.26.8.2  ad 
    187  1.26.8.2  ad static struct evcnt callout_ev_late;
    188  1.26.8.2  ad static struct evcnt callout_ev_block;
    189  1.26.8.2  ad 
    190  1.26.8.2  ad /*
    191  1.26.8.2  ad  * callout_barrier:
    192  1.26.8.2  ad  *
    193  1.26.8.2  ad  *	If the callout is already running, wait until it completes.
    194  1.26.8.2  ad  *	XXX This should do priority inheritance.
    195  1.26.8.2  ad  */
    196  1.26.8.2  ad static void
    197  1.26.8.2  ad callout_barrier(callout_impl_t *c)
    198  1.26.8.2  ad {
    199  1.26.8.2  ad 	extern syncobj_t sleep_syncobj;
    200  1.26.8.2  ad 	struct cpu_info *ci;
    201  1.26.8.2  ad 	struct lwp *l;
    202  1.26.8.2  ad 
    203  1.26.8.2  ad 	l = curlwp;
    204  1.26.8.2  ad 
    205  1.26.8.2  ad 	if ((c->c_flags & CALLOUT_MPSAFE) == 0) {
    206  1.26.8.2  ad 		/*
    207  1.26.8.2  ad 		 * Note: we must be called with the kernel lock held,
    208  1.26.8.2  ad 		 * as we use it to synchronize with callout_softclock().
    209  1.26.8.2  ad 		 */
    210  1.26.8.2  ad 		ci = c->c_oncpu;
    211  1.26.8.2  ad 		ci->ci_data.cpu_callout_cancel = c;
    212  1.26.8.2  ad 		return;
    213  1.26.8.2  ad 	}
    214  1.26.8.2  ad 
    215  1.26.8.2  ad 	while ((ci = c->c_oncpu) != NULL && ci->ci_data.cpu_callout == c) {
    216  1.26.8.2  ad 		KASSERT(l->l_wchan == NULL);
    217  1.26.8.2  ad 
    218  1.26.8.2  ad 		ci->ci_data.cpu_callout_nwait++;
    219  1.26.8.2  ad 		callout_ev_block.ev_count++;
    220  1.26.8.2  ad 
    221  1.26.8.2  ad 		sleepq_enter(&callout_sleepq, l);
    222  1.26.8.2  ad 		sleepq_enqueue(&callout_sleepq, sched_kpri(l), ci,
    223  1.26.8.2  ad 		    "callout", &sleep_syncobj);
    224  1.26.8.2  ad 		sleepq_block(0, false);
    225  1.26.8.2  ad 		mutex_spin_enter(&callout_lock);
    226  1.26.8.2  ad 	}
    227  1.26.8.2  ad }
    228  1.26.8.2  ad 
    229  1.26.8.2  ad /*
    230  1.26.8.2  ad  * callout_running:
    231  1.26.8.2  ad  *
    232  1.26.8.2  ad  *	Return non-zero if callout 'c' is currently executing.
    233  1.26.8.2  ad  */
    234  1.26.8.2  ad static inline bool
    235  1.26.8.2  ad callout_running(callout_impl_t *c)
    236  1.26.8.2  ad {
    237  1.26.8.2  ad 	struct cpu_info *ci;
    238  1.26.8.2  ad 
    239  1.26.8.2  ad 	if ((ci = c->c_oncpu) == NULL)
    240  1.26.8.2  ad 		return false;
    241  1.26.8.2  ad 	if (ci->ci_data.cpu_callout != c)
    242  1.26.8.2  ad 		return false;
    243  1.26.8.2  ad 	if (c->c_onlwp == curlwp)
    244  1.26.8.2  ad 		return false;
    245  1.26.8.2  ad 	return true;
    246  1.26.8.2  ad }
    247  1.26.8.2  ad 
    248  1.26.8.2  ad /*
    249  1.26.8.2  ad  * callout_startup:
    250  1.26.8.2  ad  *
    251  1.26.8.2  ad  *	Initialize the callout facility, called at system startup time.
    252  1.26.8.2  ad  */
    253  1.26.8.2  ad void
    254  1.26.8.2  ad callout_startup(void)
    255  1.26.8.2  ad {
    256  1.26.8.2  ad 	int b;
    257  1.26.8.2  ad 
    258  1.26.8.2  ad 	KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    259  1.26.8.2  ad 
    260  1.26.8.2  ad 	CIRCQ_INIT(&timeout_todo);
    261  1.26.8.2  ad 	for (b = 0; b < BUCKETS; b++)
    262  1.26.8.2  ad 		CIRCQ_INIT(&timeout_wheel[b]);
    263  1.26.8.2  ad 
    264  1.26.8.2  ad 	mutex_init(&callout_lock, MUTEX_SPIN, IPL_SCHED);
    265  1.26.8.2  ad 	sleepq_init(&callout_sleepq, &callout_lock);
    266  1.26.8.2  ad 
    267  1.26.8.2  ad 	evcnt_attach_dynamic(&callout_ev_late, EVCNT_TYPE_MISC,
    268  1.26.8.2  ad 	    NULL, "callout", "late");
    269  1.26.8.2  ad 	evcnt_attach_dynamic(&callout_ev_block, EVCNT_TYPE_MISC,
    270  1.26.8.2  ad 	    NULL, "callout", "block waiting");
    271  1.26.8.2  ad }
    272  1.26.8.2  ad 
    273  1.26.8.2  ad /*
    274  1.26.8.2  ad  * callout_startup2:
    275  1.26.8.2  ad  *
    276  1.26.8.2  ad  *	Complete initialization once soft interrupts are available.
    277  1.26.8.2  ad  */
    278  1.26.8.2  ad void
    279  1.26.8.2  ad callout_startup2(void)
    280  1.26.8.2  ad {
    281  1.26.8.2  ad 
    282  1.26.8.2  ad 	callout_si = softintr_establish(IPL_SOFTCLOCK,
    283  1.26.8.2  ad 	    callout_softclock, NULL);
    284  1.26.8.2  ad 	if (callout_si == NULL)
    285  1.26.8.2  ad 		panic("callout_startup2: unable to register softclock intr");
    286  1.26.8.2  ad }
    287  1.26.8.2  ad 
    288  1.26.8.2  ad /*
    289  1.26.8.2  ad  * callout_init:
    290  1.26.8.2  ad  *
    291  1.26.8.2  ad  *	Initialize a callout structure.
    292  1.26.8.2  ad  */
    293  1.26.8.2  ad void
    294  1.26.8.2  ad callout_init(callout_t *cs, u_int flags)
    295  1.26.8.2  ad {
    296  1.26.8.2  ad 	callout_impl_t *c = (callout_impl_t *)cs;
    297  1.26.8.2  ad 
    298  1.26.8.2  ad 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    299  1.26.8.2  ad 
    300  1.26.8.2  ad 	memset(c, 0, sizeof(*c));
    301  1.26.8.2  ad 	c->c_flags = flags;
    302  1.26.8.2  ad 	c->c_magic = CALLOUT_MAGIC;
    303  1.26.8.2  ad }
    304  1.26.8.2  ad 
    305  1.26.8.2  ad /*
    306  1.26.8.2  ad  * callout_destroy:
    307  1.26.8.2  ad  *
    308  1.26.8.2  ad  *	Destroy a callout structure.  The callout must be stopped.
    309  1.26.8.2  ad  */
    310  1.26.8.2  ad void
    311  1.26.8.2  ad callout_destroy(callout_t *cs)
    312  1.26.8.2  ad {
    313  1.26.8.2  ad 	callout_impl_t *c = (callout_impl_t *)cs;
    314  1.26.8.2  ad 
    315  1.26.8.2  ad 	/*
    316  1.26.8.2  ad 	 * It's not necessary to lock in order to see the correct value
    317  1.26.8.2  ad 	 * of c->c_flags.  If the callout could potentially have been
    318  1.26.8.2  ad 	 * running, the current thread should have stopped it.
    319  1.26.8.2  ad 	 */
    320  1.26.8.2  ad 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    321  1.26.8.2  ad 	if (c->c_oncpu != NULL) {
    322  1.26.8.2  ad 		KASSERT(
    323  1.26.8.2  ad 		    ((struct cpu_info *)c->c_oncpu)->ci_data.cpu_callout != c);
    324  1.26.8.2  ad 	}
    325  1.26.8.2  ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    326  1.26.8.2  ad 
    327  1.26.8.2  ad 	c->c_magic = 0;
    328  1.26.8.2  ad }
    329  1.26.8.2  ad 
    330  1.26.8.2  ad 
    331  1.26.8.2  ad /*
    332  1.26.8.2  ad  * callout_reset:
    333  1.26.8.2  ad  *
    334  1.26.8.2  ad  *	Reset a callout structure with a new function and argument, and
    335  1.26.8.2  ad  *	schedule it to run.
    336  1.26.8.2  ad  */
    337  1.26.8.2  ad void
    338  1.26.8.2  ad callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    339  1.26.8.2  ad {
    340  1.26.8.2  ad 	callout_impl_t *c = (callout_impl_t *)cs;
    341  1.26.8.2  ad 	int old_time;
    342  1.26.8.2  ad 
    343  1.26.8.2  ad 	KASSERT(to_ticks >= 0);
    344  1.26.8.2  ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    345  1.26.8.2  ad 	KASSERT(func != NULL);
    346  1.26.8.2  ad 
    347  1.26.8.2  ad 	mutex_spin_enter(&callout_lock);
    348  1.26.8.2  ad 
    349  1.26.8.2  ad 	/* Initialize the time here, it won't change. */
    350  1.26.8.2  ad 	old_time = c->c_time;
    351  1.26.8.2  ad 	c->c_time = to_ticks + hardclock_ticks;
    352  1.26.8.2  ad 	c->c_flags &= ~CALLOUT_FIRED;
    353  1.26.8.2  ad 
    354  1.26.8.2  ad 	c->c_func = func;
    355  1.26.8.2  ad 	c->c_arg = arg;
    356  1.26.8.2  ad 
    357  1.26.8.2  ad 	/*
    358  1.26.8.2  ad 	 * If this timeout is already scheduled and now is moved
    359  1.26.8.2  ad 	 * earlier, reschedule it now. Otherwise leave it in place
    360  1.26.8.2  ad 	 * and let it be rescheduled later.
    361  1.26.8.2  ad 	 */
    362  1.26.8.2  ad 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    363  1.26.8.2  ad 		if (c->c_time - old_time < 0) {
    364  1.26.8.2  ad 			CIRCQ_REMOVE(&c->c_list);
    365  1.26.8.2  ad 			CIRCQ_INSERT(&c->c_list, &timeout_todo);
    366  1.26.8.2  ad 		}
    367  1.26.8.2  ad 	} else {
    368  1.26.8.2  ad 		c->c_flags |= CALLOUT_PENDING;
    369  1.26.8.2  ad 		CIRCQ_INSERT(&c->c_list, &timeout_todo);
    370  1.26.8.2  ad 	}
    371  1.26.8.2  ad 
    372  1.26.8.2  ad 	mutex_spin_exit(&callout_lock);
    373  1.26.8.2  ad }
    374  1.26.8.2  ad 
    375  1.26.8.2  ad /*
    376  1.26.8.2  ad  * callout_schedule:
    377  1.26.8.2  ad  *
    378  1.26.8.2  ad  *	Schedule a callout to run.  The function and argument must
    379  1.26.8.2  ad  *	already be set in the callout structure.
    380  1.26.8.2  ad  */
    381  1.26.8.2  ad void
    382  1.26.8.2  ad callout_schedule(callout_t *cs, int to_ticks)
    383  1.26.8.2  ad {
    384  1.26.8.2  ad 	callout_impl_t *c = (callout_impl_t *)cs;
    385  1.26.8.2  ad 	int old_time;
    386  1.26.8.2  ad 
    387  1.26.8.2  ad 	KASSERT(to_ticks >= 0);
    388  1.26.8.2  ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    389  1.26.8.2  ad 	KASSERT(c->c_func != NULL);
    390  1.26.8.2  ad 
    391  1.26.8.2  ad 	mutex_spin_enter(&callout_lock);
    392  1.26.8.2  ad 
    393  1.26.8.2  ad 	/* Initialize the time here, it won't change. */
    394  1.26.8.2  ad 	old_time = c->c_time;
    395  1.26.8.2  ad 	c->c_time = to_ticks + hardclock_ticks;
    396  1.26.8.2  ad 	c->c_flags &= ~CALLOUT_FIRED;
    397  1.26.8.2  ad 
    398  1.26.8.2  ad 	/*
    399  1.26.8.2  ad 	 * If this timeout is already scheduled and now is moved
    400  1.26.8.2  ad 	 * earlier, reschedule it now. Otherwise leave it in place
    401  1.26.8.2  ad 	 * and let it be rescheduled later.
    402  1.26.8.2  ad 	 */
    403  1.26.8.2  ad 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    404  1.26.8.2  ad 		if (c->c_time - old_time < 0) {
    405  1.26.8.2  ad 			CIRCQ_REMOVE(&c->c_list);
    406  1.26.8.2  ad 			CIRCQ_INSERT(&c->c_list, &timeout_todo);
    407  1.26.8.2  ad 		}
    408  1.26.8.2  ad 	} else {
    409  1.26.8.2  ad 		c->c_flags |= CALLOUT_PENDING;
    410  1.26.8.2  ad 		CIRCQ_INSERT(&c->c_list, &timeout_todo);
    411  1.26.8.2  ad 	}
    412  1.26.8.2  ad 
    413  1.26.8.2  ad 	mutex_spin_exit(&callout_lock);
    414  1.26.8.2  ad }
    415  1.26.8.2  ad 
    416  1.26.8.2  ad /*
    417  1.26.8.2  ad  * callout_stop:
    418  1.26.8.2  ad  *
    419  1.26.8.2  ad  *	Cancel a pending callout.
    420  1.26.8.2  ad  */
    421  1.26.8.2  ad bool
    422  1.26.8.2  ad callout_stop(callout_t *cs)
    423  1.26.8.2  ad {
    424  1.26.8.2  ad 	callout_impl_t *c = (callout_impl_t *)cs;
    425  1.26.8.2  ad 	bool expired;
    426  1.26.8.2  ad 
    427  1.26.8.2  ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    428  1.26.8.2  ad 
    429  1.26.8.2  ad 	mutex_spin_enter(&callout_lock);
    430  1.26.8.2  ad 
    431  1.26.8.2  ad 	if (callout_running(c))
    432  1.26.8.2  ad 		callout_barrier(c);
    433  1.26.8.2  ad 
    434  1.26.8.2  ad 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    435  1.26.8.2  ad 		CIRCQ_REMOVE(&c->c_list);
    436  1.26.8.2  ad 
    437  1.26.8.2  ad 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    438  1.26.8.2  ad 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    439  1.26.8.2  ad 
    440  1.26.8.2  ad 	mutex_spin_exit(&callout_lock);
    441  1.26.8.2  ad 
    442  1.26.8.2  ad 	return expired;
    443  1.26.8.2  ad }
    444  1.26.8.2  ad 
    445  1.26.8.2  ad void
    446  1.26.8.2  ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    447  1.26.8.2  ad {
    448  1.26.8.2  ad 	callout_impl_t *c = (callout_impl_t *)cs;
    449  1.26.8.2  ad 
    450  1.26.8.2  ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    451  1.26.8.2  ad 
    452  1.26.8.2  ad 	mutex_spin_enter(&callout_lock);
    453  1.26.8.2  ad 	c->c_func = func;
    454  1.26.8.2  ad 	c->c_arg = arg;
    455  1.26.8.2  ad 	mutex_spin_exit(&callout_lock);
    456  1.26.8.2  ad }
    457  1.26.8.2  ad 
    458  1.26.8.2  ad bool
    459  1.26.8.2  ad callout_expired(callout_t *cs)
    460  1.26.8.2  ad {
    461  1.26.8.2  ad 	callout_impl_t *c = (callout_impl_t *)cs;
    462  1.26.8.2  ad 	bool rv;
    463  1.26.8.2  ad 
    464  1.26.8.2  ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    465  1.26.8.2  ad 
    466  1.26.8.2  ad 	mutex_spin_enter(&callout_lock);
    467  1.26.8.2  ad 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    468  1.26.8.2  ad 	mutex_spin_exit(&callout_lock);
    469  1.26.8.2  ad 
    470  1.26.8.2  ad 	return rv;
    471  1.26.8.2  ad }
    472  1.26.8.2  ad 
    473  1.26.8.2  ad bool
    474  1.26.8.2  ad callout_active(callout_t *cs)
    475  1.26.8.2  ad {
    476  1.26.8.2  ad 	callout_impl_t *c = (callout_impl_t *)cs;
    477  1.26.8.2  ad 	bool rv;
    478  1.26.8.2  ad 
    479  1.26.8.2  ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    480  1.26.8.2  ad 
    481  1.26.8.2  ad 	mutex_spin_enter(&callout_lock);
    482  1.26.8.2  ad 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    483  1.26.8.2  ad 	mutex_spin_exit(&callout_lock);
    484  1.26.8.2  ad 
    485  1.26.8.2  ad 	return rv;
    486  1.26.8.2  ad }
    487  1.26.8.2  ad 
    488  1.26.8.2  ad bool
    489  1.26.8.2  ad callout_pending(callout_t *cs)
    490  1.26.8.2  ad {
    491  1.26.8.2  ad 	callout_impl_t *c = (callout_impl_t *)cs;
    492  1.26.8.2  ad 	bool rv;
    493  1.26.8.2  ad 
    494  1.26.8.2  ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    495  1.26.8.2  ad 
    496  1.26.8.2  ad 	mutex_spin_enter(&callout_lock);
    497  1.26.8.2  ad 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    498  1.26.8.2  ad 	mutex_spin_exit(&callout_lock);
    499  1.26.8.2  ad 
    500  1.26.8.2  ad 	return rv;
    501  1.26.8.2  ad }
    502  1.26.8.2  ad 
    503  1.26.8.2  ad bool
    504  1.26.8.2  ad callout_invoking(callout_t *cs)
    505  1.26.8.2  ad {
    506  1.26.8.2  ad 	callout_impl_t *c = (callout_impl_t *)cs;
    507  1.26.8.2  ad 	bool rv;
    508  1.26.8.2  ad 
    509  1.26.8.2  ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    510  1.26.8.2  ad 
    511  1.26.8.2  ad 	mutex_spin_enter(&callout_lock);
    512  1.26.8.2  ad 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    513  1.26.8.2  ad 	mutex_spin_exit(&callout_lock);
    514  1.26.8.2  ad 
    515  1.26.8.2  ad 	return rv;
    516  1.26.8.2  ad }
    517  1.26.8.2  ad 
    518  1.26.8.2  ad void
    519  1.26.8.2  ad callout_ack(callout_t *cs)
    520  1.26.8.2  ad {
    521  1.26.8.2  ad 	callout_impl_t *c = (callout_impl_t *)cs;
    522  1.26.8.2  ad 
    523  1.26.8.2  ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    524  1.26.8.2  ad 
    525  1.26.8.2  ad 	mutex_spin_enter(&callout_lock);
    526  1.26.8.2  ad 	c->c_flags &= ~CALLOUT_INVOKING;
    527  1.26.8.2  ad 	mutex_spin_exit(&callout_lock);
    528  1.26.8.2  ad }
    529  1.26.8.2  ad 
    530  1.26.8.2  ad /*
    531  1.26.8.2  ad  * This is called from hardclock() once every tick.
    532  1.26.8.2  ad  * We schedule callout_softclock() if there is work
    533  1.26.8.2  ad  * to be done.
    534  1.26.8.2  ad  */
    535  1.26.8.2  ad void
    536  1.26.8.2  ad callout_hardclock(void)
    537  1.26.8.2  ad {
    538  1.26.8.2  ad 	int needsoftclock;
    539  1.26.8.2  ad 
    540  1.26.8.2  ad 	mutex_spin_enter(&callout_lock);
    541  1.26.8.2  ad 
    542  1.26.8.2  ad 	MOVEBUCKET(0, hardclock_ticks);
    543  1.26.8.2  ad 	if (MASKWHEEL(0, hardclock_ticks) == 0) {
    544  1.26.8.2  ad 		MOVEBUCKET(1, hardclock_ticks);
    545  1.26.8.2  ad 		if (MASKWHEEL(1, hardclock_ticks) == 0) {
    546  1.26.8.2  ad 			MOVEBUCKET(2, hardclock_ticks);
    547  1.26.8.2  ad 			if (MASKWHEEL(2, hardclock_ticks) == 0)
    548  1.26.8.2  ad 				MOVEBUCKET(3, hardclock_ticks);
    549  1.26.8.2  ad 		}
    550  1.26.8.2  ad 	}
    551  1.26.8.2  ad 
    552  1.26.8.2  ad 	needsoftclock = !CIRCQ_EMPTY(&timeout_todo);
    553  1.26.8.2  ad 	mutex_spin_exit(&callout_lock);
    554  1.26.8.2  ad 
    555  1.26.8.2  ad 	if (needsoftclock)
    556  1.26.8.2  ad 		softintr_schedule(callout_si);
    557  1.26.8.2  ad }
    558  1.26.8.2  ad 
    559  1.26.8.2  ad /* ARGSUSED */
    560  1.26.8.2  ad static void
    561  1.26.8.2  ad callout_softclock(void *v)
    562  1.26.8.2  ad {
    563  1.26.8.2  ad 	callout_impl_t *c;
    564  1.26.8.2  ad 	struct cpu_info *ci;
    565  1.26.8.2  ad 	void (*func)(void *);
    566  1.26.8.2  ad 	void *arg;
    567  1.26.8.2  ad 	u_int mpsafe, count;
    568  1.26.8.2  ad 	lwp_t *l;
    569  1.26.8.2  ad 
    570  1.26.8.2  ad 	l = curlwp;
    571  1.26.8.2  ad 	ci = l->l_cpu;
    572  1.26.8.2  ad 
    573  1.26.8.2  ad 	mutex_spin_enter(&callout_lock);
    574  1.26.8.2  ad 
    575  1.26.8.2  ad 	while (!CIRCQ_EMPTY(&timeout_todo)) {
    576  1.26.8.2  ad 		c = CIRCQ_FIRST(&timeout_todo);
    577  1.26.8.2  ad 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    578  1.26.8.2  ad 		KASSERT(c->c_func != NULL);
    579  1.26.8.2  ad 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    580  1.26.8.2  ad 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    581  1.26.8.2  ad 		CIRCQ_REMOVE(&c->c_list);
    582  1.26.8.2  ad 
    583  1.26.8.2  ad 		/* If due run it, otherwise insert it into the right bucket. */
    584  1.26.8.2  ad 		if (c->c_time - hardclock_ticks > 0) {
    585  1.26.8.2  ad 			CIRCQ_INSERT(&c->c_list,
    586  1.26.8.2  ad 			    BUCKET((c->c_time - hardclock_ticks), c->c_time));
    587  1.26.8.2  ad 		} else {
    588  1.26.8.2  ad 			if (c->c_time - hardclock_ticks < 0)
    589  1.26.8.2  ad 				callout_ev_late.ev_count++;
    590  1.26.8.2  ad 
    591  1.26.8.2  ad 			c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
    592  1.26.8.2  ad 			mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    593  1.26.8.2  ad 			func = c->c_func;
    594  1.26.8.2  ad 			arg = c->c_arg;
    595  1.26.8.2  ad 			c->c_oncpu = ci;
    596  1.26.8.2  ad 			c->c_onlwp = l;
    597  1.26.8.2  ad 
    598  1.26.8.2  ad 			mutex_spin_exit(&callout_lock);
    599  1.26.8.2  ad 			if (!mpsafe) {
    600  1.26.8.2  ad 				KERNEL_LOCK(1, curlwp);
    601  1.26.8.2  ad 				if (ci->ci_data.cpu_callout_cancel != c)
    602  1.26.8.2  ad 					(*func)(arg);
    603  1.26.8.2  ad 				KERNEL_UNLOCK_ONE(curlwp);
    604  1.26.8.2  ad 			} else
    605  1.26.8.2  ad 					(*func)(arg);
    606  1.26.8.2  ad 			mutex_spin_enter(&callout_lock);
    607  1.26.8.2  ad 
    608  1.26.8.2  ad 			/*
    609  1.26.8.2  ad 			 * We can't touch 'c' here because it might be
    610  1.26.8.2  ad 			 * freed already.  If LWPs waiting for callout
    611  1.26.8.2  ad 			 * to complete, awaken them.
    612  1.26.8.2  ad 			 */
    613  1.26.8.2  ad 			ci->ci_data.cpu_callout_cancel = NULL;
    614  1.26.8.2  ad 			ci->ci_data.cpu_callout = NULL;
    615  1.26.8.2  ad 			if ((count = ci->ci_data.cpu_callout_nwait) != 0) {
    616  1.26.8.2  ad 				ci->ci_data.cpu_callout_nwait = 0;
    617  1.26.8.2  ad 				/* sleepq_wake() drops the lock. */
    618  1.26.8.2  ad 				sleepq_wake(&callout_sleepq, ci, count);
    619  1.26.8.2  ad 				mutex_spin_enter(&callout_lock);
    620  1.26.8.2  ad 			}
    621  1.26.8.2  ad 		}
    622  1.26.8.2  ad 	}
    623  1.26.8.2  ad 
    624  1.26.8.2  ad 	mutex_spin_exit(&callout_lock);
    625  1.26.8.2  ad }
    626  1.26.8.2  ad 
    627  1.26.8.2  ad #ifdef DDB
    628  1.26.8.2  ad static void
    629  1.26.8.2  ad db_show_callout_bucket(struct callout_circq *bucket)
    630  1.26.8.2  ad {
    631  1.26.8.2  ad 	callout_impl_t *c;
    632  1.26.8.2  ad 	db_expr_t offset;
    633  1.26.8.2  ad 	const char *name;
    634  1.26.8.2  ad 	static char question[] = "?";
    635  1.26.8.2  ad 
    636  1.26.8.2  ad 	if (CIRCQ_EMPTY(bucket))
    637  1.26.8.2  ad 		return;
    638  1.26.8.2  ad 
    639  1.26.8.2  ad 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    640  1.26.8.2  ad 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    641  1.26.8.2  ad 		    &offset);
    642  1.26.8.2  ad 		name = name ? name : question;
    643  1.26.8.2  ad #ifdef _LP64
    644  1.26.8.2  ad #define	POINTER_WIDTH	"%16lx"
    645  1.26.8.2  ad #else
    646  1.26.8.2  ad #define	POINTER_WIDTH	"%8lx"
    647  1.26.8.2  ad #endif
    648  1.26.8.2  ad 		db_printf("%9d %2d/%-4d " POINTER_WIDTH "  %s\n",
    649  1.26.8.2  ad 		    c->c_time - hardclock_ticks,
    650  1.26.8.2  ad 		    (int)((bucket - timeout_wheel) / WHEELSIZE),
    651  1.26.8.2  ad 		    (int)(bucket - timeout_wheel), (u_long) c->c_arg, name);
    652  1.26.8.2  ad 
    653  1.26.8.2  ad 		if (CIRCQ_LAST(&c->c_list, bucket))
    654  1.26.8.2  ad 			break;
    655  1.26.8.2  ad 	}
    656  1.26.8.2  ad }
    657  1.26.8.2  ad 
    658  1.26.8.2  ad void
    659  1.26.8.2  ad db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    660  1.26.8.2  ad {
    661  1.26.8.2  ad 	int b;
    662  1.26.8.2  ad 
    663  1.26.8.2  ad 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
    664  1.26.8.2  ad #ifdef _LP64
    665  1.26.8.2  ad 	db_printf("    ticks  wheel               arg  func\n");
    666  1.26.8.2  ad #else
    667  1.26.8.2  ad 	db_printf("    ticks  wheel       arg  func\n");
    668  1.26.8.2  ad #endif
    669  1.26.8.2  ad 
    670  1.26.8.2  ad 	/*
    671  1.26.8.2  ad 	 * Don't lock the callwheel; all the other CPUs are paused
    672  1.26.8.2  ad 	 * anyhow, and we might be called in a circumstance where
    673  1.26.8.2  ad 	 * some other CPU was paused while holding the lock.
    674  1.26.8.2  ad 	 */
    675  1.26.8.2  ad 
    676  1.26.8.2  ad 	db_show_callout_bucket(&timeout_todo);
    677  1.26.8.2  ad 	for (b = 0; b < BUCKETS; b++)
    678  1.26.8.2  ad 		db_show_callout_bucket(&timeout_wheel[b]);
    679  1.26.8.2  ad }
    680  1.26.8.2  ad #endif /* DDB */
    681