Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.31.6.3
      1  1.31.6.1       mjf /*	$NetBSD: kern_timeout.c,v 1.31.6.3 2008/07/02 19:08:20 mjf Exp $	*/
      2       1.1   thorpej 
      3       1.1   thorpej /*-
      4  1.31.6.1       mjf  * Copyright (c) 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.1   thorpej  * All rights reserved.
      6       1.1   thorpej  *
      7       1.1   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8      1.22        ad  * by Jason R. Thorpe, and by Andrew Doran.
      9       1.1   thorpej  *
     10       1.1   thorpej  * Redistribution and use in source and binary forms, with or without
     11       1.1   thorpej  * modification, are permitted provided that the following conditions
     12       1.1   thorpej  * are met:
     13       1.1   thorpej  * 1. Redistributions of source code must retain the above copyright
     14       1.1   thorpej  *    notice, this list of conditions and the following disclaimer.
     15       1.1   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17       1.1   thorpej  *    documentation and/or other materials provided with the distribution.
     18       1.1   thorpej  *
     19       1.1   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.1   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.1   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.1   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.1   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.1   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.1   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.1   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.1   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.1   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.1   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30       1.1   thorpej  */
     31       1.1   thorpej 
     32       1.1   thorpej /*
     33       1.1   thorpej  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34       1.1   thorpej  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35      1.14     perry  * All rights reserved.
     36      1.14     perry  *
     37      1.14     perry  * Redistribution and use in source and binary forms, with or without
     38      1.14     perry  * modification, are permitted provided that the following conditions
     39      1.14     perry  * are met:
     40       1.1   thorpej  *
     41      1.14     perry  * 1. Redistributions of source code must retain the above copyright
     42      1.14     perry  *    notice, this list of conditions and the following disclaimer.
     43      1.14     perry  * 2. Redistributions in binary form must reproduce the above copyright
     44      1.14     perry  *    notice, this list of conditions and the following disclaimer in the
     45      1.14     perry  *    documentation and/or other materials provided with the distribution.
     46       1.1   thorpej  * 3. The name of the author may not be used to endorse or promote products
     47      1.14     perry  *    derived from this software without specific prior written permission.
     48       1.1   thorpej  *
     49       1.1   thorpej  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50       1.1   thorpej  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51       1.1   thorpej  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52       1.1   thorpej  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53       1.1   thorpej  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54       1.1   thorpej  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55       1.1   thorpej  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56       1.1   thorpej  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57       1.1   thorpej  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58      1.14     perry  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59       1.1   thorpej  */
     60       1.7     lukem 
     61       1.7     lukem #include <sys/cdefs.h>
     62  1.31.6.1       mjf __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.31.6.3 2008/07/02 19:08:20 mjf Exp $");
     63       1.1   thorpej 
     64       1.1   thorpej /*
     65      1.22        ad  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  1.31.6.2       mjf  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  1.31.6.2       mjf  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  1.31.6.2       mjf  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  1.31.6.2       mjf  * a Timer Facility" by George Varghese and Tony Lauck.
     70      1.22        ad  *
     71      1.22        ad  * Some of the "math" in here is a bit tricky.  We have to beware of
     72      1.22        ad  * wrapping ints.
     73      1.22        ad  *
     74      1.22        ad  * We use the fact that any element added to the queue must be added with
     75      1.22        ad  * a positive time.  That means that any element `to' on the queue cannot
     76      1.22        ad  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77      1.22        ad  * be positive or negative so comparing it with anything is dangerous.
     78      1.22        ad  * The only way we can use the c->c_time value in any predictable way is
     79      1.22        ad  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  1.31.6.2       mjf  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81      1.22        ad  * timeouts and 0 or negative for due timeouts.
     82       1.1   thorpej  */
     83       1.1   thorpej 
     84      1.24        ad #define	_CALLOUT_PRIVATE
     85      1.24        ad 
     86       1.1   thorpej #include <sys/param.h>
     87       1.1   thorpej #include <sys/systm.h>
     88       1.1   thorpej #include <sys/kernel.h>
     89       1.1   thorpej #include <sys/callout.h>
     90      1.20        ad #include <sys/mutex.h>
     91      1.22        ad #include <sys/proc.h>
     92      1.22        ad #include <sys/sleepq.h>
     93      1.22        ad #include <sys/syncobj.h>
     94      1.22        ad #include <sys/evcnt.h>
     95      1.27        ad #include <sys/intr.h>
     96  1.31.6.1       mjf #include <sys/cpu.h>
     97  1.31.6.2       mjf #include <sys/kmem.h>
     98       1.1   thorpej 
     99       1.1   thorpej #ifdef DDB
    100       1.1   thorpej #include <machine/db_machdep.h>
    101       1.1   thorpej #include <ddb/db_interface.h>
    102       1.1   thorpej #include <ddb/db_access.h>
    103       1.1   thorpej #include <ddb/db_sym.h>
    104       1.1   thorpej #include <ddb/db_output.h>
    105       1.1   thorpej #endif
    106       1.1   thorpej 
    107      1.22        ad #define BUCKETS		1024
    108      1.22        ad #define WHEELSIZE	256
    109      1.22        ad #define WHEELMASK	255
    110      1.22        ad #define WHEELBITS	8
    111      1.22        ad 
    112       1.1   thorpej #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    113       1.1   thorpej 
    114  1.31.6.2       mjf #define BUCKET(cc, rel, abs)						\
    115       1.1   thorpej     (((rel) <= (1 << (2*WHEELBITS)))					\
    116       1.1   thorpej     	? ((rel) <= (1 << WHEELBITS))					\
    117  1.31.6.2       mjf             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    118  1.31.6.2       mjf             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    119       1.1   thorpej         : ((rel) <= (1 << (3*WHEELBITS)))				\
    120  1.31.6.2       mjf             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    121  1.31.6.2       mjf             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    122       1.1   thorpej 
    123  1.31.6.2       mjf #define MOVEBUCKET(cc, wheel, time)					\
    124  1.31.6.2       mjf     CIRCQ_APPEND(&(cc)->cc_todo,					\
    125  1.31.6.2       mjf         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    126       1.1   thorpej 
    127       1.1   thorpej /*
    128       1.1   thorpej  * Circular queue definitions.
    129       1.1   thorpej  */
    130       1.1   thorpej 
    131      1.11       scw #define CIRCQ_INIT(list)						\
    132       1.1   thorpej do {									\
    133      1.11       scw         (list)->cq_next_l = (list);					\
    134      1.11       scw         (list)->cq_prev_l = (list);					\
    135       1.1   thorpej } while (/*CONSTCOND*/0)
    136       1.1   thorpej 
    137       1.1   thorpej #define CIRCQ_INSERT(elem, list)					\
    138       1.1   thorpej do {									\
    139      1.11       scw         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    140      1.11       scw         (elem)->cq_next_l = (list);					\
    141      1.11       scw         (list)->cq_prev_l->cq_next_l = (elem);				\
    142      1.11       scw         (list)->cq_prev_l = (elem);					\
    143       1.1   thorpej } while (/*CONSTCOND*/0)
    144       1.1   thorpej 
    145       1.1   thorpej #define CIRCQ_APPEND(fst, snd)						\
    146       1.1   thorpej do {									\
    147       1.1   thorpej         if (!CIRCQ_EMPTY(snd)) {					\
    148      1.11       scw                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    149      1.11       scw                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    150      1.11       scw                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    151      1.11       scw                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    152       1.1   thorpej                 CIRCQ_INIT(snd);					\
    153       1.1   thorpej         }								\
    154       1.1   thorpej } while (/*CONSTCOND*/0)
    155       1.1   thorpej 
    156       1.1   thorpej #define CIRCQ_REMOVE(elem)						\
    157       1.1   thorpej do {									\
    158      1.11       scw         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    159      1.11       scw         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    160       1.1   thorpej } while (/*CONSTCOND*/0)
    161       1.1   thorpej 
    162      1.11       scw #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    163      1.11       scw #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    164      1.11       scw #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    165      1.11       scw #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    166       1.1   thorpej 
    167      1.22        ad static void	callout_softclock(void *);
    168      1.22        ad 
    169  1.31.6.2       mjf struct callout_cpu {
    170  1.31.6.2       mjf 	kmutex_t	cc_lock;
    171  1.31.6.2       mjf 	sleepq_t	cc_sleepq;
    172  1.31.6.2       mjf 	u_int		cc_nwait;
    173  1.31.6.2       mjf 	u_int		cc_ticks;
    174  1.31.6.2       mjf 	lwp_t		*cc_lwp;
    175  1.31.6.2       mjf 	callout_impl_t	*cc_active;
    176  1.31.6.2       mjf 	callout_impl_t	*cc_cancel;
    177  1.31.6.2       mjf 	struct evcnt	cc_ev_late;
    178  1.31.6.2       mjf 	struct evcnt	cc_ev_block;
    179  1.31.6.2       mjf 	struct callout_circq cc_todo;		/* Worklist */
    180  1.31.6.2       mjf 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    181  1.31.6.2       mjf 	char		cc_name1[12];
    182  1.31.6.2       mjf 	char		cc_name2[12];
    183  1.31.6.2       mjf };
    184  1.31.6.2       mjf 
    185  1.31.6.2       mjf static struct callout_cpu callout_cpu0;
    186  1.31.6.2       mjf static void *callout_sih;
    187  1.31.6.2       mjf 
    188  1.31.6.2       mjf static inline kmutex_t *
    189  1.31.6.2       mjf callout_lock(callout_impl_t *c)
    190  1.31.6.2       mjf {
    191  1.31.6.2       mjf 	kmutex_t *lock;
    192  1.31.6.2       mjf 
    193  1.31.6.2       mjf 	for (;;) {
    194  1.31.6.2       mjf 		lock = &c->c_cpu->cc_lock;
    195  1.31.6.2       mjf 		mutex_spin_enter(lock);
    196  1.31.6.2       mjf 		if (__predict_true(lock == &c->c_cpu->cc_lock))
    197  1.31.6.2       mjf 			return lock;
    198  1.31.6.2       mjf 		mutex_spin_exit(lock);
    199  1.31.6.2       mjf 	}
    200  1.31.6.2       mjf }
    201       1.5   thorpej 
    202       1.1   thorpej /*
    203       1.1   thorpej  * callout_startup:
    204       1.1   thorpej  *
    205       1.1   thorpej  *	Initialize the callout facility, called at system startup time.
    206  1.31.6.2       mjf  *	Do just enough to allow callouts to be safely registered.
    207       1.1   thorpej  */
    208       1.1   thorpej void
    209       1.1   thorpej callout_startup(void)
    210       1.1   thorpej {
    211  1.31.6.2       mjf 	struct callout_cpu *cc;
    212       1.1   thorpej 	int b;
    213       1.1   thorpej 
    214  1.31.6.2       mjf 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    215      1.22        ad 
    216  1.31.6.2       mjf 	cc = &callout_cpu0;
    217  1.31.6.2       mjf 	mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
    218  1.31.6.2       mjf 	CIRCQ_INIT(&cc->cc_todo);
    219       1.1   thorpej 	for (b = 0; b < BUCKETS; b++)
    220  1.31.6.2       mjf 		CIRCQ_INIT(&cc->cc_wheel[b]);
    221  1.31.6.2       mjf 	curcpu()->ci_data.cpu_callout = cc;
    222      1.22        ad }
    223      1.22        ad 
    224      1.22        ad /*
    225  1.31.6.2       mjf  * callout_init_cpu:
    226      1.22        ad  *
    227  1.31.6.2       mjf  *	Per-CPU initialization.
    228      1.22        ad  */
    229      1.22        ad void
    230  1.31.6.2       mjf callout_init_cpu(struct cpu_info *ci)
    231      1.22        ad {
    232  1.31.6.2       mjf 	struct callout_cpu *cc;
    233  1.31.6.2       mjf 	int b;
    234      1.22        ad 
    235  1.31.6.3       mjf 	CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    236  1.31.6.2       mjf 
    237  1.31.6.2       mjf 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    238  1.31.6.2       mjf 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    239  1.31.6.2       mjf 		if (cc == NULL)
    240  1.31.6.2       mjf 			panic("callout_init_cpu (1)");
    241  1.31.6.2       mjf 		mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
    242  1.31.6.2       mjf 		CIRCQ_INIT(&cc->cc_todo);
    243  1.31.6.2       mjf 		for (b = 0; b < BUCKETS; b++)
    244  1.31.6.2       mjf 			CIRCQ_INIT(&cc->cc_wheel[b]);
    245  1.31.6.2       mjf 	} else {
    246  1.31.6.2       mjf 		/* Boot CPU, one time only. */
    247  1.31.6.2       mjf 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    248  1.31.6.2       mjf 		    callout_softclock, NULL);
    249  1.31.6.2       mjf 		if (callout_sih == NULL)
    250  1.31.6.2       mjf 			panic("callout_init_cpu (2)");
    251  1.31.6.2       mjf 	}
    252  1.31.6.2       mjf 
    253  1.31.6.2       mjf 	sleepq_init(&cc->cc_sleepq);
    254  1.31.6.2       mjf 
    255  1.31.6.2       mjf 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    256  1.31.6.2       mjf 	    cpu_index(ci));
    257  1.31.6.2       mjf 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    258  1.31.6.2       mjf 	    NULL, "callout", cc->cc_name1);
    259  1.31.6.2       mjf 
    260  1.31.6.2       mjf 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    261  1.31.6.2       mjf 	    cpu_index(ci));
    262  1.31.6.2       mjf 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    263  1.31.6.2       mjf 	    NULL, "callout", cc->cc_name2);
    264  1.31.6.2       mjf 
    265  1.31.6.2       mjf 	ci->ci_data.cpu_callout = cc;
    266       1.1   thorpej }
    267       1.1   thorpej 
    268       1.1   thorpej /*
    269       1.1   thorpej  * callout_init:
    270       1.1   thorpej  *
    271  1.31.6.2       mjf  *	Initialize a callout structure.  This must be quick, so we fill
    272  1.31.6.2       mjf  *	only the minimum number of fields.
    273       1.1   thorpej  */
    274       1.1   thorpej void
    275      1.22        ad callout_init(callout_t *cs, u_int flags)
    276       1.1   thorpej {
    277      1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    278  1.31.6.2       mjf 	struct callout_cpu *cc;
    279      1.22        ad 
    280      1.22        ad 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    281       1.1   thorpej 
    282  1.31.6.2       mjf 	cc = curcpu()->ci_data.cpu_callout;
    283  1.31.6.2       mjf 	c->c_func = NULL;
    284      1.22        ad 	c->c_magic = CALLOUT_MAGIC;
    285  1.31.6.2       mjf 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    286  1.31.6.2       mjf 		c->c_flags = flags;
    287  1.31.6.2       mjf 		c->c_cpu = cc;
    288  1.31.6.2       mjf 		return;
    289  1.31.6.2       mjf 	}
    290  1.31.6.2       mjf 	c->c_flags = flags | CALLOUT_BOUND;
    291  1.31.6.2       mjf 	c->c_cpu = &callout_cpu0;
    292      1.22        ad }
    293      1.22        ad 
    294      1.22        ad /*
    295      1.22        ad  * callout_destroy:
    296      1.22        ad  *
    297      1.22        ad  *	Destroy a callout structure.  The callout must be stopped.
    298      1.22        ad  */
    299      1.22        ad void
    300      1.22        ad callout_destroy(callout_t *cs)
    301      1.22        ad {
    302      1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    303      1.22        ad 
    304      1.22        ad 	/*
    305      1.22        ad 	 * It's not necessary to lock in order to see the correct value
    306      1.22        ad 	 * of c->c_flags.  If the callout could potentially have been
    307      1.22        ad 	 * running, the current thread should have stopped it.
    308      1.22        ad 	 */
    309      1.22        ad 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    310  1.31.6.2       mjf 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
    311      1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    312      1.22        ad 	c->c_magic = 0;
    313       1.1   thorpej }
    314       1.1   thorpej 
    315       1.1   thorpej /*
    316      1.29     joerg  * callout_schedule_locked:
    317       1.1   thorpej  *
    318      1.29     joerg  *	Schedule a callout to run.  The function and argument must
    319      1.29     joerg  *	already be set in the callout structure.  Must be called with
    320      1.29     joerg  *	callout_lock.
    321       1.1   thorpej  */
    322      1.29     joerg static void
    323  1.31.6.2       mjf callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    324       1.1   thorpej {
    325  1.31.6.2       mjf 	struct callout_cpu *cc, *occ;
    326      1.20        ad 	int old_time;
    327       1.1   thorpej 
    328       1.1   thorpej 	KASSERT(to_ticks >= 0);
    329      1.29     joerg 	KASSERT(c->c_func != NULL);
    330       1.1   thorpej 
    331       1.1   thorpej 	/* Initialize the time here, it won't change. */
    332  1.31.6.2       mjf 	occ = c->c_cpu;
    333      1.22        ad 	c->c_flags &= ~CALLOUT_FIRED;
    334       1.1   thorpej 
    335       1.1   thorpej 	/*
    336       1.1   thorpej 	 * If this timeout is already scheduled and now is moved
    337  1.31.6.2       mjf 	 * earlier, reschedule it now.  Otherwise leave it in place
    338       1.1   thorpej 	 * and let it be rescheduled later.
    339       1.1   thorpej 	 */
    340      1.22        ad 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    341  1.31.6.2       mjf 		/* Leave on existing CPU. */
    342  1.31.6.2       mjf 		old_time = c->c_time;
    343  1.31.6.2       mjf 		c->c_time = to_ticks + occ->cc_ticks;
    344       1.4      yamt 		if (c->c_time - old_time < 0) {
    345       1.1   thorpej 			CIRCQ_REMOVE(&c->c_list);
    346  1.31.6.2       mjf 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    347       1.1   thorpej 		}
    348  1.31.6.2       mjf 		mutex_spin_exit(lock);
    349  1.31.6.2       mjf 		return;
    350  1.31.6.2       mjf 	}
    351  1.31.6.2       mjf 
    352  1.31.6.2       mjf 	cc = curcpu()->ci_data.cpu_callout;
    353  1.31.6.2       mjf 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    354  1.31.6.2       mjf 	    !mutex_tryenter(&cc->cc_lock)) {
    355  1.31.6.2       mjf 		/* Leave on existing CPU. */
    356  1.31.6.2       mjf 		c->c_time = to_ticks + occ->cc_ticks;
    357  1.31.6.2       mjf 		c->c_flags |= CALLOUT_PENDING;
    358  1.31.6.2       mjf 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    359       1.1   thorpej 	} else {
    360  1.31.6.2       mjf 		/* Move to this CPU. */
    361  1.31.6.2       mjf 		c->c_cpu = cc;
    362  1.31.6.2       mjf 		c->c_time = to_ticks + cc->cc_ticks;
    363       1.1   thorpej 		c->c_flags |= CALLOUT_PENDING;
    364  1.31.6.2       mjf 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    365  1.31.6.2       mjf 		mutex_spin_exit(&cc->cc_lock);
    366       1.1   thorpej 	}
    367  1.31.6.2       mjf 	mutex_spin_exit(lock);
    368      1.29     joerg }
    369      1.29     joerg 
    370      1.29     joerg /*
    371      1.29     joerg  * callout_reset:
    372      1.29     joerg  *
    373      1.29     joerg  *	Reset a callout structure with a new function and argument, and
    374      1.29     joerg  *	schedule it to run.
    375      1.29     joerg  */
    376      1.29     joerg void
    377      1.29     joerg callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    378      1.29     joerg {
    379      1.29     joerg 	callout_impl_t *c = (callout_impl_t *)cs;
    380  1.31.6.2       mjf 	kmutex_t *lock;
    381      1.29     joerg 
    382      1.29     joerg 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    383      1.29     joerg 
    384  1.31.6.2       mjf 	lock = callout_lock(c);
    385      1.29     joerg 	c->c_func = func;
    386      1.29     joerg 	c->c_arg = arg;
    387  1.31.6.2       mjf 	callout_schedule_locked(c, lock, to_ticks);
    388       1.1   thorpej }
    389       1.1   thorpej 
    390       1.1   thorpej /*
    391       1.1   thorpej  * callout_schedule:
    392       1.1   thorpej  *
    393       1.1   thorpej  *	Schedule a callout to run.  The function and argument must
    394       1.1   thorpej  *	already be set in the callout structure.
    395       1.1   thorpej  */
    396       1.1   thorpej void
    397      1.22        ad callout_schedule(callout_t *cs, int to_ticks)
    398       1.1   thorpej {
    399      1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    400  1.31.6.2       mjf 	kmutex_t *lock;
    401       1.1   thorpej 
    402      1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    403       1.1   thorpej 
    404  1.31.6.2       mjf 	lock = callout_lock(c);
    405  1.31.6.2       mjf 	callout_schedule_locked(c, lock, to_ticks);
    406       1.1   thorpej }
    407       1.1   thorpej 
    408       1.1   thorpej /*
    409       1.1   thorpej  * callout_stop:
    410       1.1   thorpej  *
    411  1.31.6.2       mjf  *	Try to cancel a pending callout.  It may be too late: the callout
    412  1.31.6.2       mjf  *	could be running on another CPU.  If called from interrupt context,
    413  1.31.6.2       mjf  *	the callout could already be in progress at a lower priority.
    414       1.1   thorpej  */
    415      1.22        ad bool
    416      1.22        ad callout_stop(callout_t *cs)
    417       1.1   thorpej {
    418      1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    419  1.31.6.2       mjf 	struct callout_cpu *cc;
    420  1.31.6.2       mjf 	kmutex_t *lock;
    421      1.22        ad 	bool expired;
    422      1.22        ad 
    423      1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    424       1.1   thorpej 
    425  1.31.6.2       mjf 	lock = callout_lock(c);
    426      1.20        ad 
    427      1.22        ad 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    428       1.1   thorpej 		CIRCQ_REMOVE(&c->c_list);
    429  1.31.6.1       mjf 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    430  1.31.6.1       mjf 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    431  1.31.6.1       mjf 
    432  1.31.6.2       mjf 	cc = c->c_cpu;
    433  1.31.6.2       mjf 	if (cc->cc_active == c) {
    434  1.31.6.1       mjf 		/*
    435  1.31.6.1       mjf 		 * This is for non-MPSAFE callouts only.  To synchronize
    436  1.31.6.1       mjf 		 * effectively we must be called with kernel_lock held.
    437  1.31.6.1       mjf 		 * It's also taken in callout_softclock.
    438  1.31.6.1       mjf 		 */
    439  1.31.6.2       mjf 		cc->cc_cancel = c;
    440  1.31.6.1       mjf 	}
    441  1.31.6.1       mjf 
    442  1.31.6.2       mjf 	mutex_spin_exit(lock);
    443  1.31.6.1       mjf 
    444  1.31.6.1       mjf 	return expired;
    445  1.31.6.1       mjf }
    446  1.31.6.1       mjf 
    447  1.31.6.1       mjf /*
    448  1.31.6.1       mjf  * callout_halt:
    449  1.31.6.1       mjf  *
    450  1.31.6.1       mjf  *	Cancel a pending callout.  If in-flight, block until it completes.
    451  1.31.6.2       mjf  *	May not be called from a hard interrupt handler.  If the callout
    452  1.31.6.2       mjf  * 	can take locks, the caller of callout_halt() must not hold any of
    453  1.31.6.2       mjf  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    454  1.31.6.2       mjf  *	non-NULL and we must wait for the callout to complete, it will be
    455  1.31.6.2       mjf  *	released and re-acquired before returning.
    456  1.31.6.1       mjf  */
    457  1.31.6.1       mjf bool
    458  1.31.6.2       mjf callout_halt(callout_t *cs, void *interlock)
    459  1.31.6.1       mjf {
    460  1.31.6.1       mjf 	callout_impl_t *c = (callout_impl_t *)cs;
    461  1.31.6.2       mjf 	struct callout_cpu *cc;
    462  1.31.6.1       mjf 	struct lwp *l;
    463  1.31.6.2       mjf 	kmutex_t *lock, *relock;
    464  1.31.6.1       mjf 	bool expired;
    465  1.31.6.1       mjf 
    466  1.31.6.1       mjf 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    467  1.31.6.1       mjf 	KASSERT(!cpu_intr_p());
    468  1.31.6.1       mjf 
    469  1.31.6.2       mjf 	lock = callout_lock(c);
    470  1.31.6.2       mjf 	relock = NULL;
    471       1.1   thorpej 
    472      1.22        ad 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    473  1.31.6.1       mjf 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    474  1.31.6.1       mjf 		CIRCQ_REMOVE(&c->c_list);
    475       1.9        he 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    476       1.1   thorpej 
    477  1.31.6.1       mjf 	l = curlwp;
    478  1.31.6.2       mjf 	for (;;) {
    479  1.31.6.2       mjf 		cc = c->c_cpu;
    480  1.31.6.2       mjf 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    481  1.31.6.2       mjf 			break;
    482  1.31.6.2       mjf 		if (interlock != NULL) {
    483  1.31.6.2       mjf 			/*
    484  1.31.6.2       mjf 			 * Avoid potential scheduler lock order problems by
    485  1.31.6.2       mjf 			 * dropping the interlock without the callout lock
    486  1.31.6.2       mjf 			 * held.
    487  1.31.6.2       mjf 			 */
    488  1.31.6.2       mjf 			mutex_spin_exit(lock);
    489  1.31.6.2       mjf 			mutex_exit(interlock);
    490  1.31.6.2       mjf 			relock = interlock;
    491  1.31.6.2       mjf 			interlock = NULL;
    492  1.31.6.2       mjf 		} else {
    493  1.31.6.2       mjf 			/* XXX Better to do priority inheritance. */
    494  1.31.6.2       mjf 			KASSERT(l->l_wchan == NULL);
    495  1.31.6.2       mjf 			cc->cc_nwait++;
    496  1.31.6.2       mjf 			cc->cc_ev_block.ev_count++;
    497  1.31.6.2       mjf 			l->l_kpriority = true;
    498  1.31.6.2       mjf 			sleepq_enter(&cc->cc_sleepq, l, &cc->cc_lock);
    499  1.31.6.2       mjf 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    500  1.31.6.2       mjf 			    &sleep_syncobj);
    501  1.31.6.2       mjf 			sleepq_block(0, false);
    502  1.31.6.2       mjf 		}
    503  1.31.6.2       mjf 		lock = callout_lock(c);
    504  1.31.6.1       mjf 	}
    505  1.31.6.1       mjf 
    506  1.31.6.2       mjf 	mutex_spin_exit(lock);
    507  1.31.6.2       mjf 	if (__predict_false(relock != NULL))
    508  1.31.6.2       mjf 		mutex_enter(relock);
    509      1.22        ad 
    510      1.22        ad 	return expired;
    511      1.22        ad }
    512      1.22        ad 
    513  1.31.6.2       mjf #ifdef notyet
    514  1.31.6.2       mjf /*
    515  1.31.6.2       mjf  * callout_bind:
    516  1.31.6.2       mjf  *
    517  1.31.6.2       mjf  *	Bind a callout so that it will only execute on one CPU.
    518  1.31.6.2       mjf  *	The callout must be stopped, and must be MPSAFE.
    519  1.31.6.2       mjf  *
    520  1.31.6.2       mjf  *	XXX Disabled for now until it is decided how to handle
    521  1.31.6.2       mjf  *	offlined CPUs.  We may want weak+strong binding.
    522  1.31.6.2       mjf  */
    523  1.31.6.2       mjf void
    524  1.31.6.2       mjf callout_bind(callout_t *cs, struct cpu_info *ci)
    525  1.31.6.2       mjf {
    526  1.31.6.2       mjf 	callout_impl_t *c = (callout_impl_t *)cs;
    527  1.31.6.2       mjf 	struct callout_cpu *cc;
    528  1.31.6.2       mjf 	kmutex_t *lock;
    529  1.31.6.2       mjf 
    530  1.31.6.2       mjf 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    531  1.31.6.2       mjf 	KASSERT(c->c_cpu->cc_active != c);
    532  1.31.6.2       mjf 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    533  1.31.6.2       mjf 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    534  1.31.6.2       mjf 
    535  1.31.6.2       mjf 	lock = callout_lock(c);
    536  1.31.6.2       mjf 	cc = ci->ci_data.cpu_callout;
    537  1.31.6.2       mjf 	c->c_flags |= CALLOUT_BOUND;
    538  1.31.6.2       mjf 	if (c->c_cpu != cc) {
    539  1.31.6.2       mjf 		/*
    540  1.31.6.2       mjf 		 * Assigning c_cpu effectively unlocks the callout
    541  1.31.6.2       mjf 		 * structure, as we don't hold the new CPU's lock.
    542  1.31.6.2       mjf 		 * Issue memory barrier to prevent accesses being
    543  1.31.6.2       mjf 		 * reordered.
    544  1.31.6.2       mjf 		 */
    545  1.31.6.2       mjf 		membar_exit();
    546  1.31.6.2       mjf 		c->c_cpu = cc;
    547  1.31.6.2       mjf 	}
    548  1.31.6.2       mjf 	mutex_spin_exit(lock);
    549  1.31.6.2       mjf }
    550  1.31.6.2       mjf #endif
    551  1.31.6.2       mjf 
    552      1.22        ad void
    553      1.22        ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    554      1.22        ad {
    555      1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    556  1.31.6.2       mjf 	kmutex_t *lock;
    557      1.22        ad 
    558      1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    559      1.22        ad 
    560  1.31.6.2       mjf 	lock = callout_lock(c);
    561      1.22        ad 	c->c_func = func;
    562      1.22        ad 	c->c_arg = arg;
    563  1.31.6.2       mjf 	mutex_spin_exit(lock);
    564      1.22        ad }
    565      1.22        ad 
    566      1.22        ad bool
    567      1.22        ad callout_expired(callout_t *cs)
    568      1.22        ad {
    569      1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    570  1.31.6.2       mjf 	kmutex_t *lock;
    571      1.22        ad 	bool rv;
    572      1.22        ad 
    573      1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    574      1.22        ad 
    575  1.31.6.2       mjf 	lock = callout_lock(c);
    576      1.22        ad 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    577  1.31.6.2       mjf 	mutex_spin_exit(lock);
    578      1.22        ad 
    579      1.22        ad 	return rv;
    580      1.22        ad }
    581      1.22        ad 
    582      1.22        ad bool
    583      1.22        ad callout_active(callout_t *cs)
    584      1.22        ad {
    585      1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    586  1.31.6.2       mjf 	kmutex_t *lock;
    587      1.22        ad 	bool rv;
    588      1.22        ad 
    589      1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    590      1.22        ad 
    591  1.31.6.2       mjf 	lock = callout_lock(c);
    592      1.22        ad 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    593  1.31.6.2       mjf 	mutex_spin_exit(lock);
    594      1.22        ad 
    595      1.22        ad 	return rv;
    596      1.22        ad }
    597      1.22        ad 
    598      1.22        ad bool
    599      1.22        ad callout_pending(callout_t *cs)
    600      1.22        ad {
    601      1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    602  1.31.6.2       mjf 	kmutex_t *lock;
    603      1.22        ad 	bool rv;
    604      1.22        ad 
    605      1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    606      1.22        ad 
    607  1.31.6.2       mjf 	lock = callout_lock(c);
    608      1.22        ad 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    609  1.31.6.2       mjf 	mutex_spin_exit(lock);
    610      1.22        ad 
    611      1.22        ad 	return rv;
    612      1.22        ad }
    613      1.22        ad 
    614      1.22        ad bool
    615      1.22        ad callout_invoking(callout_t *cs)
    616      1.22        ad {
    617      1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    618  1.31.6.2       mjf 	kmutex_t *lock;
    619      1.22        ad 	bool rv;
    620      1.22        ad 
    621      1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    622      1.22        ad 
    623  1.31.6.2       mjf 	lock = callout_lock(c);
    624      1.22        ad 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    625  1.31.6.2       mjf 	mutex_spin_exit(lock);
    626      1.22        ad 
    627      1.22        ad 	return rv;
    628      1.22        ad }
    629      1.22        ad 
    630      1.22        ad void
    631      1.22        ad callout_ack(callout_t *cs)
    632      1.22        ad {
    633      1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    634  1.31.6.2       mjf 	kmutex_t *lock;
    635      1.22        ad 
    636      1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    637      1.22        ad 
    638  1.31.6.2       mjf 	lock = callout_lock(c);
    639      1.22        ad 	c->c_flags &= ~CALLOUT_INVOKING;
    640  1.31.6.2       mjf 	mutex_spin_exit(lock);
    641       1.1   thorpej }
    642       1.1   thorpej 
    643       1.1   thorpej /*
    644  1.31.6.2       mjf  * callout_hardclock:
    645  1.31.6.2       mjf  *
    646  1.31.6.2       mjf  *	Called from hardclock() once every tick.  We schedule a soft
    647  1.31.6.2       mjf  *	interrupt if there is work to be done.
    648       1.1   thorpej  */
    649      1.22        ad void
    650       1.1   thorpej callout_hardclock(void)
    651       1.1   thorpej {
    652  1.31.6.2       mjf 	struct callout_cpu *cc;
    653  1.31.6.2       mjf 	int needsoftclock, ticks;
    654       1.1   thorpej 
    655  1.31.6.2       mjf 	cc = curcpu()->ci_data.cpu_callout;
    656  1.31.6.2       mjf 	mutex_spin_enter(&cc->cc_lock);
    657       1.1   thorpej 
    658  1.31.6.2       mjf 	ticks = ++cc->cc_ticks;
    659  1.31.6.2       mjf 
    660  1.31.6.2       mjf 	MOVEBUCKET(cc, 0, ticks);
    661  1.31.6.2       mjf 	if (MASKWHEEL(0, ticks) == 0) {
    662  1.31.6.2       mjf 		MOVEBUCKET(cc, 1, ticks);
    663  1.31.6.2       mjf 		if (MASKWHEEL(1, ticks) == 0) {
    664  1.31.6.2       mjf 			MOVEBUCKET(cc, 2, ticks);
    665  1.31.6.2       mjf 			if (MASKWHEEL(2, ticks) == 0)
    666  1.31.6.2       mjf 				MOVEBUCKET(cc, 3, ticks);
    667       1.1   thorpej 		}
    668       1.1   thorpej 	}
    669       1.1   thorpej 
    670  1.31.6.2       mjf 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    671  1.31.6.2       mjf 	mutex_spin_exit(&cc->cc_lock);
    672       1.1   thorpej 
    673      1.22        ad 	if (needsoftclock)
    674  1.31.6.2       mjf 		softint_schedule(callout_sih);
    675       1.1   thorpej }
    676       1.1   thorpej 
    677  1.31.6.2       mjf /*
    678  1.31.6.2       mjf  * callout_softclock:
    679  1.31.6.2       mjf  *
    680  1.31.6.2       mjf  *	Soft interrupt handler, scheduled above if there is work to
    681  1.31.6.2       mjf  * 	be done.  Callouts are made in soft interrupt context.
    682  1.31.6.2       mjf  */
    683      1.22        ad static void
    684      1.22        ad callout_softclock(void *v)
    685       1.1   thorpej {
    686      1.22        ad 	callout_impl_t *c;
    687  1.31.6.2       mjf 	struct callout_cpu *cc;
    688       1.1   thorpej 	void (*func)(void *);
    689       1.1   thorpej 	void *arg;
    690  1.31.6.2       mjf 	int mpsafe, count, ticks, delta;
    691      1.22        ad 	lwp_t *l;
    692       1.1   thorpej 
    693      1.22        ad 	l = curlwp;
    694  1.31.6.2       mjf 	KASSERT(l->l_cpu == curcpu());
    695  1.31.6.2       mjf 	cc = l->l_cpu->ci_data.cpu_callout;
    696       1.1   thorpej 
    697  1.31.6.2       mjf 	mutex_spin_enter(&cc->cc_lock);
    698  1.31.6.2       mjf 	cc->cc_lwp = l;
    699  1.31.6.2       mjf 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    700  1.31.6.2       mjf 		c = CIRCQ_FIRST(&cc->cc_todo);
    701      1.22        ad 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    702      1.22        ad 		KASSERT(c->c_func != NULL);
    703  1.31.6.2       mjf 		KASSERT(c->c_cpu == cc);
    704      1.26        ad 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    705      1.26        ad 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    706       1.1   thorpej 		CIRCQ_REMOVE(&c->c_list);
    707       1.1   thorpej 
    708       1.1   thorpej 		/* If due run it, otherwise insert it into the right bucket. */
    709  1.31.6.2       mjf 		ticks = cc->cc_ticks;
    710  1.31.6.2       mjf 		delta = c->c_time - ticks;
    711  1.31.6.2       mjf 		if (delta > 0) {
    712  1.31.6.2       mjf 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    713  1.31.6.2       mjf 			continue;
    714  1.31.6.2       mjf 		}
    715  1.31.6.2       mjf 		if (delta < 0)
    716  1.31.6.2       mjf 			cc->cc_ev_late.ev_count++;
    717       1.1   thorpej 
    718  1.31.6.2       mjf 		c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
    719  1.31.6.2       mjf 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    720  1.31.6.2       mjf 		func = c->c_func;
    721  1.31.6.2       mjf 		arg = c->c_arg;
    722  1.31.6.2       mjf 		cc->cc_active = c;
    723  1.31.6.2       mjf 
    724  1.31.6.2       mjf 		mutex_spin_exit(&cc->cc_lock);
    725  1.31.6.2       mjf 		if (!mpsafe) {
    726  1.31.6.2       mjf 			KERNEL_LOCK(1, NULL);
    727  1.31.6.2       mjf 			(*func)(arg);
    728  1.31.6.2       mjf 			KERNEL_UNLOCK_ONE(NULL);
    729  1.31.6.2       mjf 		} else
    730  1.31.6.2       mjf 			(*func)(arg);
    731  1.31.6.2       mjf 		mutex_spin_enter(&cc->cc_lock);
    732       1.1   thorpej 
    733  1.31.6.2       mjf 		/*
    734  1.31.6.2       mjf 		 * We can't touch 'c' here because it might be
    735  1.31.6.2       mjf 		 * freed already.  If LWPs waiting for callout
    736  1.31.6.2       mjf 		 * to complete, awaken them.
    737  1.31.6.2       mjf 		 */
    738  1.31.6.2       mjf 		cc->cc_active = NULL;
    739  1.31.6.2       mjf 		if ((count = cc->cc_nwait) != 0) {
    740  1.31.6.2       mjf 			cc->cc_nwait = 0;
    741  1.31.6.2       mjf 			/* sleepq_wake() drops the lock. */
    742  1.31.6.2       mjf 			sleepq_wake(&cc->cc_sleepq, cc, count, &cc->cc_lock);
    743  1.31.6.2       mjf 			mutex_spin_enter(&cc->cc_lock);
    744       1.1   thorpej 		}
    745       1.1   thorpej 	}
    746  1.31.6.2       mjf 	cc->cc_lwp = NULL;
    747  1.31.6.2       mjf 	mutex_spin_exit(&cc->cc_lock);
    748       1.1   thorpej }
    749       1.1   thorpej 
    750       1.1   thorpej #ifdef DDB
    751       1.1   thorpej static void
    752  1.31.6.2       mjf db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
    753       1.1   thorpej {
    754      1.22        ad 	callout_impl_t *c;
    755       1.1   thorpej 	db_expr_t offset;
    756      1.15  christos 	const char *name;
    757      1.15  christos 	static char question[] = "?";
    758  1.31.6.2       mjf 	int b;
    759       1.1   thorpej 
    760      1.11       scw 	if (CIRCQ_EMPTY(bucket))
    761      1.11       scw 		return;
    762      1.11       scw 
    763      1.11       scw 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    764      1.10       scw 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    765      1.10       scw 		    &offset);
    766      1.15  christos 		name = name ? name : question;
    767  1.31.6.2       mjf 		b = (bucket - cc->cc_wheel);
    768  1.31.6.2       mjf 		if (b < 0)
    769  1.31.6.2       mjf 			b = -WHEELSIZE;
    770  1.31.6.2       mjf 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    771  1.31.6.2       mjf 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    772  1.31.6.2       mjf 		    (u_long)c->c_arg, name);
    773      1.11       scw 		if (CIRCQ_LAST(&c->c_list, bucket))
    774      1.11       scw 			break;
    775       1.1   thorpej 	}
    776       1.1   thorpej }
    777       1.1   thorpej 
    778       1.1   thorpej void
    779      1.21      matt db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    780       1.1   thorpej {
    781  1.31.6.2       mjf 	CPU_INFO_ITERATOR cii;
    782  1.31.6.2       mjf 	struct callout_cpu *cc;
    783  1.31.6.2       mjf 	struct cpu_info *ci;
    784       1.1   thorpej 	int b;
    785       1.1   thorpej 
    786       1.1   thorpej 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
    787       1.1   thorpej 	db_printf("    ticks  wheel               arg  func\n");
    788       1.1   thorpej 
    789       1.1   thorpej 	/*
    790       1.1   thorpej 	 * Don't lock the callwheel; all the other CPUs are paused
    791       1.1   thorpej 	 * anyhow, and we might be called in a circumstance where
    792       1.1   thorpej 	 * some other CPU was paused while holding the lock.
    793       1.1   thorpej 	 */
    794  1.31.6.2       mjf 	for (CPU_INFO_FOREACH(cii, ci)) {
    795  1.31.6.2       mjf 		cc = ci->ci_data.cpu_callout;
    796  1.31.6.2       mjf 		db_show_callout_bucket(cc, &cc->cc_todo);
    797  1.31.6.2       mjf 	}
    798  1.31.6.2       mjf 	for (b = 0; b < BUCKETS; b++) {
    799  1.31.6.2       mjf 		for (CPU_INFO_FOREACH(cii, ci)) {
    800  1.31.6.2       mjf 			cc = ci->ci_data.cpu_callout;
    801  1.31.6.2       mjf 			db_show_callout_bucket(cc, &cc->cc_wheel[b]);
    802  1.31.6.2       mjf 		}
    803  1.31.6.2       mjf 	}
    804       1.1   thorpej }
    805       1.1   thorpej #endif /* DDB */
    806