kern_timeout.c revision 1.32 1 1.32 ad /* $NetBSD: kern_timeout.c,v 1.32 2008/03/28 20:44:39 ad Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*-
4 1.32 ad * Copyright (c) 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.22 ad * by Jason R. Thorpe, and by Andrew Doran.
9 1.1 thorpej *
10 1.1 thorpej * Redistribution and use in source and binary forms, with or without
11 1.1 thorpej * modification, are permitted provided that the following conditions
12 1.1 thorpej * are met:
13 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.1 thorpej * notice, this list of conditions and the following disclaimer.
15 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.1 thorpej * documentation and/or other materials provided with the distribution.
18 1.1 thorpej * 3. All advertising materials mentioning features or use of this software
19 1.1 thorpej * must display the following acknowledgement:
20 1.1 thorpej * This product includes software developed by the NetBSD
21 1.1 thorpej * Foundation, Inc. and its contributors.
22 1.1 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 thorpej * contributors may be used to endorse or promote products derived
24 1.1 thorpej * from this software without specific prior written permission.
25 1.1 thorpej *
26 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
37 1.1 thorpej */
38 1.1 thorpej
39 1.1 thorpej /*
40 1.1 thorpej * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
41 1.1 thorpej * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
42 1.14 perry * All rights reserved.
43 1.14 perry *
44 1.14 perry * Redistribution and use in source and binary forms, with or without
45 1.14 perry * modification, are permitted provided that the following conditions
46 1.14 perry * are met:
47 1.1 thorpej *
48 1.14 perry * 1. Redistributions of source code must retain the above copyright
49 1.14 perry * notice, this list of conditions and the following disclaimer.
50 1.14 perry * 2. Redistributions in binary form must reproduce the above copyright
51 1.14 perry * notice, this list of conditions and the following disclaimer in the
52 1.14 perry * documentation and/or other materials provided with the distribution.
53 1.1 thorpej * 3. The name of the author may not be used to endorse or promote products
54 1.14 perry * derived from this software without specific prior written permission.
55 1.1 thorpej *
56 1.1 thorpej * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
57 1.1 thorpej * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
58 1.1 thorpej * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
59 1.1 thorpej * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
60 1.1 thorpej * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
61 1.1 thorpej * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
62 1.1 thorpej * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
63 1.1 thorpej * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
64 1.1 thorpej * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
65 1.14 perry * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 1.1 thorpej */
67 1.7 lukem
68 1.7 lukem #include <sys/cdefs.h>
69 1.32 ad __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.32 2008/03/28 20:44:39 ad Exp $");
70 1.1 thorpej
71 1.1 thorpej /*
72 1.22 ad * Timeouts are kept in a hierarchical timing wheel. The c_time is the
73 1.22 ad * value of the global variable "hardclock_ticks" when the timeout should
74 1.22 ad * be called. There are four levels with 256 buckets each. See 'Scheme 7'
75 1.22 ad * in "Hashed and Hierarchical Timing Wheels: Efficient Data Structures
76 1.22 ad * for Implementing a Timer Facility" by George Varghese and Tony Lauck.
77 1.22 ad *
78 1.22 ad * Some of the "math" in here is a bit tricky. We have to beware of
79 1.22 ad * wrapping ints.
80 1.22 ad *
81 1.22 ad * We use the fact that any element added to the queue must be added with
82 1.22 ad * a positive time. That means that any element `to' on the queue cannot
83 1.22 ad * be scheduled to timeout further in time than INT_MAX, but c->c_time can
84 1.22 ad * be positive or negative so comparing it with anything is dangerous.
85 1.22 ad * The only way we can use the c->c_time value in any predictable way is
86 1.22 ad * when we calculate how far in the future `to' will timeout - "c->c_time
87 1.22 ad * - hardclock_ticks". The result will always be positive for future
88 1.22 ad * timeouts and 0 or negative for due timeouts.
89 1.1 thorpej */
90 1.1 thorpej
91 1.24 ad #define _CALLOUT_PRIVATE
92 1.24 ad
93 1.1 thorpej #include <sys/param.h>
94 1.1 thorpej #include <sys/systm.h>
95 1.1 thorpej #include <sys/kernel.h>
96 1.1 thorpej #include <sys/callout.h>
97 1.20 ad #include <sys/mutex.h>
98 1.22 ad #include <sys/proc.h>
99 1.22 ad #include <sys/sleepq.h>
100 1.22 ad #include <sys/syncobj.h>
101 1.22 ad #include <sys/evcnt.h>
102 1.27 ad #include <sys/intr.h>
103 1.1 thorpej
104 1.1 thorpej #ifdef DDB
105 1.1 thorpej #include <machine/db_machdep.h>
106 1.1 thorpej #include <ddb/db_interface.h>
107 1.1 thorpej #include <ddb/db_access.h>
108 1.1 thorpej #include <ddb/db_sym.h>
109 1.1 thorpej #include <ddb/db_output.h>
110 1.1 thorpej #endif
111 1.1 thorpej
112 1.22 ad #define BUCKETS 1024
113 1.22 ad #define WHEELSIZE 256
114 1.22 ad #define WHEELMASK 255
115 1.22 ad #define WHEELBITS 8
116 1.22 ad
117 1.1 thorpej static struct callout_circq timeout_wheel[BUCKETS]; /* Queues of timeouts */
118 1.1 thorpej static struct callout_circq timeout_todo; /* Worklist */
119 1.1 thorpej
120 1.1 thorpej #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
121 1.1 thorpej
122 1.1 thorpej #define BUCKET(rel, abs) \
123 1.1 thorpej (((rel) <= (1 << (2*WHEELBITS))) \
124 1.1 thorpej ? ((rel) <= (1 << WHEELBITS)) \
125 1.3 drochner ? &timeout_wheel[MASKWHEEL(0, (abs))] \
126 1.3 drochner : &timeout_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
127 1.1 thorpej : ((rel) <= (1 << (3*WHEELBITS))) \
128 1.3 drochner ? &timeout_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
129 1.3 drochner : &timeout_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
130 1.1 thorpej
131 1.1 thorpej #define MOVEBUCKET(wheel, time) \
132 1.1 thorpej CIRCQ_APPEND(&timeout_todo, \
133 1.1 thorpej &timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
134 1.1 thorpej
135 1.1 thorpej /*
136 1.1 thorpej * Circular queue definitions.
137 1.1 thorpej */
138 1.1 thorpej
139 1.11 scw #define CIRCQ_INIT(list) \
140 1.1 thorpej do { \
141 1.11 scw (list)->cq_next_l = (list); \
142 1.11 scw (list)->cq_prev_l = (list); \
143 1.1 thorpej } while (/*CONSTCOND*/0)
144 1.1 thorpej
145 1.1 thorpej #define CIRCQ_INSERT(elem, list) \
146 1.1 thorpej do { \
147 1.11 scw (elem)->cq_prev_e = (list)->cq_prev_e; \
148 1.11 scw (elem)->cq_next_l = (list); \
149 1.11 scw (list)->cq_prev_l->cq_next_l = (elem); \
150 1.11 scw (list)->cq_prev_l = (elem); \
151 1.1 thorpej } while (/*CONSTCOND*/0)
152 1.1 thorpej
153 1.1 thorpej #define CIRCQ_APPEND(fst, snd) \
154 1.1 thorpej do { \
155 1.1 thorpej if (!CIRCQ_EMPTY(snd)) { \
156 1.11 scw (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
157 1.11 scw (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
158 1.11 scw (snd)->cq_prev_l->cq_next_l = (fst); \
159 1.11 scw (fst)->cq_prev_l = (snd)->cq_prev_l; \
160 1.1 thorpej CIRCQ_INIT(snd); \
161 1.1 thorpej } \
162 1.1 thorpej } while (/*CONSTCOND*/0)
163 1.1 thorpej
164 1.1 thorpej #define CIRCQ_REMOVE(elem) \
165 1.1 thorpej do { \
166 1.11 scw (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
167 1.11 scw (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
168 1.1 thorpej } while (/*CONSTCOND*/0)
169 1.1 thorpej
170 1.11 scw #define CIRCQ_FIRST(list) ((list)->cq_next_e)
171 1.11 scw #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
172 1.11 scw #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
173 1.11 scw #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
174 1.1 thorpej
175 1.22 ad static void callout_softclock(void *);
176 1.22 ad
177 1.1 thorpej /*
178 1.22 ad * All wheels are locked with the same lock (which must also block out
179 1.22 ad * all interrupts). Eventually this should become per-CPU.
180 1.1 thorpej */
181 1.22 ad kmutex_t callout_lock;
182 1.22 ad sleepq_t callout_sleepq;
183 1.22 ad void *callout_si;
184 1.1 thorpej
185 1.5 thorpej static struct evcnt callout_ev_late;
186 1.22 ad static struct evcnt callout_ev_block;
187 1.5 thorpej
188 1.1 thorpej /*
189 1.1 thorpej * callout_startup:
190 1.1 thorpej *
191 1.1 thorpej * Initialize the callout facility, called at system startup time.
192 1.1 thorpej */
193 1.1 thorpej void
194 1.1 thorpej callout_startup(void)
195 1.1 thorpej {
196 1.1 thorpej int b;
197 1.1 thorpej
198 1.22 ad KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
199 1.22 ad
200 1.1 thorpej CIRCQ_INIT(&timeout_todo);
201 1.1 thorpej for (b = 0; b < BUCKETS; b++)
202 1.1 thorpej CIRCQ_INIT(&timeout_wheel[b]);
203 1.5 thorpej
204 1.30 ad mutex_init(&callout_lock, MUTEX_DEFAULT, IPL_SCHED);
205 1.22 ad sleepq_init(&callout_sleepq, &callout_lock);
206 1.22 ad
207 1.5 thorpej evcnt_attach_dynamic(&callout_ev_late, EVCNT_TYPE_MISC,
208 1.5 thorpej NULL, "callout", "late");
209 1.22 ad evcnt_attach_dynamic(&callout_ev_block, EVCNT_TYPE_MISC,
210 1.32 ad NULL, "callout", "wait for completion");
211 1.22 ad }
212 1.22 ad
213 1.22 ad /*
214 1.22 ad * callout_startup2:
215 1.22 ad *
216 1.22 ad * Complete initialization once soft interrupts are available.
217 1.22 ad */
218 1.22 ad void
219 1.22 ad callout_startup2(void)
220 1.22 ad {
221 1.22 ad
222 1.27 ad callout_si = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
223 1.22 ad callout_softclock, NULL);
224 1.22 ad if (callout_si == NULL)
225 1.22 ad panic("callout_startup2: unable to register softclock intr");
226 1.1 thorpej }
227 1.1 thorpej
228 1.1 thorpej /*
229 1.1 thorpej * callout_init:
230 1.1 thorpej *
231 1.1 thorpej * Initialize a callout structure.
232 1.1 thorpej */
233 1.1 thorpej void
234 1.22 ad callout_init(callout_t *cs, u_int flags)
235 1.1 thorpej {
236 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
237 1.22 ad
238 1.22 ad KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
239 1.1 thorpej
240 1.1 thorpej memset(c, 0, sizeof(*c));
241 1.22 ad c->c_flags = flags;
242 1.22 ad c->c_magic = CALLOUT_MAGIC;
243 1.22 ad }
244 1.22 ad
245 1.22 ad /*
246 1.22 ad * callout_destroy:
247 1.22 ad *
248 1.22 ad * Destroy a callout structure. The callout must be stopped.
249 1.22 ad */
250 1.22 ad void
251 1.22 ad callout_destroy(callout_t *cs)
252 1.22 ad {
253 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
254 1.22 ad
255 1.22 ad /*
256 1.22 ad * It's not necessary to lock in order to see the correct value
257 1.22 ad * of c->c_flags. If the callout could potentially have been
258 1.22 ad * running, the current thread should have stopped it.
259 1.22 ad */
260 1.22 ad KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
261 1.22 ad if (c->c_oncpu != NULL) {
262 1.22 ad KASSERT(
263 1.22 ad ((struct cpu_info *)c->c_oncpu)->ci_data.cpu_callout != c);
264 1.22 ad }
265 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
266 1.22 ad
267 1.22 ad c->c_magic = 0;
268 1.1 thorpej }
269 1.1 thorpej
270 1.1 thorpej /*
271 1.29 joerg * callout_schedule_locked:
272 1.1 thorpej *
273 1.29 joerg * Schedule a callout to run. The function and argument must
274 1.29 joerg * already be set in the callout structure. Must be called with
275 1.29 joerg * callout_lock.
276 1.1 thorpej */
277 1.29 joerg static void
278 1.29 joerg callout_schedule_locked(callout_impl_t *c, int to_ticks)
279 1.1 thorpej {
280 1.20 ad int old_time;
281 1.1 thorpej
282 1.1 thorpej KASSERT(to_ticks >= 0);
283 1.29 joerg KASSERT(c->c_func != NULL);
284 1.1 thorpej
285 1.1 thorpej /* Initialize the time here, it won't change. */
286 1.1 thorpej old_time = c->c_time;
287 1.1 thorpej c->c_time = to_ticks + hardclock_ticks;
288 1.22 ad c->c_flags &= ~CALLOUT_FIRED;
289 1.1 thorpej
290 1.1 thorpej /*
291 1.1 thorpej * If this timeout is already scheduled and now is moved
292 1.1 thorpej * earlier, reschedule it now. Otherwise leave it in place
293 1.1 thorpej * and let it be rescheduled later.
294 1.1 thorpej */
295 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0) {
296 1.4 yamt if (c->c_time - old_time < 0) {
297 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
298 1.1 thorpej CIRCQ_INSERT(&c->c_list, &timeout_todo);
299 1.1 thorpej }
300 1.1 thorpej } else {
301 1.1 thorpej c->c_flags |= CALLOUT_PENDING;
302 1.1 thorpej CIRCQ_INSERT(&c->c_list, &timeout_todo);
303 1.1 thorpej }
304 1.29 joerg }
305 1.29 joerg
306 1.29 joerg /*
307 1.29 joerg * callout_reset:
308 1.29 joerg *
309 1.29 joerg * Reset a callout structure with a new function and argument, and
310 1.29 joerg * schedule it to run.
311 1.29 joerg */
312 1.29 joerg void
313 1.29 joerg callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
314 1.29 joerg {
315 1.29 joerg callout_impl_t *c = (callout_impl_t *)cs;
316 1.29 joerg
317 1.29 joerg KASSERT(c->c_magic == CALLOUT_MAGIC);
318 1.29 joerg
319 1.29 joerg mutex_spin_enter(&callout_lock);
320 1.29 joerg
321 1.29 joerg c->c_func = func;
322 1.29 joerg c->c_arg = arg;
323 1.29 joerg
324 1.29 joerg callout_schedule_locked(c, to_ticks);
325 1.1 thorpej
326 1.22 ad mutex_spin_exit(&callout_lock);
327 1.1 thorpej }
328 1.1 thorpej
329 1.1 thorpej /*
330 1.1 thorpej * callout_schedule:
331 1.1 thorpej *
332 1.1 thorpej * Schedule a callout to run. The function and argument must
333 1.1 thorpej * already be set in the callout structure.
334 1.1 thorpej */
335 1.1 thorpej void
336 1.22 ad callout_schedule(callout_t *cs, int to_ticks)
337 1.1 thorpej {
338 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
339 1.1 thorpej
340 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
341 1.1 thorpej
342 1.22 ad mutex_spin_enter(&callout_lock);
343 1.29 joerg callout_schedule_locked(c, to_ticks);
344 1.22 ad mutex_spin_exit(&callout_lock);
345 1.1 thorpej }
346 1.1 thorpej
347 1.32 ad
348 1.1 thorpej /*
349 1.1 thorpej * callout_stop:
350 1.1 thorpej *
351 1.32 ad * Try to cancel a pending callout.
352 1.1 thorpej */
353 1.22 ad bool
354 1.22 ad callout_stop(callout_t *cs)
355 1.1 thorpej {
356 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
357 1.32 ad struct cpu_info *ci;
358 1.22 ad bool expired;
359 1.22 ad
360 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
361 1.1 thorpej
362 1.22 ad mutex_spin_enter(&callout_lock);
363 1.20 ad
364 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
365 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
366 1.32 ad expired = ((c->c_flags & CALLOUT_FIRED) != 0);
367 1.32 ad c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
368 1.32 ad
369 1.32 ad if ((ci = c->c_oncpu) != NULL && ci->ci_data.cpu_callout == c) {
370 1.32 ad /*
371 1.32 ad * This is for non-MPSAFE callouts only. To synchronize
372 1.32 ad * effectively we must be called with kernel_lock held.
373 1.32 ad * It's also taken in callout_softclock.
374 1.32 ad */
375 1.32 ad ci = c->c_oncpu;
376 1.32 ad ci->ci_data.cpu_callout_cancel = c;
377 1.32 ad }
378 1.32 ad
379 1.32 ad mutex_spin_exit(&callout_lock);
380 1.32 ad
381 1.32 ad return expired;
382 1.32 ad }
383 1.32 ad
384 1.32 ad /*
385 1.32 ad * callout_halt:
386 1.32 ad *
387 1.32 ad * Cancel a pending callout. If in-flight, block until it completes.
388 1.32 ad * May not be called from a hard interrupt handler.
389 1.32 ad */
390 1.32 ad bool
391 1.32 ad callout_halt(callout_t *cs)
392 1.32 ad {
393 1.32 ad callout_impl_t *c = (callout_impl_t *)cs;
394 1.32 ad extern syncobj_t sleep_syncobj;
395 1.32 ad struct cpu_info *ci;
396 1.32 ad struct lwp *l;
397 1.32 ad bool expired;
398 1.32 ad
399 1.32 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
400 1.32 ad KASSERT(!cpu_intr_p());
401 1.32 ad
402 1.32 ad mutex_spin_enter(&callout_lock);
403 1.1 thorpej
404 1.22 ad expired = ((c->c_flags & CALLOUT_FIRED) != 0);
405 1.32 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
406 1.32 ad CIRCQ_REMOVE(&c->c_list);
407 1.9 he c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
408 1.1 thorpej
409 1.32 ad l = curlwp;
410 1.32 ad while (__predict_false((ci = c->c_oncpu) != NULL &&
411 1.32 ad ci->ci_data.cpu_callout == c && c->c_onlwp != l)) {
412 1.32 ad KASSERT(l->l_wchan == NULL);
413 1.32 ad
414 1.32 ad ci->ci_data.cpu_callout_nwait++;
415 1.32 ad callout_ev_block.ev_count++;
416 1.32 ad
417 1.32 ad l->l_kpriority = true;
418 1.32 ad sleepq_enter(&callout_sleepq, l);
419 1.32 ad sleepq_enqueue(&callout_sleepq, ci, "callout", &sleep_syncobj);
420 1.32 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
421 1.32 ad sleepq_block(0, false);
422 1.32 ad mutex_spin_enter(&callout_lock);
423 1.32 ad }
424 1.32 ad
425 1.22 ad mutex_spin_exit(&callout_lock);
426 1.22 ad
427 1.22 ad return expired;
428 1.22 ad }
429 1.22 ad
430 1.22 ad void
431 1.22 ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
432 1.22 ad {
433 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
434 1.22 ad
435 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
436 1.22 ad
437 1.22 ad mutex_spin_enter(&callout_lock);
438 1.22 ad c->c_func = func;
439 1.22 ad c->c_arg = arg;
440 1.22 ad mutex_spin_exit(&callout_lock);
441 1.22 ad }
442 1.22 ad
443 1.22 ad bool
444 1.22 ad callout_expired(callout_t *cs)
445 1.22 ad {
446 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
447 1.22 ad bool rv;
448 1.22 ad
449 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
450 1.22 ad
451 1.22 ad mutex_spin_enter(&callout_lock);
452 1.22 ad rv = ((c->c_flags & CALLOUT_FIRED) != 0);
453 1.22 ad mutex_spin_exit(&callout_lock);
454 1.22 ad
455 1.22 ad return rv;
456 1.22 ad }
457 1.22 ad
458 1.22 ad bool
459 1.22 ad callout_active(callout_t *cs)
460 1.22 ad {
461 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
462 1.22 ad bool rv;
463 1.22 ad
464 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
465 1.22 ad
466 1.22 ad mutex_spin_enter(&callout_lock);
467 1.22 ad rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
468 1.22 ad mutex_spin_exit(&callout_lock);
469 1.22 ad
470 1.22 ad return rv;
471 1.22 ad }
472 1.22 ad
473 1.22 ad bool
474 1.22 ad callout_pending(callout_t *cs)
475 1.22 ad {
476 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
477 1.22 ad bool rv;
478 1.22 ad
479 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
480 1.22 ad
481 1.22 ad mutex_spin_enter(&callout_lock);
482 1.22 ad rv = ((c->c_flags & CALLOUT_PENDING) != 0);
483 1.22 ad mutex_spin_exit(&callout_lock);
484 1.22 ad
485 1.22 ad return rv;
486 1.22 ad }
487 1.22 ad
488 1.22 ad bool
489 1.22 ad callout_invoking(callout_t *cs)
490 1.22 ad {
491 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
492 1.22 ad bool rv;
493 1.22 ad
494 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
495 1.22 ad
496 1.22 ad mutex_spin_enter(&callout_lock);
497 1.22 ad rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
498 1.22 ad mutex_spin_exit(&callout_lock);
499 1.22 ad
500 1.22 ad return rv;
501 1.22 ad }
502 1.22 ad
503 1.22 ad void
504 1.22 ad callout_ack(callout_t *cs)
505 1.22 ad {
506 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
507 1.22 ad
508 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
509 1.22 ad
510 1.22 ad mutex_spin_enter(&callout_lock);
511 1.22 ad c->c_flags &= ~CALLOUT_INVOKING;
512 1.22 ad mutex_spin_exit(&callout_lock);
513 1.1 thorpej }
514 1.1 thorpej
515 1.1 thorpej /*
516 1.1 thorpej * This is called from hardclock() once every tick.
517 1.22 ad * We schedule callout_softclock() if there is work
518 1.22 ad * to be done.
519 1.1 thorpej */
520 1.22 ad void
521 1.1 thorpej callout_hardclock(void)
522 1.1 thorpej {
523 1.4 yamt int needsoftclock;
524 1.1 thorpej
525 1.22 ad mutex_spin_enter(&callout_lock);
526 1.1 thorpej
527 1.1 thorpej MOVEBUCKET(0, hardclock_ticks);
528 1.1 thorpej if (MASKWHEEL(0, hardclock_ticks) == 0) {
529 1.1 thorpej MOVEBUCKET(1, hardclock_ticks);
530 1.1 thorpej if (MASKWHEEL(1, hardclock_ticks) == 0) {
531 1.1 thorpej MOVEBUCKET(2, hardclock_ticks);
532 1.1 thorpej if (MASKWHEEL(2, hardclock_ticks) == 0)
533 1.1 thorpej MOVEBUCKET(3, hardclock_ticks);
534 1.1 thorpej }
535 1.1 thorpej }
536 1.1 thorpej
537 1.4 yamt needsoftclock = !CIRCQ_EMPTY(&timeout_todo);
538 1.22 ad mutex_spin_exit(&callout_lock);
539 1.1 thorpej
540 1.22 ad if (needsoftclock)
541 1.27 ad softint_schedule(callout_si);
542 1.1 thorpej }
543 1.1 thorpej
544 1.1 thorpej /* ARGSUSED */
545 1.22 ad static void
546 1.22 ad callout_softclock(void *v)
547 1.1 thorpej {
548 1.22 ad callout_impl_t *c;
549 1.22 ad struct cpu_info *ci;
550 1.1 thorpej void (*func)(void *);
551 1.1 thorpej void *arg;
552 1.22 ad u_int mpsafe, count;
553 1.22 ad lwp_t *l;
554 1.1 thorpej
555 1.22 ad l = curlwp;
556 1.22 ad ci = l->l_cpu;
557 1.22 ad
558 1.22 ad mutex_spin_enter(&callout_lock);
559 1.1 thorpej
560 1.1 thorpej while (!CIRCQ_EMPTY(&timeout_todo)) {
561 1.11 scw c = CIRCQ_FIRST(&timeout_todo);
562 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
563 1.22 ad KASSERT(c->c_func != NULL);
564 1.26 ad KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
565 1.26 ad KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
566 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
567 1.1 thorpej
568 1.1 thorpej /* If due run it, otherwise insert it into the right bucket. */
569 1.1 thorpej if (c->c_time - hardclock_ticks > 0) {
570 1.1 thorpej CIRCQ_INSERT(&c->c_list,
571 1.3 drochner BUCKET((c->c_time - hardclock_ticks), c->c_time));
572 1.1 thorpej } else {
573 1.1 thorpej if (c->c_time - hardclock_ticks < 0)
574 1.5 thorpej callout_ev_late.ev_count++;
575 1.1 thorpej
576 1.22 ad c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
577 1.22 ad mpsafe = (c->c_flags & CALLOUT_MPSAFE);
578 1.1 thorpej func = c->c_func;
579 1.1 thorpej arg = c->c_arg;
580 1.22 ad c->c_oncpu = ci;
581 1.22 ad c->c_onlwp = l;
582 1.32 ad ci->ci_data.cpu_callout = c;
583 1.22 ad
584 1.22 ad mutex_spin_exit(&callout_lock);
585 1.22 ad if (!mpsafe) {
586 1.22 ad KERNEL_LOCK(1, curlwp);
587 1.32 ad (*func)(arg);
588 1.22 ad KERNEL_UNLOCK_ONE(curlwp);
589 1.22 ad } else
590 1.32 ad (*func)(arg);
591 1.22 ad mutex_spin_enter(&callout_lock);
592 1.1 thorpej
593 1.20 ad /*
594 1.22 ad * We can't touch 'c' here because it might be
595 1.22 ad * freed already. If LWPs waiting for callout
596 1.22 ad * to complete, awaken them.
597 1.20 ad */
598 1.22 ad ci->ci_data.cpu_callout = NULL;
599 1.22 ad if ((count = ci->ci_data.cpu_callout_nwait) != 0) {
600 1.22 ad ci->ci_data.cpu_callout_nwait = 0;
601 1.22 ad /* sleepq_wake() drops the lock. */
602 1.22 ad sleepq_wake(&callout_sleepq, ci, count);
603 1.22 ad mutex_spin_enter(&callout_lock);
604 1.22 ad }
605 1.1 thorpej }
606 1.1 thorpej }
607 1.1 thorpej
608 1.22 ad mutex_spin_exit(&callout_lock);
609 1.1 thorpej }
610 1.1 thorpej
611 1.1 thorpej #ifdef DDB
612 1.1 thorpej static void
613 1.1 thorpej db_show_callout_bucket(struct callout_circq *bucket)
614 1.1 thorpej {
615 1.22 ad callout_impl_t *c;
616 1.1 thorpej db_expr_t offset;
617 1.15 christos const char *name;
618 1.15 christos static char question[] = "?";
619 1.1 thorpej
620 1.11 scw if (CIRCQ_EMPTY(bucket))
621 1.11 scw return;
622 1.11 scw
623 1.11 scw for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
624 1.10 scw db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
625 1.10 scw &offset);
626 1.15 christos name = name ? name : question;
627 1.1 thorpej #ifdef _LP64
628 1.1 thorpej #define POINTER_WIDTH "%16lx"
629 1.1 thorpej #else
630 1.1 thorpej #define POINTER_WIDTH "%8lx"
631 1.1 thorpej #endif
632 1.1 thorpej db_printf("%9d %2d/%-4d " POINTER_WIDTH " %s\n",
633 1.1 thorpej c->c_time - hardclock_ticks,
634 1.2 martin (int)((bucket - timeout_wheel) / WHEELSIZE),
635 1.2 martin (int)(bucket - timeout_wheel), (u_long) c->c_arg, name);
636 1.11 scw
637 1.11 scw if (CIRCQ_LAST(&c->c_list, bucket))
638 1.11 scw break;
639 1.1 thorpej }
640 1.1 thorpej }
641 1.1 thorpej
642 1.1 thorpej void
643 1.21 matt db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
644 1.1 thorpej {
645 1.1 thorpej int b;
646 1.1 thorpej
647 1.1 thorpej db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
648 1.1 thorpej #ifdef _LP64
649 1.1 thorpej db_printf(" ticks wheel arg func\n");
650 1.1 thorpej #else
651 1.1 thorpej db_printf(" ticks wheel arg func\n");
652 1.1 thorpej #endif
653 1.1 thorpej
654 1.1 thorpej /*
655 1.1 thorpej * Don't lock the callwheel; all the other CPUs are paused
656 1.1 thorpej * anyhow, and we might be called in a circumstance where
657 1.1 thorpej * some other CPU was paused while holding the lock.
658 1.1 thorpej */
659 1.1 thorpej
660 1.1 thorpej db_show_callout_bucket(&timeout_todo);
661 1.1 thorpej for (b = 0; b < BUCKETS; b++)
662 1.1 thorpej db_show_callout_bucket(&timeout_wheel[b]);
663 1.1 thorpej }
664 1.1 thorpej #endif /* DDB */
665