kern_timeout.c revision 1.35.2.1 1 1.35.2.1 yamt /* $NetBSD: kern_timeout.c,v 1.35.2.1 2008/05/18 12:35:09 yamt Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*-
4 1.32 ad * Copyright (c) 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.22 ad * by Jason R. Thorpe, and by Andrew Doran.
9 1.1 thorpej *
10 1.1 thorpej * Redistribution and use in source and binary forms, with or without
11 1.1 thorpej * modification, are permitted provided that the following conditions
12 1.1 thorpej * are met:
13 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.1 thorpej * notice, this list of conditions and the following disclaimer.
15 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.1 thorpej * documentation and/or other materials provided with the distribution.
18 1.1 thorpej *
19 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.1 thorpej */
31 1.1 thorpej
32 1.1 thorpej /*
33 1.1 thorpej * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
34 1.1 thorpej * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
35 1.14 perry * All rights reserved.
36 1.14 perry *
37 1.14 perry * Redistribution and use in source and binary forms, with or without
38 1.14 perry * modification, are permitted provided that the following conditions
39 1.14 perry * are met:
40 1.1 thorpej *
41 1.14 perry * 1. Redistributions of source code must retain the above copyright
42 1.14 perry * notice, this list of conditions and the following disclaimer.
43 1.14 perry * 2. Redistributions in binary form must reproduce the above copyright
44 1.14 perry * notice, this list of conditions and the following disclaimer in the
45 1.14 perry * documentation and/or other materials provided with the distribution.
46 1.1 thorpej * 3. The name of the author may not be used to endorse or promote products
47 1.14 perry * derived from this software without specific prior written permission.
48 1.1 thorpej *
49 1.1 thorpej * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50 1.1 thorpej * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51 1.1 thorpej * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52 1.1 thorpej * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53 1.1 thorpej * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 1.1 thorpej * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 1.1 thorpej * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 1.1 thorpej * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 1.1 thorpej * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 1.14 perry * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 1.1 thorpej */
60 1.7 lukem
61 1.7 lukem #include <sys/cdefs.h>
62 1.35.2.1 yamt __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.35.2.1 2008/05/18 12:35:09 yamt Exp $");
63 1.1 thorpej
64 1.1 thorpej /*
65 1.22 ad * Timeouts are kept in a hierarchical timing wheel. The c_time is the
66 1.35.2.1 yamt * value of c_cpu->cc_ticks when the timeout should be called. There are
67 1.35.2.1 yamt * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68 1.35.2.1 yamt * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69 1.35.2.1 yamt * a Timer Facility" by George Varghese and Tony Lauck.
70 1.22 ad *
71 1.22 ad * Some of the "math" in here is a bit tricky. We have to beware of
72 1.22 ad * wrapping ints.
73 1.22 ad *
74 1.22 ad * We use the fact that any element added to the queue must be added with
75 1.22 ad * a positive time. That means that any element `to' on the queue cannot
76 1.22 ad * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77 1.22 ad * be positive or negative so comparing it with anything is dangerous.
78 1.22 ad * The only way we can use the c->c_time value in any predictable way is
79 1.22 ad * when we calculate how far in the future `to' will timeout - "c->c_time
80 1.35.2.1 yamt * - c->c_cpu->cc_ticks". The result will always be positive for future
81 1.22 ad * timeouts and 0 or negative for due timeouts.
82 1.1 thorpej */
83 1.1 thorpej
84 1.24 ad #define _CALLOUT_PRIVATE
85 1.24 ad
86 1.1 thorpej #include <sys/param.h>
87 1.1 thorpej #include <sys/systm.h>
88 1.1 thorpej #include <sys/kernel.h>
89 1.1 thorpej #include <sys/callout.h>
90 1.20 ad #include <sys/mutex.h>
91 1.22 ad #include <sys/proc.h>
92 1.22 ad #include <sys/sleepq.h>
93 1.22 ad #include <sys/syncobj.h>
94 1.22 ad #include <sys/evcnt.h>
95 1.27 ad #include <sys/intr.h>
96 1.33 ad #include <sys/cpu.h>
97 1.35.2.1 yamt #include <sys/kmem.h>
98 1.1 thorpej
99 1.1 thorpej #ifdef DDB
100 1.1 thorpej #include <machine/db_machdep.h>
101 1.1 thorpej #include <ddb/db_interface.h>
102 1.1 thorpej #include <ddb/db_access.h>
103 1.1 thorpej #include <ddb/db_sym.h>
104 1.1 thorpej #include <ddb/db_output.h>
105 1.1 thorpej #endif
106 1.1 thorpej
107 1.22 ad #define BUCKETS 1024
108 1.22 ad #define WHEELSIZE 256
109 1.22 ad #define WHEELMASK 255
110 1.22 ad #define WHEELBITS 8
111 1.22 ad
112 1.1 thorpej #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
113 1.1 thorpej
114 1.35.2.1 yamt #define BUCKET(cc, rel, abs) \
115 1.1 thorpej (((rel) <= (1 << (2*WHEELBITS))) \
116 1.1 thorpej ? ((rel) <= (1 << WHEELBITS)) \
117 1.35.2.1 yamt ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
118 1.35.2.1 yamt : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
119 1.1 thorpej : ((rel) <= (1 << (3*WHEELBITS))) \
120 1.35.2.1 yamt ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
121 1.35.2.1 yamt : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
122 1.1 thorpej
123 1.35.2.1 yamt #define MOVEBUCKET(cc, wheel, time) \
124 1.35.2.1 yamt CIRCQ_APPEND(&(cc)->cc_todo, \
125 1.35.2.1 yamt &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
126 1.1 thorpej
127 1.1 thorpej /*
128 1.1 thorpej * Circular queue definitions.
129 1.1 thorpej */
130 1.1 thorpej
131 1.11 scw #define CIRCQ_INIT(list) \
132 1.1 thorpej do { \
133 1.11 scw (list)->cq_next_l = (list); \
134 1.11 scw (list)->cq_prev_l = (list); \
135 1.1 thorpej } while (/*CONSTCOND*/0)
136 1.1 thorpej
137 1.1 thorpej #define CIRCQ_INSERT(elem, list) \
138 1.1 thorpej do { \
139 1.11 scw (elem)->cq_prev_e = (list)->cq_prev_e; \
140 1.11 scw (elem)->cq_next_l = (list); \
141 1.11 scw (list)->cq_prev_l->cq_next_l = (elem); \
142 1.11 scw (list)->cq_prev_l = (elem); \
143 1.1 thorpej } while (/*CONSTCOND*/0)
144 1.1 thorpej
145 1.1 thorpej #define CIRCQ_APPEND(fst, snd) \
146 1.1 thorpej do { \
147 1.1 thorpej if (!CIRCQ_EMPTY(snd)) { \
148 1.11 scw (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
149 1.11 scw (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
150 1.11 scw (snd)->cq_prev_l->cq_next_l = (fst); \
151 1.11 scw (fst)->cq_prev_l = (snd)->cq_prev_l; \
152 1.1 thorpej CIRCQ_INIT(snd); \
153 1.1 thorpej } \
154 1.1 thorpej } while (/*CONSTCOND*/0)
155 1.1 thorpej
156 1.1 thorpej #define CIRCQ_REMOVE(elem) \
157 1.1 thorpej do { \
158 1.11 scw (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
159 1.11 scw (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
160 1.1 thorpej } while (/*CONSTCOND*/0)
161 1.1 thorpej
162 1.11 scw #define CIRCQ_FIRST(list) ((list)->cq_next_e)
163 1.11 scw #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
164 1.11 scw #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
165 1.11 scw #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
166 1.1 thorpej
167 1.22 ad static void callout_softclock(void *);
168 1.22 ad
169 1.35.2.1 yamt struct callout_cpu {
170 1.35.2.1 yamt kmutex_t cc_lock;
171 1.35.2.1 yamt sleepq_t cc_sleepq;
172 1.35.2.1 yamt u_int cc_nwait;
173 1.35.2.1 yamt u_int cc_ticks;
174 1.35.2.1 yamt lwp_t *cc_lwp;
175 1.35.2.1 yamt callout_impl_t *cc_active;
176 1.35.2.1 yamt callout_impl_t *cc_cancel;
177 1.35.2.1 yamt struct evcnt cc_ev_late;
178 1.35.2.1 yamt struct evcnt cc_ev_block;
179 1.35.2.1 yamt struct callout_circq cc_todo; /* Worklist */
180 1.35.2.1 yamt struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
181 1.35.2.1 yamt char cc_name1[12];
182 1.35.2.1 yamt char cc_name2[12];
183 1.35.2.1 yamt };
184 1.35.2.1 yamt
185 1.35.2.1 yamt static struct callout_cpu callout_cpu0;
186 1.35.2.1 yamt static void *callout_sih;
187 1.35.2.1 yamt
188 1.35.2.1 yamt static inline kmutex_t *
189 1.35.2.1 yamt callout_lock(callout_impl_t *c)
190 1.35.2.1 yamt {
191 1.35.2.1 yamt kmutex_t *lock;
192 1.35.2.1 yamt
193 1.35.2.1 yamt for (;;) {
194 1.35.2.1 yamt lock = &c->c_cpu->cc_lock;
195 1.35.2.1 yamt mutex_spin_enter(lock);
196 1.35.2.1 yamt if (__predict_true(lock == &c->c_cpu->cc_lock))
197 1.35.2.1 yamt return lock;
198 1.35.2.1 yamt mutex_spin_exit(lock);
199 1.35.2.1 yamt }
200 1.35.2.1 yamt }
201 1.5 thorpej
202 1.1 thorpej /*
203 1.1 thorpej * callout_startup:
204 1.1 thorpej *
205 1.1 thorpej * Initialize the callout facility, called at system startup time.
206 1.35.2.1 yamt * Do just enough to allow callouts to be safely registered.
207 1.1 thorpej */
208 1.1 thorpej void
209 1.1 thorpej callout_startup(void)
210 1.1 thorpej {
211 1.35.2.1 yamt struct callout_cpu *cc;
212 1.1 thorpej int b;
213 1.1 thorpej
214 1.35.2.1 yamt KASSERT(curcpu()->ci_data.cpu_callout == NULL);
215 1.22 ad
216 1.35.2.1 yamt cc = &callout_cpu0;
217 1.35.2.1 yamt mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
218 1.35.2.1 yamt CIRCQ_INIT(&cc->cc_todo);
219 1.1 thorpej for (b = 0; b < BUCKETS; b++)
220 1.35.2.1 yamt CIRCQ_INIT(&cc->cc_wheel[b]);
221 1.35.2.1 yamt curcpu()->ci_data.cpu_callout = cc;
222 1.22 ad }
223 1.22 ad
224 1.22 ad /*
225 1.35.2.1 yamt * callout_init_cpu:
226 1.22 ad *
227 1.35.2.1 yamt * Per-CPU initialization.
228 1.22 ad */
229 1.22 ad void
230 1.35.2.1 yamt callout_init_cpu(struct cpu_info *ci)
231 1.22 ad {
232 1.35.2.1 yamt struct callout_cpu *cc;
233 1.35.2.1 yamt int b;
234 1.22 ad
235 1.35.2.1 yamt KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
236 1.35.2.1 yamt
237 1.35.2.1 yamt if ((cc = ci->ci_data.cpu_callout) == NULL) {
238 1.35.2.1 yamt cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
239 1.35.2.1 yamt if (cc == NULL)
240 1.35.2.1 yamt panic("callout_init_cpu (1)");
241 1.35.2.1 yamt mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
242 1.35.2.1 yamt CIRCQ_INIT(&cc->cc_todo);
243 1.35.2.1 yamt for (b = 0; b < BUCKETS; b++)
244 1.35.2.1 yamt CIRCQ_INIT(&cc->cc_wheel[b]);
245 1.35.2.1 yamt } else {
246 1.35.2.1 yamt /* Boot CPU, one time only. */
247 1.35.2.1 yamt callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
248 1.35.2.1 yamt callout_softclock, NULL);
249 1.35.2.1 yamt if (callout_sih == NULL)
250 1.35.2.1 yamt panic("callout_init_cpu (2)");
251 1.35.2.1 yamt }
252 1.35.2.1 yamt
253 1.35.2.1 yamt sleepq_init(&cc->cc_sleepq, &cc->cc_lock);
254 1.35.2.1 yamt
255 1.35.2.1 yamt snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
256 1.35.2.1 yamt cpu_index(ci));
257 1.35.2.1 yamt evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
258 1.35.2.1 yamt NULL, "callout", cc->cc_name1);
259 1.35.2.1 yamt
260 1.35.2.1 yamt snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
261 1.35.2.1 yamt cpu_index(ci));
262 1.35.2.1 yamt evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
263 1.35.2.1 yamt NULL, "callout", cc->cc_name2);
264 1.35.2.1 yamt
265 1.35.2.1 yamt ci->ci_data.cpu_callout = cc;
266 1.1 thorpej }
267 1.1 thorpej
268 1.1 thorpej /*
269 1.1 thorpej * callout_init:
270 1.1 thorpej *
271 1.35.2.1 yamt * Initialize a callout structure. This must be quick, so we fill
272 1.35.2.1 yamt * only the minimum number of fields.
273 1.1 thorpej */
274 1.1 thorpej void
275 1.22 ad callout_init(callout_t *cs, u_int flags)
276 1.1 thorpej {
277 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
278 1.35.2.1 yamt struct callout_cpu *cc;
279 1.22 ad
280 1.22 ad KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
281 1.1 thorpej
282 1.35.2.1 yamt cc = curcpu()->ci_data.cpu_callout;
283 1.35.2.1 yamt c->c_func = NULL;
284 1.22 ad c->c_magic = CALLOUT_MAGIC;
285 1.35.2.1 yamt if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
286 1.35.2.1 yamt c->c_flags = flags;
287 1.35.2.1 yamt c->c_cpu = cc;
288 1.35.2.1 yamt return;
289 1.35.2.1 yamt }
290 1.35.2.1 yamt c->c_flags = flags | CALLOUT_BOUND;
291 1.35.2.1 yamt c->c_cpu = &callout_cpu0;
292 1.22 ad }
293 1.22 ad
294 1.22 ad /*
295 1.22 ad * callout_destroy:
296 1.22 ad *
297 1.22 ad * Destroy a callout structure. The callout must be stopped.
298 1.22 ad */
299 1.22 ad void
300 1.22 ad callout_destroy(callout_t *cs)
301 1.22 ad {
302 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
303 1.22 ad
304 1.22 ad /*
305 1.22 ad * It's not necessary to lock in order to see the correct value
306 1.22 ad * of c->c_flags. If the callout could potentially have been
307 1.22 ad * running, the current thread should have stopped it.
308 1.22 ad */
309 1.22 ad KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
310 1.35.2.1 yamt KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
311 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
312 1.22 ad c->c_magic = 0;
313 1.1 thorpej }
314 1.1 thorpej
315 1.1 thorpej /*
316 1.29 joerg * callout_schedule_locked:
317 1.1 thorpej *
318 1.29 joerg * Schedule a callout to run. The function and argument must
319 1.29 joerg * already be set in the callout structure. Must be called with
320 1.29 joerg * callout_lock.
321 1.1 thorpej */
322 1.29 joerg static void
323 1.35.2.1 yamt callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
324 1.1 thorpej {
325 1.35.2.1 yamt struct callout_cpu *cc, *occ;
326 1.20 ad int old_time;
327 1.1 thorpej
328 1.1 thorpej KASSERT(to_ticks >= 0);
329 1.29 joerg KASSERT(c->c_func != NULL);
330 1.1 thorpej
331 1.1 thorpej /* Initialize the time here, it won't change. */
332 1.35.2.1 yamt occ = c->c_cpu;
333 1.22 ad c->c_flags &= ~CALLOUT_FIRED;
334 1.1 thorpej
335 1.1 thorpej /*
336 1.1 thorpej * If this timeout is already scheduled and now is moved
337 1.35.2.1 yamt * earlier, reschedule it now. Otherwise leave it in place
338 1.1 thorpej * and let it be rescheduled later.
339 1.1 thorpej */
340 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0) {
341 1.35.2.1 yamt /* Leave on existing CPU. */
342 1.35.2.1 yamt old_time = c->c_time;
343 1.35.2.1 yamt c->c_time = to_ticks + occ->cc_ticks;
344 1.4 yamt if (c->c_time - old_time < 0) {
345 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
346 1.35.2.1 yamt CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
347 1.1 thorpej }
348 1.35.2.1 yamt mutex_spin_exit(lock);
349 1.35.2.1 yamt return;
350 1.35.2.1 yamt }
351 1.35.2.1 yamt
352 1.35.2.1 yamt cc = curcpu()->ci_data.cpu_callout;
353 1.35.2.1 yamt if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
354 1.35.2.1 yamt !mutex_tryenter(&cc->cc_lock)) {
355 1.35.2.1 yamt /* Leave on existing CPU. */
356 1.35.2.1 yamt c->c_time = to_ticks + occ->cc_ticks;
357 1.35.2.1 yamt c->c_flags |= CALLOUT_PENDING;
358 1.35.2.1 yamt CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
359 1.1 thorpej } else {
360 1.35.2.1 yamt /* Move to this CPU. */
361 1.35.2.1 yamt c->c_cpu = cc;
362 1.35.2.1 yamt c->c_time = to_ticks + cc->cc_ticks;
363 1.1 thorpej c->c_flags |= CALLOUT_PENDING;
364 1.35.2.1 yamt CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
365 1.35.2.1 yamt mutex_spin_exit(&cc->cc_lock);
366 1.1 thorpej }
367 1.35.2.1 yamt mutex_spin_exit(lock);
368 1.29 joerg }
369 1.29 joerg
370 1.29 joerg /*
371 1.29 joerg * callout_reset:
372 1.29 joerg *
373 1.29 joerg * Reset a callout structure with a new function and argument, and
374 1.29 joerg * schedule it to run.
375 1.29 joerg */
376 1.29 joerg void
377 1.29 joerg callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
378 1.29 joerg {
379 1.29 joerg callout_impl_t *c = (callout_impl_t *)cs;
380 1.35.2.1 yamt kmutex_t *lock;
381 1.29 joerg
382 1.29 joerg KASSERT(c->c_magic == CALLOUT_MAGIC);
383 1.29 joerg
384 1.35.2.1 yamt lock = callout_lock(c);
385 1.29 joerg c->c_func = func;
386 1.29 joerg c->c_arg = arg;
387 1.35.2.1 yamt callout_schedule_locked(c, lock, to_ticks);
388 1.1 thorpej }
389 1.1 thorpej
390 1.1 thorpej /*
391 1.1 thorpej * callout_schedule:
392 1.1 thorpej *
393 1.1 thorpej * Schedule a callout to run. The function and argument must
394 1.1 thorpej * already be set in the callout structure.
395 1.1 thorpej */
396 1.1 thorpej void
397 1.22 ad callout_schedule(callout_t *cs, int to_ticks)
398 1.1 thorpej {
399 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
400 1.35.2.1 yamt kmutex_t *lock;
401 1.1 thorpej
402 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
403 1.1 thorpej
404 1.35.2.1 yamt lock = callout_lock(c);
405 1.35.2.1 yamt callout_schedule_locked(c, lock, to_ticks);
406 1.1 thorpej }
407 1.1 thorpej
408 1.1 thorpej /*
409 1.1 thorpej * callout_stop:
410 1.1 thorpej *
411 1.35.2.1 yamt * Try to cancel a pending callout. It may be too late: the callout
412 1.35.2.1 yamt * could be running on another CPU. If called from interrupt context,
413 1.35.2.1 yamt * the callout could already be in progress at a lower priority.
414 1.1 thorpej */
415 1.22 ad bool
416 1.22 ad callout_stop(callout_t *cs)
417 1.1 thorpej {
418 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
419 1.35.2.1 yamt struct callout_cpu *cc;
420 1.35.2.1 yamt kmutex_t *lock;
421 1.22 ad bool expired;
422 1.22 ad
423 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
424 1.1 thorpej
425 1.35.2.1 yamt lock = callout_lock(c);
426 1.20 ad
427 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
428 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
429 1.32 ad expired = ((c->c_flags & CALLOUT_FIRED) != 0);
430 1.32 ad c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
431 1.32 ad
432 1.35.2.1 yamt cc = c->c_cpu;
433 1.35.2.1 yamt if (cc->cc_active == c) {
434 1.32 ad /*
435 1.32 ad * This is for non-MPSAFE callouts only. To synchronize
436 1.32 ad * effectively we must be called with kernel_lock held.
437 1.32 ad * It's also taken in callout_softclock.
438 1.32 ad */
439 1.35.2.1 yamt cc->cc_cancel = c;
440 1.32 ad }
441 1.32 ad
442 1.35.2.1 yamt mutex_spin_exit(lock);
443 1.32 ad
444 1.32 ad return expired;
445 1.32 ad }
446 1.32 ad
447 1.32 ad /*
448 1.32 ad * callout_halt:
449 1.32 ad *
450 1.32 ad * Cancel a pending callout. If in-flight, block until it completes.
451 1.35.2.1 yamt * May not be called from a hard interrupt handler. If the callout
452 1.35.2.1 yamt * can take locks, the caller of callout_halt() must not hold any of
453 1.35.2.1 yamt * those locks, otherwise the two could deadlock. If 'interlock' is
454 1.35.2.1 yamt * non-NULL and we must wait for the callout to complete, it will be
455 1.35.2.1 yamt * released and re-acquired before returning.
456 1.32 ad */
457 1.32 ad bool
458 1.35.2.1 yamt callout_halt(callout_t *cs, void *interlock)
459 1.32 ad {
460 1.32 ad callout_impl_t *c = (callout_impl_t *)cs;
461 1.35.2.1 yamt struct callout_cpu *cc;
462 1.32 ad struct lwp *l;
463 1.35.2.1 yamt kmutex_t *lock, *relock;
464 1.32 ad bool expired;
465 1.32 ad
466 1.32 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
467 1.32 ad KASSERT(!cpu_intr_p());
468 1.32 ad
469 1.35.2.1 yamt lock = callout_lock(c);
470 1.35.2.1 yamt relock = NULL;
471 1.1 thorpej
472 1.22 ad expired = ((c->c_flags & CALLOUT_FIRED) != 0);
473 1.32 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
474 1.32 ad CIRCQ_REMOVE(&c->c_list);
475 1.9 he c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
476 1.1 thorpej
477 1.32 ad l = curlwp;
478 1.35.2.1 yamt for (;;) {
479 1.35.2.1 yamt cc = c->c_cpu;
480 1.35.2.1 yamt if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
481 1.35.2.1 yamt break;
482 1.35.2.1 yamt if (interlock != NULL) {
483 1.35.2.1 yamt /*
484 1.35.2.1 yamt * Avoid potential scheduler lock order problems by
485 1.35.2.1 yamt * dropping the interlock without the callout lock
486 1.35.2.1 yamt * held.
487 1.35.2.1 yamt */
488 1.35.2.1 yamt mutex_spin_exit(lock);
489 1.35.2.1 yamt mutex_exit(interlock);
490 1.35.2.1 yamt relock = interlock;
491 1.35.2.1 yamt interlock = NULL;
492 1.35.2.1 yamt } else {
493 1.35.2.1 yamt /* XXX Better to do priority inheritance. */
494 1.35.2.1 yamt KASSERT(l->l_wchan == NULL);
495 1.35.2.1 yamt cc->cc_nwait++;
496 1.35.2.1 yamt cc->cc_ev_block.ev_count++;
497 1.35.2.1 yamt l->l_kpriority = true;
498 1.35.2.1 yamt sleepq_enter(&cc->cc_sleepq, l);
499 1.35.2.1 yamt sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
500 1.35.2.1 yamt &sleep_syncobj);
501 1.35.2.1 yamt KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
502 1.35.2.1 yamt sleepq_block(0, false);
503 1.35.2.1 yamt }
504 1.35.2.1 yamt lock = callout_lock(c);
505 1.32 ad }
506 1.32 ad
507 1.35.2.1 yamt mutex_spin_exit(lock);
508 1.35.2.1 yamt if (__predict_false(relock != NULL))
509 1.35.2.1 yamt mutex_enter(relock);
510 1.22 ad
511 1.22 ad return expired;
512 1.22 ad }
513 1.22 ad
514 1.35.2.1 yamt #ifdef notyet
515 1.35.2.1 yamt /*
516 1.35.2.1 yamt * callout_bind:
517 1.35.2.1 yamt *
518 1.35.2.1 yamt * Bind a callout so that it will only execute on one CPU.
519 1.35.2.1 yamt * The callout must be stopped, and must be MPSAFE.
520 1.35.2.1 yamt *
521 1.35.2.1 yamt * XXX Disabled for now until it is decided how to handle
522 1.35.2.1 yamt * offlined CPUs. We may want weak+strong binding.
523 1.35.2.1 yamt */
524 1.35.2.1 yamt void
525 1.35.2.1 yamt callout_bind(callout_t *cs, struct cpu_info *ci)
526 1.35.2.1 yamt {
527 1.35.2.1 yamt callout_impl_t *c = (callout_impl_t *)cs;
528 1.35.2.1 yamt struct callout_cpu *cc;
529 1.35.2.1 yamt kmutex_t *lock;
530 1.35.2.1 yamt
531 1.35.2.1 yamt KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
532 1.35.2.1 yamt KASSERT(c->c_cpu->cc_active != c);
533 1.35.2.1 yamt KASSERT(c->c_magic == CALLOUT_MAGIC);
534 1.35.2.1 yamt KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
535 1.35.2.1 yamt
536 1.35.2.1 yamt lock = callout_lock(c);
537 1.35.2.1 yamt cc = ci->ci_data.cpu_callout;
538 1.35.2.1 yamt c->c_flags |= CALLOUT_BOUND;
539 1.35.2.1 yamt if (c->c_cpu != cc) {
540 1.35.2.1 yamt /*
541 1.35.2.1 yamt * Assigning c_cpu effectively unlocks the callout
542 1.35.2.1 yamt * structure, as we don't hold the new CPU's lock.
543 1.35.2.1 yamt * Issue memory barrier to prevent accesses being
544 1.35.2.1 yamt * reordered.
545 1.35.2.1 yamt */
546 1.35.2.1 yamt membar_exit();
547 1.35.2.1 yamt c->c_cpu = cc;
548 1.35.2.1 yamt }
549 1.35.2.1 yamt mutex_spin_exit(lock);
550 1.35.2.1 yamt }
551 1.35.2.1 yamt #endif
552 1.35.2.1 yamt
553 1.22 ad void
554 1.22 ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
555 1.22 ad {
556 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
557 1.35.2.1 yamt kmutex_t *lock;
558 1.22 ad
559 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
560 1.22 ad
561 1.35.2.1 yamt lock = callout_lock(c);
562 1.22 ad c->c_func = func;
563 1.22 ad c->c_arg = arg;
564 1.35.2.1 yamt mutex_spin_exit(lock);
565 1.22 ad }
566 1.22 ad
567 1.22 ad bool
568 1.22 ad callout_expired(callout_t *cs)
569 1.22 ad {
570 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
571 1.35.2.1 yamt kmutex_t *lock;
572 1.22 ad bool rv;
573 1.22 ad
574 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
575 1.22 ad
576 1.35.2.1 yamt lock = callout_lock(c);
577 1.22 ad rv = ((c->c_flags & CALLOUT_FIRED) != 0);
578 1.35.2.1 yamt mutex_spin_exit(lock);
579 1.22 ad
580 1.22 ad return rv;
581 1.22 ad }
582 1.22 ad
583 1.22 ad bool
584 1.22 ad callout_active(callout_t *cs)
585 1.22 ad {
586 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
587 1.35.2.1 yamt kmutex_t *lock;
588 1.22 ad bool rv;
589 1.22 ad
590 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
591 1.22 ad
592 1.35.2.1 yamt lock = callout_lock(c);
593 1.22 ad rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
594 1.35.2.1 yamt mutex_spin_exit(lock);
595 1.22 ad
596 1.22 ad return rv;
597 1.22 ad }
598 1.22 ad
599 1.22 ad bool
600 1.22 ad callout_pending(callout_t *cs)
601 1.22 ad {
602 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
603 1.35.2.1 yamt kmutex_t *lock;
604 1.22 ad bool rv;
605 1.22 ad
606 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
607 1.22 ad
608 1.35.2.1 yamt lock = callout_lock(c);
609 1.22 ad rv = ((c->c_flags & CALLOUT_PENDING) != 0);
610 1.35.2.1 yamt mutex_spin_exit(lock);
611 1.22 ad
612 1.22 ad return rv;
613 1.22 ad }
614 1.22 ad
615 1.22 ad bool
616 1.22 ad callout_invoking(callout_t *cs)
617 1.22 ad {
618 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
619 1.35.2.1 yamt kmutex_t *lock;
620 1.22 ad bool rv;
621 1.22 ad
622 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
623 1.22 ad
624 1.35.2.1 yamt lock = callout_lock(c);
625 1.22 ad rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
626 1.35.2.1 yamt mutex_spin_exit(lock);
627 1.22 ad
628 1.22 ad return rv;
629 1.22 ad }
630 1.22 ad
631 1.22 ad void
632 1.22 ad callout_ack(callout_t *cs)
633 1.22 ad {
634 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
635 1.35.2.1 yamt kmutex_t *lock;
636 1.22 ad
637 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
638 1.22 ad
639 1.35.2.1 yamt lock = callout_lock(c);
640 1.22 ad c->c_flags &= ~CALLOUT_INVOKING;
641 1.35.2.1 yamt mutex_spin_exit(lock);
642 1.1 thorpej }
643 1.1 thorpej
644 1.1 thorpej /*
645 1.35.2.1 yamt * callout_hardclock:
646 1.35.2.1 yamt *
647 1.35.2.1 yamt * Called from hardclock() once every tick. We schedule a soft
648 1.35.2.1 yamt * interrupt if there is work to be done.
649 1.1 thorpej */
650 1.22 ad void
651 1.1 thorpej callout_hardclock(void)
652 1.1 thorpej {
653 1.35.2.1 yamt struct callout_cpu *cc;
654 1.35.2.1 yamt int needsoftclock, ticks;
655 1.1 thorpej
656 1.35.2.1 yamt cc = curcpu()->ci_data.cpu_callout;
657 1.35.2.1 yamt mutex_spin_enter(&cc->cc_lock);
658 1.1 thorpej
659 1.35.2.1 yamt ticks = ++cc->cc_ticks;
660 1.35.2.1 yamt
661 1.35.2.1 yamt MOVEBUCKET(cc, 0, ticks);
662 1.35.2.1 yamt if (MASKWHEEL(0, ticks) == 0) {
663 1.35.2.1 yamt MOVEBUCKET(cc, 1, ticks);
664 1.35.2.1 yamt if (MASKWHEEL(1, ticks) == 0) {
665 1.35.2.1 yamt MOVEBUCKET(cc, 2, ticks);
666 1.35.2.1 yamt if (MASKWHEEL(2, ticks) == 0)
667 1.35.2.1 yamt MOVEBUCKET(cc, 3, ticks);
668 1.1 thorpej }
669 1.1 thorpej }
670 1.1 thorpej
671 1.35.2.1 yamt needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
672 1.35.2.1 yamt mutex_spin_exit(&cc->cc_lock);
673 1.1 thorpej
674 1.22 ad if (needsoftclock)
675 1.35.2.1 yamt softint_schedule(callout_sih);
676 1.1 thorpej }
677 1.1 thorpej
678 1.35.2.1 yamt /*
679 1.35.2.1 yamt * callout_softclock:
680 1.35.2.1 yamt *
681 1.35.2.1 yamt * Soft interrupt handler, scheduled above if there is work to
682 1.35.2.1 yamt * be done. Callouts are made in soft interrupt context.
683 1.35.2.1 yamt */
684 1.22 ad static void
685 1.22 ad callout_softclock(void *v)
686 1.1 thorpej {
687 1.22 ad callout_impl_t *c;
688 1.35.2.1 yamt struct callout_cpu *cc;
689 1.1 thorpej void (*func)(void *);
690 1.1 thorpej void *arg;
691 1.35.2.1 yamt int mpsafe, count, ticks, delta;
692 1.22 ad lwp_t *l;
693 1.1 thorpej
694 1.22 ad l = curlwp;
695 1.35.2.1 yamt KASSERT(l->l_cpu == curcpu());
696 1.35.2.1 yamt cc = l->l_cpu->ci_data.cpu_callout;
697 1.1 thorpej
698 1.35.2.1 yamt mutex_spin_enter(&cc->cc_lock);
699 1.35.2.1 yamt cc->cc_lwp = l;
700 1.35.2.1 yamt while (!CIRCQ_EMPTY(&cc->cc_todo)) {
701 1.35.2.1 yamt c = CIRCQ_FIRST(&cc->cc_todo);
702 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
703 1.22 ad KASSERT(c->c_func != NULL);
704 1.35.2.1 yamt KASSERT(c->c_cpu == cc);
705 1.26 ad KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
706 1.26 ad KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
707 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
708 1.1 thorpej
709 1.1 thorpej /* If due run it, otherwise insert it into the right bucket. */
710 1.35.2.1 yamt ticks = cc->cc_ticks;
711 1.35.2.1 yamt delta = c->c_time - ticks;
712 1.35.2.1 yamt if (delta > 0) {
713 1.35.2.1 yamt CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
714 1.35.2.1 yamt continue;
715 1.35.2.1 yamt }
716 1.35.2.1 yamt if (delta < 0)
717 1.35.2.1 yamt cc->cc_ev_late.ev_count++;
718 1.1 thorpej
719 1.35.2.1 yamt c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
720 1.35.2.1 yamt mpsafe = (c->c_flags & CALLOUT_MPSAFE);
721 1.35.2.1 yamt func = c->c_func;
722 1.35.2.1 yamt arg = c->c_arg;
723 1.35.2.1 yamt cc->cc_active = c;
724 1.35.2.1 yamt
725 1.35.2.1 yamt mutex_spin_exit(&cc->cc_lock);
726 1.35.2.1 yamt if (!mpsafe) {
727 1.35.2.1 yamt KERNEL_LOCK(1, NULL);
728 1.35.2.1 yamt (*func)(arg);
729 1.35.2.1 yamt KERNEL_UNLOCK_ONE(NULL);
730 1.35.2.1 yamt } else
731 1.35.2.1 yamt (*func)(arg);
732 1.35.2.1 yamt mutex_spin_enter(&cc->cc_lock);
733 1.1 thorpej
734 1.35.2.1 yamt /*
735 1.35.2.1 yamt * We can't touch 'c' here because it might be
736 1.35.2.1 yamt * freed already. If LWPs waiting for callout
737 1.35.2.1 yamt * to complete, awaken them.
738 1.35.2.1 yamt */
739 1.35.2.1 yamt cc->cc_active = NULL;
740 1.35.2.1 yamt if ((count = cc->cc_nwait) != 0) {
741 1.35.2.1 yamt cc->cc_nwait = 0;
742 1.35.2.1 yamt /* sleepq_wake() drops the lock. */
743 1.35.2.1 yamt sleepq_wake(&cc->cc_sleepq, cc, count);
744 1.35.2.1 yamt mutex_spin_enter(&cc->cc_lock);
745 1.1 thorpej }
746 1.1 thorpej }
747 1.35.2.1 yamt cc->cc_lwp = NULL;
748 1.35.2.1 yamt mutex_spin_exit(&cc->cc_lock);
749 1.1 thorpej }
750 1.1 thorpej
751 1.1 thorpej #ifdef DDB
752 1.1 thorpej static void
753 1.35.2.1 yamt db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
754 1.1 thorpej {
755 1.22 ad callout_impl_t *c;
756 1.1 thorpej db_expr_t offset;
757 1.15 christos const char *name;
758 1.15 christos static char question[] = "?";
759 1.35.2.1 yamt int b;
760 1.1 thorpej
761 1.11 scw if (CIRCQ_EMPTY(bucket))
762 1.11 scw return;
763 1.11 scw
764 1.11 scw for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
765 1.10 scw db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
766 1.10 scw &offset);
767 1.15 christos name = name ? name : question;
768 1.35.2.1 yamt b = (bucket - cc->cc_wheel);
769 1.35.2.1 yamt if (b < 0)
770 1.35.2.1 yamt b = -WHEELSIZE;
771 1.35.2.1 yamt db_printf("%9d %2d/%-4d %16lx %s\n",
772 1.35.2.1 yamt c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
773 1.35.2.1 yamt (u_long)c->c_arg, name);
774 1.11 scw if (CIRCQ_LAST(&c->c_list, bucket))
775 1.11 scw break;
776 1.1 thorpej }
777 1.1 thorpej }
778 1.1 thorpej
779 1.1 thorpej void
780 1.21 matt db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
781 1.1 thorpej {
782 1.35.2.1 yamt CPU_INFO_ITERATOR cii;
783 1.35.2.1 yamt struct callout_cpu *cc;
784 1.35.2.1 yamt struct cpu_info *ci;
785 1.1 thorpej int b;
786 1.1 thorpej
787 1.1 thorpej db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
788 1.1 thorpej db_printf(" ticks wheel arg func\n");
789 1.1 thorpej
790 1.1 thorpej /*
791 1.1 thorpej * Don't lock the callwheel; all the other CPUs are paused
792 1.1 thorpej * anyhow, and we might be called in a circumstance where
793 1.1 thorpej * some other CPU was paused while holding the lock.
794 1.1 thorpej */
795 1.35.2.1 yamt for (CPU_INFO_FOREACH(cii, ci)) {
796 1.35.2.1 yamt cc = ci->ci_data.cpu_callout;
797 1.35.2.1 yamt db_show_callout_bucket(cc, &cc->cc_todo);
798 1.35.2.1 yamt }
799 1.35.2.1 yamt for (b = 0; b < BUCKETS; b++) {
800 1.35.2.1 yamt for (CPU_INFO_FOREACH(cii, ci)) {
801 1.35.2.1 yamt cc = ci->ci_data.cpu_callout;
802 1.35.2.1 yamt db_show_callout_bucket(cc, &cc->cc_wheel[b]);
803 1.35.2.1 yamt }
804 1.35.2.1 yamt }
805 1.1 thorpej }
806 1.1 thorpej #endif /* DDB */
807