kern_timeout.c revision 1.40 1 1.40 ad /* $NetBSD: kern_timeout.c,v 1.40 2008/05/26 12:08:38 ad Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*-
4 1.32 ad * Copyright (c) 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.22 ad * by Jason R. Thorpe, and by Andrew Doran.
9 1.1 thorpej *
10 1.1 thorpej * Redistribution and use in source and binary forms, with or without
11 1.1 thorpej * modification, are permitted provided that the following conditions
12 1.1 thorpej * are met:
13 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.1 thorpej * notice, this list of conditions and the following disclaimer.
15 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.1 thorpej * documentation and/or other materials provided with the distribution.
18 1.1 thorpej *
19 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.1 thorpej */
31 1.1 thorpej
32 1.1 thorpej /*
33 1.1 thorpej * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
34 1.1 thorpej * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
35 1.14 perry * All rights reserved.
36 1.14 perry *
37 1.14 perry * Redistribution and use in source and binary forms, with or without
38 1.14 perry * modification, are permitted provided that the following conditions
39 1.14 perry * are met:
40 1.1 thorpej *
41 1.14 perry * 1. Redistributions of source code must retain the above copyright
42 1.14 perry * notice, this list of conditions and the following disclaimer.
43 1.14 perry * 2. Redistributions in binary form must reproduce the above copyright
44 1.14 perry * notice, this list of conditions and the following disclaimer in the
45 1.14 perry * documentation and/or other materials provided with the distribution.
46 1.1 thorpej * 3. The name of the author may not be used to endorse or promote products
47 1.14 perry * derived from this software without specific prior written permission.
48 1.1 thorpej *
49 1.1 thorpej * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50 1.1 thorpej * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51 1.1 thorpej * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52 1.1 thorpej * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53 1.1 thorpej * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 1.1 thorpej * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 1.1 thorpej * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 1.1 thorpej * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 1.1 thorpej * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 1.14 perry * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 1.1 thorpej */
60 1.7 lukem
61 1.7 lukem #include <sys/cdefs.h>
62 1.40 ad __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.40 2008/05/26 12:08:38 ad Exp $");
63 1.1 thorpej
64 1.1 thorpej /*
65 1.22 ad * Timeouts are kept in a hierarchical timing wheel. The c_time is the
66 1.36 ad * value of c_cpu->cc_ticks when the timeout should be called. There are
67 1.36 ad * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68 1.36 ad * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69 1.36 ad * a Timer Facility" by George Varghese and Tony Lauck.
70 1.22 ad *
71 1.22 ad * Some of the "math" in here is a bit tricky. We have to beware of
72 1.22 ad * wrapping ints.
73 1.22 ad *
74 1.22 ad * We use the fact that any element added to the queue must be added with
75 1.22 ad * a positive time. That means that any element `to' on the queue cannot
76 1.22 ad * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77 1.22 ad * be positive or negative so comparing it with anything is dangerous.
78 1.22 ad * The only way we can use the c->c_time value in any predictable way is
79 1.22 ad * when we calculate how far in the future `to' will timeout - "c->c_time
80 1.36 ad * - c->c_cpu->cc_ticks". The result will always be positive for future
81 1.22 ad * timeouts and 0 or negative for due timeouts.
82 1.1 thorpej */
83 1.1 thorpej
84 1.24 ad #define _CALLOUT_PRIVATE
85 1.24 ad
86 1.1 thorpej #include <sys/param.h>
87 1.1 thorpej #include <sys/systm.h>
88 1.1 thorpej #include <sys/kernel.h>
89 1.1 thorpej #include <sys/callout.h>
90 1.20 ad #include <sys/mutex.h>
91 1.22 ad #include <sys/proc.h>
92 1.22 ad #include <sys/sleepq.h>
93 1.22 ad #include <sys/syncobj.h>
94 1.22 ad #include <sys/evcnt.h>
95 1.27 ad #include <sys/intr.h>
96 1.33 ad #include <sys/cpu.h>
97 1.36 ad #include <sys/kmem.h>
98 1.1 thorpej
99 1.1 thorpej #ifdef DDB
100 1.1 thorpej #include <machine/db_machdep.h>
101 1.1 thorpej #include <ddb/db_interface.h>
102 1.1 thorpej #include <ddb/db_access.h>
103 1.1 thorpej #include <ddb/db_sym.h>
104 1.1 thorpej #include <ddb/db_output.h>
105 1.1 thorpej #endif
106 1.1 thorpej
107 1.22 ad #define BUCKETS 1024
108 1.22 ad #define WHEELSIZE 256
109 1.22 ad #define WHEELMASK 255
110 1.22 ad #define WHEELBITS 8
111 1.22 ad
112 1.1 thorpej #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
113 1.1 thorpej
114 1.36 ad #define BUCKET(cc, rel, abs) \
115 1.1 thorpej (((rel) <= (1 << (2*WHEELBITS))) \
116 1.1 thorpej ? ((rel) <= (1 << WHEELBITS)) \
117 1.36 ad ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
118 1.36 ad : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
119 1.1 thorpej : ((rel) <= (1 << (3*WHEELBITS))) \
120 1.36 ad ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
121 1.36 ad : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
122 1.1 thorpej
123 1.36 ad #define MOVEBUCKET(cc, wheel, time) \
124 1.36 ad CIRCQ_APPEND(&(cc)->cc_todo, \
125 1.36 ad &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
126 1.1 thorpej
127 1.1 thorpej /*
128 1.1 thorpej * Circular queue definitions.
129 1.1 thorpej */
130 1.1 thorpej
131 1.11 scw #define CIRCQ_INIT(list) \
132 1.1 thorpej do { \
133 1.11 scw (list)->cq_next_l = (list); \
134 1.11 scw (list)->cq_prev_l = (list); \
135 1.1 thorpej } while (/*CONSTCOND*/0)
136 1.1 thorpej
137 1.1 thorpej #define CIRCQ_INSERT(elem, list) \
138 1.1 thorpej do { \
139 1.11 scw (elem)->cq_prev_e = (list)->cq_prev_e; \
140 1.11 scw (elem)->cq_next_l = (list); \
141 1.11 scw (list)->cq_prev_l->cq_next_l = (elem); \
142 1.11 scw (list)->cq_prev_l = (elem); \
143 1.1 thorpej } while (/*CONSTCOND*/0)
144 1.1 thorpej
145 1.1 thorpej #define CIRCQ_APPEND(fst, snd) \
146 1.1 thorpej do { \
147 1.1 thorpej if (!CIRCQ_EMPTY(snd)) { \
148 1.11 scw (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
149 1.11 scw (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
150 1.11 scw (snd)->cq_prev_l->cq_next_l = (fst); \
151 1.11 scw (fst)->cq_prev_l = (snd)->cq_prev_l; \
152 1.1 thorpej CIRCQ_INIT(snd); \
153 1.1 thorpej } \
154 1.1 thorpej } while (/*CONSTCOND*/0)
155 1.1 thorpej
156 1.1 thorpej #define CIRCQ_REMOVE(elem) \
157 1.1 thorpej do { \
158 1.11 scw (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
159 1.11 scw (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
160 1.1 thorpej } while (/*CONSTCOND*/0)
161 1.1 thorpej
162 1.11 scw #define CIRCQ_FIRST(list) ((list)->cq_next_e)
163 1.11 scw #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
164 1.11 scw #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
165 1.11 scw #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
166 1.1 thorpej
167 1.22 ad static void callout_softclock(void *);
168 1.22 ad
169 1.36 ad struct callout_cpu {
170 1.36 ad kmutex_t cc_lock;
171 1.36 ad sleepq_t cc_sleepq;
172 1.36 ad u_int cc_nwait;
173 1.36 ad u_int cc_ticks;
174 1.36 ad lwp_t *cc_lwp;
175 1.36 ad callout_impl_t *cc_active;
176 1.36 ad callout_impl_t *cc_cancel;
177 1.36 ad struct evcnt cc_ev_late;
178 1.36 ad struct evcnt cc_ev_block;
179 1.36 ad struct callout_circq cc_todo; /* Worklist */
180 1.36 ad struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
181 1.36 ad char cc_name1[12];
182 1.36 ad char cc_name2[12];
183 1.36 ad };
184 1.36 ad
185 1.36 ad static struct callout_cpu callout_cpu0;
186 1.36 ad static void *callout_sih;
187 1.36 ad
188 1.36 ad static inline kmutex_t *
189 1.36 ad callout_lock(callout_impl_t *c)
190 1.36 ad {
191 1.36 ad kmutex_t *lock;
192 1.36 ad
193 1.36 ad for (;;) {
194 1.36 ad lock = &c->c_cpu->cc_lock;
195 1.36 ad mutex_spin_enter(lock);
196 1.36 ad if (__predict_true(lock == &c->c_cpu->cc_lock))
197 1.36 ad return lock;
198 1.36 ad mutex_spin_exit(lock);
199 1.36 ad }
200 1.36 ad }
201 1.5 thorpej
202 1.1 thorpej /*
203 1.1 thorpej * callout_startup:
204 1.1 thorpej *
205 1.1 thorpej * Initialize the callout facility, called at system startup time.
206 1.36 ad * Do just enough to allow callouts to be safely registered.
207 1.1 thorpej */
208 1.1 thorpej void
209 1.1 thorpej callout_startup(void)
210 1.1 thorpej {
211 1.36 ad struct callout_cpu *cc;
212 1.1 thorpej int b;
213 1.1 thorpej
214 1.36 ad KASSERT(curcpu()->ci_data.cpu_callout == NULL);
215 1.22 ad
216 1.36 ad cc = &callout_cpu0;
217 1.36 ad mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
218 1.36 ad CIRCQ_INIT(&cc->cc_todo);
219 1.1 thorpej for (b = 0; b < BUCKETS; b++)
220 1.36 ad CIRCQ_INIT(&cc->cc_wheel[b]);
221 1.36 ad curcpu()->ci_data.cpu_callout = cc;
222 1.22 ad }
223 1.22 ad
224 1.22 ad /*
225 1.36 ad * callout_init_cpu:
226 1.22 ad *
227 1.36 ad * Per-CPU initialization.
228 1.22 ad */
229 1.22 ad void
230 1.36 ad callout_init_cpu(struct cpu_info *ci)
231 1.22 ad {
232 1.36 ad struct callout_cpu *cc;
233 1.36 ad int b;
234 1.22 ad
235 1.36 ad KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
236 1.36 ad
237 1.36 ad if ((cc = ci->ci_data.cpu_callout) == NULL) {
238 1.36 ad cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
239 1.36 ad if (cc == NULL)
240 1.36 ad panic("callout_init_cpu (1)");
241 1.36 ad mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
242 1.36 ad CIRCQ_INIT(&cc->cc_todo);
243 1.36 ad for (b = 0; b < BUCKETS; b++)
244 1.36 ad CIRCQ_INIT(&cc->cc_wheel[b]);
245 1.36 ad } else {
246 1.36 ad /* Boot CPU, one time only. */
247 1.36 ad callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
248 1.36 ad callout_softclock, NULL);
249 1.36 ad if (callout_sih == NULL)
250 1.36 ad panic("callout_init_cpu (2)");
251 1.36 ad }
252 1.36 ad
253 1.40 ad sleepq_init(&cc->cc_sleepq);
254 1.36 ad
255 1.36 ad snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
256 1.36 ad cpu_index(ci));
257 1.36 ad evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
258 1.36 ad NULL, "callout", cc->cc_name1);
259 1.36 ad
260 1.36 ad snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
261 1.36 ad cpu_index(ci));
262 1.36 ad evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
263 1.36 ad NULL, "callout", cc->cc_name2);
264 1.36 ad
265 1.36 ad ci->ci_data.cpu_callout = cc;
266 1.1 thorpej }
267 1.1 thorpej
268 1.1 thorpej /*
269 1.1 thorpej * callout_init:
270 1.1 thorpej *
271 1.36 ad * Initialize a callout structure. This must be quick, so we fill
272 1.36 ad * only the minimum number of fields.
273 1.1 thorpej */
274 1.1 thorpej void
275 1.22 ad callout_init(callout_t *cs, u_int flags)
276 1.1 thorpej {
277 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
278 1.36 ad struct callout_cpu *cc;
279 1.22 ad
280 1.22 ad KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
281 1.1 thorpej
282 1.36 ad cc = curcpu()->ci_data.cpu_callout;
283 1.36 ad c->c_func = NULL;
284 1.22 ad c->c_magic = CALLOUT_MAGIC;
285 1.36 ad if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
286 1.36 ad c->c_flags = flags;
287 1.36 ad c->c_cpu = cc;
288 1.36 ad return;
289 1.36 ad }
290 1.36 ad c->c_flags = flags | CALLOUT_BOUND;
291 1.36 ad c->c_cpu = &callout_cpu0;
292 1.22 ad }
293 1.22 ad
294 1.22 ad /*
295 1.22 ad * callout_destroy:
296 1.22 ad *
297 1.22 ad * Destroy a callout structure. The callout must be stopped.
298 1.22 ad */
299 1.22 ad void
300 1.22 ad callout_destroy(callout_t *cs)
301 1.22 ad {
302 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
303 1.22 ad
304 1.22 ad /*
305 1.22 ad * It's not necessary to lock in order to see the correct value
306 1.22 ad * of c->c_flags. If the callout could potentially have been
307 1.22 ad * running, the current thread should have stopped it.
308 1.22 ad */
309 1.22 ad KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
310 1.36 ad KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
311 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
312 1.22 ad c->c_magic = 0;
313 1.1 thorpej }
314 1.1 thorpej
315 1.1 thorpej /*
316 1.29 joerg * callout_schedule_locked:
317 1.1 thorpej *
318 1.29 joerg * Schedule a callout to run. The function and argument must
319 1.29 joerg * already be set in the callout structure. Must be called with
320 1.29 joerg * callout_lock.
321 1.1 thorpej */
322 1.29 joerg static void
323 1.36 ad callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
324 1.1 thorpej {
325 1.36 ad struct callout_cpu *cc, *occ;
326 1.20 ad int old_time;
327 1.1 thorpej
328 1.1 thorpej KASSERT(to_ticks >= 0);
329 1.29 joerg KASSERT(c->c_func != NULL);
330 1.1 thorpej
331 1.1 thorpej /* Initialize the time here, it won't change. */
332 1.36 ad occ = c->c_cpu;
333 1.22 ad c->c_flags &= ~CALLOUT_FIRED;
334 1.1 thorpej
335 1.1 thorpej /*
336 1.1 thorpej * If this timeout is already scheduled and now is moved
337 1.36 ad * earlier, reschedule it now. Otherwise leave it in place
338 1.1 thorpej * and let it be rescheduled later.
339 1.1 thorpej */
340 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0) {
341 1.36 ad /* Leave on existing CPU. */
342 1.36 ad old_time = c->c_time;
343 1.36 ad c->c_time = to_ticks + occ->cc_ticks;
344 1.4 yamt if (c->c_time - old_time < 0) {
345 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
346 1.36 ad CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
347 1.1 thorpej }
348 1.36 ad mutex_spin_exit(lock);
349 1.36 ad return;
350 1.36 ad }
351 1.36 ad
352 1.36 ad cc = curcpu()->ci_data.cpu_callout;
353 1.36 ad if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
354 1.36 ad !mutex_tryenter(&cc->cc_lock)) {
355 1.36 ad /* Leave on existing CPU. */
356 1.36 ad c->c_time = to_ticks + occ->cc_ticks;
357 1.36 ad c->c_flags |= CALLOUT_PENDING;
358 1.36 ad CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
359 1.1 thorpej } else {
360 1.36 ad /* Move to this CPU. */
361 1.36 ad c->c_cpu = cc;
362 1.36 ad c->c_time = to_ticks + cc->cc_ticks;
363 1.1 thorpej c->c_flags |= CALLOUT_PENDING;
364 1.36 ad CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
365 1.36 ad mutex_spin_exit(&cc->cc_lock);
366 1.1 thorpej }
367 1.36 ad mutex_spin_exit(lock);
368 1.29 joerg }
369 1.29 joerg
370 1.29 joerg /*
371 1.29 joerg * callout_reset:
372 1.29 joerg *
373 1.29 joerg * Reset a callout structure with a new function and argument, and
374 1.29 joerg * schedule it to run.
375 1.29 joerg */
376 1.29 joerg void
377 1.29 joerg callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
378 1.29 joerg {
379 1.29 joerg callout_impl_t *c = (callout_impl_t *)cs;
380 1.36 ad kmutex_t *lock;
381 1.29 joerg
382 1.29 joerg KASSERT(c->c_magic == CALLOUT_MAGIC);
383 1.29 joerg
384 1.36 ad lock = callout_lock(c);
385 1.29 joerg c->c_func = func;
386 1.29 joerg c->c_arg = arg;
387 1.36 ad callout_schedule_locked(c, lock, to_ticks);
388 1.1 thorpej }
389 1.1 thorpej
390 1.1 thorpej /*
391 1.1 thorpej * callout_schedule:
392 1.1 thorpej *
393 1.1 thorpej * Schedule a callout to run. The function and argument must
394 1.1 thorpej * already be set in the callout structure.
395 1.1 thorpej */
396 1.1 thorpej void
397 1.22 ad callout_schedule(callout_t *cs, int to_ticks)
398 1.1 thorpej {
399 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
400 1.36 ad kmutex_t *lock;
401 1.1 thorpej
402 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
403 1.1 thorpej
404 1.36 ad lock = callout_lock(c);
405 1.36 ad callout_schedule_locked(c, lock, to_ticks);
406 1.1 thorpej }
407 1.1 thorpej
408 1.1 thorpej /*
409 1.1 thorpej * callout_stop:
410 1.1 thorpej *
411 1.36 ad * Try to cancel a pending callout. It may be too late: the callout
412 1.36 ad * could be running on another CPU. If called from interrupt context,
413 1.36 ad * the callout could already be in progress at a lower priority.
414 1.1 thorpej */
415 1.22 ad bool
416 1.22 ad callout_stop(callout_t *cs)
417 1.1 thorpej {
418 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
419 1.36 ad struct callout_cpu *cc;
420 1.36 ad kmutex_t *lock;
421 1.22 ad bool expired;
422 1.22 ad
423 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
424 1.1 thorpej
425 1.36 ad lock = callout_lock(c);
426 1.20 ad
427 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
428 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
429 1.32 ad expired = ((c->c_flags & CALLOUT_FIRED) != 0);
430 1.32 ad c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
431 1.32 ad
432 1.36 ad cc = c->c_cpu;
433 1.36 ad if (cc->cc_active == c) {
434 1.32 ad /*
435 1.32 ad * This is for non-MPSAFE callouts only. To synchronize
436 1.32 ad * effectively we must be called with kernel_lock held.
437 1.32 ad * It's also taken in callout_softclock.
438 1.32 ad */
439 1.36 ad cc->cc_cancel = c;
440 1.32 ad }
441 1.32 ad
442 1.36 ad mutex_spin_exit(lock);
443 1.32 ad
444 1.32 ad return expired;
445 1.32 ad }
446 1.32 ad
447 1.32 ad /*
448 1.32 ad * callout_halt:
449 1.32 ad *
450 1.32 ad * Cancel a pending callout. If in-flight, block until it completes.
451 1.36 ad * May not be called from a hard interrupt handler. If the callout
452 1.36 ad * can take locks, the caller of callout_halt() must not hold any of
453 1.37 ad * those locks, otherwise the two could deadlock. If 'interlock' is
454 1.37 ad * non-NULL and we must wait for the callout to complete, it will be
455 1.37 ad * released and re-acquired before returning.
456 1.32 ad */
457 1.32 ad bool
458 1.38 ad callout_halt(callout_t *cs, void *interlock)
459 1.32 ad {
460 1.32 ad callout_impl_t *c = (callout_impl_t *)cs;
461 1.36 ad struct callout_cpu *cc;
462 1.32 ad struct lwp *l;
463 1.37 ad kmutex_t *lock, *relock;
464 1.32 ad bool expired;
465 1.32 ad
466 1.32 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
467 1.32 ad KASSERT(!cpu_intr_p());
468 1.32 ad
469 1.36 ad lock = callout_lock(c);
470 1.37 ad relock = NULL;
471 1.1 thorpej
472 1.22 ad expired = ((c->c_flags & CALLOUT_FIRED) != 0);
473 1.32 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
474 1.32 ad CIRCQ_REMOVE(&c->c_list);
475 1.9 he c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
476 1.1 thorpej
477 1.32 ad l = curlwp;
478 1.36 ad for (;;) {
479 1.36 ad cc = c->c_cpu;
480 1.36 ad if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
481 1.36 ad break;
482 1.37 ad if (interlock != NULL) {
483 1.37 ad /*
484 1.37 ad * Avoid potential scheduler lock order problems by
485 1.37 ad * dropping the interlock without the callout lock
486 1.37 ad * held.
487 1.37 ad */
488 1.37 ad mutex_spin_exit(lock);
489 1.37 ad mutex_exit(interlock);
490 1.37 ad relock = interlock;
491 1.37 ad interlock = NULL;
492 1.37 ad } else {
493 1.37 ad /* XXX Better to do priority inheritance. */
494 1.37 ad KASSERT(l->l_wchan == NULL);
495 1.37 ad cc->cc_nwait++;
496 1.37 ad cc->cc_ev_block.ev_count++;
497 1.37 ad l->l_kpriority = true;
498 1.40 ad sleepq_enter(&cc->cc_sleepq, l, &cc->cc_lock);
499 1.37 ad sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
500 1.37 ad &sleep_syncobj);
501 1.37 ad sleepq_block(0, false);
502 1.37 ad }
503 1.36 ad lock = callout_lock(c);
504 1.32 ad }
505 1.32 ad
506 1.36 ad mutex_spin_exit(lock);
507 1.37 ad if (__predict_false(relock != NULL))
508 1.37 ad mutex_enter(relock);
509 1.22 ad
510 1.22 ad return expired;
511 1.22 ad }
512 1.22 ad
513 1.36 ad #ifdef notyet
514 1.36 ad /*
515 1.36 ad * callout_bind:
516 1.36 ad *
517 1.36 ad * Bind a callout so that it will only execute on one CPU.
518 1.36 ad * The callout must be stopped, and must be MPSAFE.
519 1.36 ad *
520 1.36 ad * XXX Disabled for now until it is decided how to handle
521 1.36 ad * offlined CPUs. We may want weak+strong binding.
522 1.36 ad */
523 1.36 ad void
524 1.36 ad callout_bind(callout_t *cs, struct cpu_info *ci)
525 1.36 ad {
526 1.36 ad callout_impl_t *c = (callout_impl_t *)cs;
527 1.36 ad struct callout_cpu *cc;
528 1.36 ad kmutex_t *lock;
529 1.36 ad
530 1.36 ad KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
531 1.36 ad KASSERT(c->c_cpu->cc_active != c);
532 1.36 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
533 1.36 ad KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
534 1.36 ad
535 1.36 ad lock = callout_lock(c);
536 1.36 ad cc = ci->ci_data.cpu_callout;
537 1.36 ad c->c_flags |= CALLOUT_BOUND;
538 1.36 ad if (c->c_cpu != cc) {
539 1.36 ad /*
540 1.36 ad * Assigning c_cpu effectively unlocks the callout
541 1.36 ad * structure, as we don't hold the new CPU's lock.
542 1.36 ad * Issue memory barrier to prevent accesses being
543 1.36 ad * reordered.
544 1.36 ad */
545 1.36 ad membar_exit();
546 1.36 ad c->c_cpu = cc;
547 1.36 ad }
548 1.36 ad mutex_spin_exit(lock);
549 1.36 ad }
550 1.36 ad #endif
551 1.36 ad
552 1.22 ad void
553 1.22 ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
554 1.22 ad {
555 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
556 1.36 ad kmutex_t *lock;
557 1.22 ad
558 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
559 1.22 ad
560 1.36 ad lock = callout_lock(c);
561 1.22 ad c->c_func = func;
562 1.22 ad c->c_arg = arg;
563 1.36 ad mutex_spin_exit(lock);
564 1.22 ad }
565 1.22 ad
566 1.22 ad bool
567 1.22 ad callout_expired(callout_t *cs)
568 1.22 ad {
569 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
570 1.36 ad kmutex_t *lock;
571 1.22 ad bool rv;
572 1.22 ad
573 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
574 1.22 ad
575 1.36 ad lock = callout_lock(c);
576 1.22 ad rv = ((c->c_flags & CALLOUT_FIRED) != 0);
577 1.36 ad mutex_spin_exit(lock);
578 1.22 ad
579 1.22 ad return rv;
580 1.22 ad }
581 1.22 ad
582 1.22 ad bool
583 1.22 ad callout_active(callout_t *cs)
584 1.22 ad {
585 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
586 1.36 ad kmutex_t *lock;
587 1.22 ad bool rv;
588 1.22 ad
589 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
590 1.22 ad
591 1.36 ad lock = callout_lock(c);
592 1.22 ad rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
593 1.36 ad mutex_spin_exit(lock);
594 1.22 ad
595 1.22 ad return rv;
596 1.22 ad }
597 1.22 ad
598 1.22 ad bool
599 1.22 ad callout_pending(callout_t *cs)
600 1.22 ad {
601 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
602 1.36 ad kmutex_t *lock;
603 1.22 ad bool rv;
604 1.22 ad
605 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
606 1.22 ad
607 1.36 ad lock = callout_lock(c);
608 1.22 ad rv = ((c->c_flags & CALLOUT_PENDING) != 0);
609 1.36 ad mutex_spin_exit(lock);
610 1.22 ad
611 1.22 ad return rv;
612 1.22 ad }
613 1.22 ad
614 1.22 ad bool
615 1.22 ad callout_invoking(callout_t *cs)
616 1.22 ad {
617 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
618 1.36 ad kmutex_t *lock;
619 1.22 ad bool rv;
620 1.22 ad
621 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
622 1.22 ad
623 1.36 ad lock = callout_lock(c);
624 1.22 ad rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
625 1.36 ad mutex_spin_exit(lock);
626 1.22 ad
627 1.22 ad return rv;
628 1.22 ad }
629 1.22 ad
630 1.22 ad void
631 1.22 ad callout_ack(callout_t *cs)
632 1.22 ad {
633 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
634 1.36 ad kmutex_t *lock;
635 1.22 ad
636 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
637 1.22 ad
638 1.36 ad lock = callout_lock(c);
639 1.22 ad c->c_flags &= ~CALLOUT_INVOKING;
640 1.36 ad mutex_spin_exit(lock);
641 1.1 thorpej }
642 1.1 thorpej
643 1.1 thorpej /*
644 1.36 ad * callout_hardclock:
645 1.36 ad *
646 1.36 ad * Called from hardclock() once every tick. We schedule a soft
647 1.36 ad * interrupt if there is work to be done.
648 1.1 thorpej */
649 1.22 ad void
650 1.1 thorpej callout_hardclock(void)
651 1.1 thorpej {
652 1.36 ad struct callout_cpu *cc;
653 1.36 ad int needsoftclock, ticks;
654 1.1 thorpej
655 1.36 ad cc = curcpu()->ci_data.cpu_callout;
656 1.36 ad mutex_spin_enter(&cc->cc_lock);
657 1.1 thorpej
658 1.36 ad ticks = ++cc->cc_ticks;
659 1.36 ad
660 1.36 ad MOVEBUCKET(cc, 0, ticks);
661 1.36 ad if (MASKWHEEL(0, ticks) == 0) {
662 1.36 ad MOVEBUCKET(cc, 1, ticks);
663 1.36 ad if (MASKWHEEL(1, ticks) == 0) {
664 1.36 ad MOVEBUCKET(cc, 2, ticks);
665 1.36 ad if (MASKWHEEL(2, ticks) == 0)
666 1.36 ad MOVEBUCKET(cc, 3, ticks);
667 1.1 thorpej }
668 1.1 thorpej }
669 1.1 thorpej
670 1.36 ad needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
671 1.36 ad mutex_spin_exit(&cc->cc_lock);
672 1.1 thorpej
673 1.22 ad if (needsoftclock)
674 1.36 ad softint_schedule(callout_sih);
675 1.1 thorpej }
676 1.1 thorpej
677 1.36 ad /*
678 1.36 ad * callout_softclock:
679 1.36 ad *
680 1.36 ad * Soft interrupt handler, scheduled above if there is work to
681 1.36 ad * be done. Callouts are made in soft interrupt context.
682 1.36 ad */
683 1.22 ad static void
684 1.22 ad callout_softclock(void *v)
685 1.1 thorpej {
686 1.22 ad callout_impl_t *c;
687 1.36 ad struct callout_cpu *cc;
688 1.1 thorpej void (*func)(void *);
689 1.1 thorpej void *arg;
690 1.36 ad int mpsafe, count, ticks, delta;
691 1.22 ad lwp_t *l;
692 1.1 thorpej
693 1.22 ad l = curlwp;
694 1.36 ad KASSERT(l->l_cpu == curcpu());
695 1.36 ad cc = l->l_cpu->ci_data.cpu_callout;
696 1.1 thorpej
697 1.36 ad mutex_spin_enter(&cc->cc_lock);
698 1.36 ad cc->cc_lwp = l;
699 1.36 ad while (!CIRCQ_EMPTY(&cc->cc_todo)) {
700 1.36 ad c = CIRCQ_FIRST(&cc->cc_todo);
701 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
702 1.22 ad KASSERT(c->c_func != NULL);
703 1.36 ad KASSERT(c->c_cpu == cc);
704 1.26 ad KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
705 1.26 ad KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
706 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
707 1.1 thorpej
708 1.1 thorpej /* If due run it, otherwise insert it into the right bucket. */
709 1.36 ad ticks = cc->cc_ticks;
710 1.36 ad delta = c->c_time - ticks;
711 1.36 ad if (delta > 0) {
712 1.36 ad CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
713 1.36 ad continue;
714 1.36 ad }
715 1.36 ad if (delta < 0)
716 1.36 ad cc->cc_ev_late.ev_count++;
717 1.36 ad
718 1.36 ad c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
719 1.36 ad mpsafe = (c->c_flags & CALLOUT_MPSAFE);
720 1.36 ad func = c->c_func;
721 1.36 ad arg = c->c_arg;
722 1.36 ad cc->cc_active = c;
723 1.36 ad
724 1.36 ad mutex_spin_exit(&cc->cc_lock);
725 1.36 ad if (!mpsafe) {
726 1.36 ad KERNEL_LOCK(1, NULL);
727 1.36 ad (*func)(arg);
728 1.36 ad KERNEL_UNLOCK_ONE(NULL);
729 1.36 ad } else
730 1.36 ad (*func)(arg);
731 1.36 ad mutex_spin_enter(&cc->cc_lock);
732 1.36 ad
733 1.36 ad /*
734 1.36 ad * We can't touch 'c' here because it might be
735 1.36 ad * freed already. If LWPs waiting for callout
736 1.36 ad * to complete, awaken them.
737 1.36 ad */
738 1.36 ad cc->cc_active = NULL;
739 1.36 ad if ((count = cc->cc_nwait) != 0) {
740 1.36 ad cc->cc_nwait = 0;
741 1.36 ad /* sleepq_wake() drops the lock. */
742 1.40 ad sleepq_wake(&cc->cc_sleepq, cc, count, &cc->cc_lock);
743 1.36 ad mutex_spin_enter(&cc->cc_lock);
744 1.1 thorpej }
745 1.1 thorpej }
746 1.36 ad cc->cc_lwp = NULL;
747 1.36 ad mutex_spin_exit(&cc->cc_lock);
748 1.1 thorpej }
749 1.1 thorpej
750 1.1 thorpej #ifdef DDB
751 1.1 thorpej static void
752 1.36 ad db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
753 1.1 thorpej {
754 1.22 ad callout_impl_t *c;
755 1.1 thorpej db_expr_t offset;
756 1.15 christos const char *name;
757 1.15 christos static char question[] = "?";
758 1.36 ad int b;
759 1.1 thorpej
760 1.11 scw if (CIRCQ_EMPTY(bucket))
761 1.11 scw return;
762 1.11 scw
763 1.11 scw for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
764 1.10 scw db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
765 1.10 scw &offset);
766 1.15 christos name = name ? name : question;
767 1.36 ad b = (bucket - cc->cc_wheel);
768 1.36 ad if (b < 0)
769 1.36 ad b = -WHEELSIZE;
770 1.36 ad db_printf("%9d %2d/%-4d %16lx %s\n",
771 1.36 ad c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
772 1.36 ad (u_long)c->c_arg, name);
773 1.11 scw if (CIRCQ_LAST(&c->c_list, bucket))
774 1.11 scw break;
775 1.1 thorpej }
776 1.1 thorpej }
777 1.1 thorpej
778 1.1 thorpej void
779 1.21 matt db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
780 1.1 thorpej {
781 1.36 ad CPU_INFO_ITERATOR cii;
782 1.36 ad struct callout_cpu *cc;
783 1.36 ad struct cpu_info *ci;
784 1.1 thorpej int b;
785 1.1 thorpej
786 1.1 thorpej db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
787 1.1 thorpej db_printf(" ticks wheel arg func\n");
788 1.1 thorpej
789 1.1 thorpej /*
790 1.1 thorpej * Don't lock the callwheel; all the other CPUs are paused
791 1.1 thorpej * anyhow, and we might be called in a circumstance where
792 1.1 thorpej * some other CPU was paused while holding the lock.
793 1.1 thorpej */
794 1.36 ad for (CPU_INFO_FOREACH(cii, ci)) {
795 1.36 ad cc = ci->ci_data.cpu_callout;
796 1.36 ad db_show_callout_bucket(cc, &cc->cc_todo);
797 1.36 ad }
798 1.36 ad for (b = 0; b < BUCKETS; b++) {
799 1.36 ad for (CPU_INFO_FOREACH(cii, ci)) {
800 1.36 ad cc = ci->ci_data.cpu_callout;
801 1.36 ad db_show_callout_bucket(cc, &cc->cc_wheel[b]);
802 1.36 ad }
803 1.36 ad }
804 1.1 thorpej }
805 1.1 thorpej #endif /* DDB */
806