Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.42
      1  1.42     rmind /*	$NetBSD: kern_timeout.c,v 1.42 2008/09/06 23:08:54 rmind Exp $	*/
      2   1.1   thorpej 
      3   1.1   thorpej /*-
      4  1.32        ad  * Copyright (c) 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.1   thorpej  * All rights reserved.
      6   1.1   thorpej  *
      7   1.1   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.22        ad  * by Jason R. Thorpe, and by Andrew Doran.
      9   1.1   thorpej  *
     10   1.1   thorpej  * Redistribution and use in source and binary forms, with or without
     11   1.1   thorpej  * modification, are permitted provided that the following conditions
     12   1.1   thorpej  * are met:
     13   1.1   thorpej  * 1. Redistributions of source code must retain the above copyright
     14   1.1   thorpej  *    notice, this list of conditions and the following disclaimer.
     15   1.1   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17   1.1   thorpej  *    documentation and/or other materials provided with the distribution.
     18   1.1   thorpej  *
     19   1.1   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1   thorpej  */
     31   1.1   thorpej 
     32   1.1   thorpej /*
     33   1.1   thorpej  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34   1.1   thorpej  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35  1.14     perry  * All rights reserved.
     36  1.14     perry  *
     37  1.14     perry  * Redistribution and use in source and binary forms, with or without
     38  1.14     perry  * modification, are permitted provided that the following conditions
     39  1.14     perry  * are met:
     40   1.1   thorpej  *
     41  1.14     perry  * 1. Redistributions of source code must retain the above copyright
     42  1.14     perry  *    notice, this list of conditions and the following disclaimer.
     43  1.14     perry  * 2. Redistributions in binary form must reproduce the above copyright
     44  1.14     perry  *    notice, this list of conditions and the following disclaimer in the
     45  1.14     perry  *    documentation and/or other materials provided with the distribution.
     46   1.1   thorpej  * 3. The name of the author may not be used to endorse or promote products
     47  1.14     perry  *    derived from this software without specific prior written permission.
     48   1.1   thorpej  *
     49   1.1   thorpej  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50   1.1   thorpej  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51   1.1   thorpej  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52   1.1   thorpej  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53   1.1   thorpej  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54   1.1   thorpej  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55   1.1   thorpej  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56   1.1   thorpej  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57   1.1   thorpej  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  1.14     perry  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59   1.1   thorpej  */
     60   1.7     lukem 
     61   1.7     lukem #include <sys/cdefs.h>
     62  1.42     rmind __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.42 2008/09/06 23:08:54 rmind Exp $");
     63   1.1   thorpej 
     64   1.1   thorpej /*
     65  1.22        ad  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  1.36        ad  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  1.36        ad  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  1.36        ad  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  1.36        ad  * a Timer Facility" by George Varghese and Tony Lauck.
     70  1.22        ad  *
     71  1.22        ad  * Some of the "math" in here is a bit tricky.  We have to beware of
     72  1.22        ad  * wrapping ints.
     73  1.22        ad  *
     74  1.22        ad  * We use the fact that any element added to the queue must be added with
     75  1.22        ad  * a positive time.  That means that any element `to' on the queue cannot
     76  1.22        ad  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77  1.22        ad  * be positive or negative so comparing it with anything is dangerous.
     78  1.22        ad  * The only way we can use the c->c_time value in any predictable way is
     79  1.22        ad  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  1.36        ad  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81  1.22        ad  * timeouts and 0 or negative for due timeouts.
     82   1.1   thorpej  */
     83   1.1   thorpej 
     84  1.24        ad #define	_CALLOUT_PRIVATE
     85  1.24        ad 
     86   1.1   thorpej #include <sys/param.h>
     87   1.1   thorpej #include <sys/systm.h>
     88   1.1   thorpej #include <sys/kernel.h>
     89   1.1   thorpej #include <sys/callout.h>
     90  1.20        ad #include <sys/mutex.h>
     91  1.22        ad #include <sys/proc.h>
     92  1.22        ad #include <sys/sleepq.h>
     93  1.22        ad #include <sys/syncobj.h>
     94  1.22        ad #include <sys/evcnt.h>
     95  1.27        ad #include <sys/intr.h>
     96  1.33        ad #include <sys/cpu.h>
     97  1.36        ad #include <sys/kmem.h>
     98   1.1   thorpej 
     99   1.1   thorpej #ifdef DDB
    100   1.1   thorpej #include <machine/db_machdep.h>
    101   1.1   thorpej #include <ddb/db_interface.h>
    102   1.1   thorpej #include <ddb/db_access.h>
    103   1.1   thorpej #include <ddb/db_sym.h>
    104   1.1   thorpej #include <ddb/db_output.h>
    105   1.1   thorpej #endif
    106   1.1   thorpej 
    107  1.22        ad #define BUCKETS		1024
    108  1.22        ad #define WHEELSIZE	256
    109  1.22        ad #define WHEELMASK	255
    110  1.22        ad #define WHEELBITS	8
    111  1.22        ad 
    112   1.1   thorpej #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    113   1.1   thorpej 
    114  1.36        ad #define BUCKET(cc, rel, abs)						\
    115   1.1   thorpej     (((rel) <= (1 << (2*WHEELBITS)))					\
    116   1.1   thorpej     	? ((rel) <= (1 << WHEELBITS))					\
    117  1.36        ad             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    118  1.36        ad             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    119   1.1   thorpej         : ((rel) <= (1 << (3*WHEELBITS)))				\
    120  1.36        ad             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    121  1.36        ad             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    122   1.1   thorpej 
    123  1.36        ad #define MOVEBUCKET(cc, wheel, time)					\
    124  1.36        ad     CIRCQ_APPEND(&(cc)->cc_todo,					\
    125  1.36        ad         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    126   1.1   thorpej 
    127   1.1   thorpej /*
    128   1.1   thorpej  * Circular queue definitions.
    129   1.1   thorpej  */
    130   1.1   thorpej 
    131  1.11       scw #define CIRCQ_INIT(list)						\
    132   1.1   thorpej do {									\
    133  1.11       scw         (list)->cq_next_l = (list);					\
    134  1.11       scw         (list)->cq_prev_l = (list);					\
    135   1.1   thorpej } while (/*CONSTCOND*/0)
    136   1.1   thorpej 
    137   1.1   thorpej #define CIRCQ_INSERT(elem, list)					\
    138   1.1   thorpej do {									\
    139  1.11       scw         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    140  1.11       scw         (elem)->cq_next_l = (list);					\
    141  1.11       scw         (list)->cq_prev_l->cq_next_l = (elem);				\
    142  1.11       scw         (list)->cq_prev_l = (elem);					\
    143   1.1   thorpej } while (/*CONSTCOND*/0)
    144   1.1   thorpej 
    145   1.1   thorpej #define CIRCQ_APPEND(fst, snd)						\
    146   1.1   thorpej do {									\
    147   1.1   thorpej         if (!CIRCQ_EMPTY(snd)) {					\
    148  1.11       scw                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    149  1.11       scw                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    150  1.11       scw                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    151  1.11       scw                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    152   1.1   thorpej                 CIRCQ_INIT(snd);					\
    153   1.1   thorpej         }								\
    154   1.1   thorpej } while (/*CONSTCOND*/0)
    155   1.1   thorpej 
    156   1.1   thorpej #define CIRCQ_REMOVE(elem)						\
    157   1.1   thorpej do {									\
    158  1.11       scw         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    159  1.11       scw         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    160   1.1   thorpej } while (/*CONSTCOND*/0)
    161   1.1   thorpej 
    162  1.11       scw #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    163  1.11       scw #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    164  1.11       scw #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    165  1.11       scw #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    166   1.1   thorpej 
    167  1.22        ad static void	callout_softclock(void *);
    168  1.22        ad 
    169  1.36        ad struct callout_cpu {
    170  1.36        ad 	kmutex_t	cc_lock;
    171  1.36        ad 	sleepq_t	cc_sleepq;
    172  1.36        ad 	u_int		cc_nwait;
    173  1.36        ad 	u_int		cc_ticks;
    174  1.36        ad 	lwp_t		*cc_lwp;
    175  1.36        ad 	callout_impl_t	*cc_active;
    176  1.36        ad 	callout_impl_t	*cc_cancel;
    177  1.36        ad 	struct evcnt	cc_ev_late;
    178  1.36        ad 	struct evcnt	cc_ev_block;
    179  1.36        ad 	struct callout_circq cc_todo;		/* Worklist */
    180  1.36        ad 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    181  1.36        ad 	char		cc_name1[12];
    182  1.36        ad 	char		cc_name2[12];
    183  1.36        ad };
    184  1.36        ad 
    185  1.36        ad static struct callout_cpu callout_cpu0;
    186  1.36        ad static void *callout_sih;
    187  1.36        ad 
    188  1.36        ad static inline kmutex_t *
    189  1.36        ad callout_lock(callout_impl_t *c)
    190  1.36        ad {
    191  1.36        ad 	kmutex_t *lock;
    192  1.36        ad 
    193  1.36        ad 	for (;;) {
    194  1.36        ad 		lock = &c->c_cpu->cc_lock;
    195  1.36        ad 		mutex_spin_enter(lock);
    196  1.36        ad 		if (__predict_true(lock == &c->c_cpu->cc_lock))
    197  1.36        ad 			return lock;
    198  1.36        ad 		mutex_spin_exit(lock);
    199  1.36        ad 	}
    200  1.36        ad }
    201   1.5   thorpej 
    202   1.1   thorpej /*
    203   1.1   thorpej  * callout_startup:
    204   1.1   thorpej  *
    205   1.1   thorpej  *	Initialize the callout facility, called at system startup time.
    206  1.36        ad  *	Do just enough to allow callouts to be safely registered.
    207   1.1   thorpej  */
    208   1.1   thorpej void
    209   1.1   thorpej callout_startup(void)
    210   1.1   thorpej {
    211  1.36        ad 	struct callout_cpu *cc;
    212   1.1   thorpej 	int b;
    213   1.1   thorpej 
    214  1.36        ad 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    215  1.22        ad 
    216  1.36        ad 	cc = &callout_cpu0;
    217  1.36        ad 	mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
    218  1.36        ad 	CIRCQ_INIT(&cc->cc_todo);
    219   1.1   thorpej 	for (b = 0; b < BUCKETS; b++)
    220  1.36        ad 		CIRCQ_INIT(&cc->cc_wheel[b]);
    221  1.36        ad 	curcpu()->ci_data.cpu_callout = cc;
    222  1.22        ad }
    223  1.22        ad 
    224  1.22        ad /*
    225  1.36        ad  * callout_init_cpu:
    226  1.22        ad  *
    227  1.36        ad  *	Per-CPU initialization.
    228  1.22        ad  */
    229  1.22        ad void
    230  1.36        ad callout_init_cpu(struct cpu_info *ci)
    231  1.22        ad {
    232  1.36        ad 	struct callout_cpu *cc;
    233  1.36        ad 	int b;
    234  1.22        ad 
    235  1.41      matt 	CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    236  1.36        ad 
    237  1.36        ad 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    238  1.36        ad 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    239  1.36        ad 		if (cc == NULL)
    240  1.36        ad 			panic("callout_init_cpu (1)");
    241  1.36        ad 		mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
    242  1.36        ad 		CIRCQ_INIT(&cc->cc_todo);
    243  1.36        ad 		for (b = 0; b < BUCKETS; b++)
    244  1.36        ad 			CIRCQ_INIT(&cc->cc_wheel[b]);
    245  1.36        ad 	} else {
    246  1.36        ad 		/* Boot CPU, one time only. */
    247  1.36        ad 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    248  1.36        ad 		    callout_softclock, NULL);
    249  1.36        ad 		if (callout_sih == NULL)
    250  1.36        ad 			panic("callout_init_cpu (2)");
    251  1.36        ad 	}
    252  1.36        ad 
    253  1.40        ad 	sleepq_init(&cc->cc_sleepq);
    254  1.36        ad 
    255  1.36        ad 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    256  1.36        ad 	    cpu_index(ci));
    257  1.36        ad 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    258  1.36        ad 	    NULL, "callout", cc->cc_name1);
    259  1.36        ad 
    260  1.36        ad 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    261  1.36        ad 	    cpu_index(ci));
    262  1.36        ad 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    263  1.36        ad 	    NULL, "callout", cc->cc_name2);
    264  1.36        ad 
    265  1.36        ad 	ci->ci_data.cpu_callout = cc;
    266   1.1   thorpej }
    267   1.1   thorpej 
    268   1.1   thorpej /*
    269   1.1   thorpej  * callout_init:
    270   1.1   thorpej  *
    271  1.36        ad  *	Initialize a callout structure.  This must be quick, so we fill
    272  1.36        ad  *	only the minimum number of fields.
    273   1.1   thorpej  */
    274   1.1   thorpej void
    275  1.22        ad callout_init(callout_t *cs, u_int flags)
    276   1.1   thorpej {
    277  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    278  1.36        ad 	struct callout_cpu *cc;
    279  1.22        ad 
    280  1.22        ad 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    281   1.1   thorpej 
    282  1.36        ad 	cc = curcpu()->ci_data.cpu_callout;
    283  1.36        ad 	c->c_func = NULL;
    284  1.22        ad 	c->c_magic = CALLOUT_MAGIC;
    285  1.36        ad 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    286  1.36        ad 		c->c_flags = flags;
    287  1.36        ad 		c->c_cpu = cc;
    288  1.36        ad 		return;
    289  1.36        ad 	}
    290  1.36        ad 	c->c_flags = flags | CALLOUT_BOUND;
    291  1.36        ad 	c->c_cpu = &callout_cpu0;
    292  1.22        ad }
    293  1.22        ad 
    294  1.22        ad /*
    295  1.22        ad  * callout_destroy:
    296  1.22        ad  *
    297  1.22        ad  *	Destroy a callout structure.  The callout must be stopped.
    298  1.22        ad  */
    299  1.22        ad void
    300  1.22        ad callout_destroy(callout_t *cs)
    301  1.22        ad {
    302  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    303  1.22        ad 
    304  1.22        ad 	/*
    305  1.22        ad 	 * It's not necessary to lock in order to see the correct value
    306  1.22        ad 	 * of c->c_flags.  If the callout could potentially have been
    307  1.22        ad 	 * running, the current thread should have stopped it.
    308  1.22        ad 	 */
    309  1.22        ad 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    310  1.36        ad 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
    311  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    312  1.22        ad 	c->c_magic = 0;
    313   1.1   thorpej }
    314   1.1   thorpej 
    315   1.1   thorpej /*
    316  1.29     joerg  * callout_schedule_locked:
    317   1.1   thorpej  *
    318  1.29     joerg  *	Schedule a callout to run.  The function and argument must
    319  1.29     joerg  *	already be set in the callout structure.  Must be called with
    320  1.29     joerg  *	callout_lock.
    321   1.1   thorpej  */
    322  1.29     joerg static void
    323  1.36        ad callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    324   1.1   thorpej {
    325  1.36        ad 	struct callout_cpu *cc, *occ;
    326  1.20        ad 	int old_time;
    327   1.1   thorpej 
    328   1.1   thorpej 	KASSERT(to_ticks >= 0);
    329  1.29     joerg 	KASSERT(c->c_func != NULL);
    330   1.1   thorpej 
    331   1.1   thorpej 	/* Initialize the time here, it won't change. */
    332  1.36        ad 	occ = c->c_cpu;
    333  1.22        ad 	c->c_flags &= ~CALLOUT_FIRED;
    334   1.1   thorpej 
    335   1.1   thorpej 	/*
    336   1.1   thorpej 	 * If this timeout is already scheduled and now is moved
    337  1.36        ad 	 * earlier, reschedule it now.  Otherwise leave it in place
    338   1.1   thorpej 	 * and let it be rescheduled later.
    339   1.1   thorpej 	 */
    340  1.22        ad 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    341  1.36        ad 		/* Leave on existing CPU. */
    342  1.36        ad 		old_time = c->c_time;
    343  1.36        ad 		c->c_time = to_ticks + occ->cc_ticks;
    344   1.4      yamt 		if (c->c_time - old_time < 0) {
    345   1.1   thorpej 			CIRCQ_REMOVE(&c->c_list);
    346  1.36        ad 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    347   1.1   thorpej 		}
    348  1.36        ad 		mutex_spin_exit(lock);
    349  1.36        ad 		return;
    350  1.36        ad 	}
    351  1.36        ad 
    352  1.36        ad 	cc = curcpu()->ci_data.cpu_callout;
    353  1.36        ad 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    354  1.36        ad 	    !mutex_tryenter(&cc->cc_lock)) {
    355  1.36        ad 		/* Leave on existing CPU. */
    356  1.36        ad 		c->c_time = to_ticks + occ->cc_ticks;
    357  1.36        ad 		c->c_flags |= CALLOUT_PENDING;
    358  1.36        ad 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    359   1.1   thorpej 	} else {
    360  1.36        ad 		/* Move to this CPU. */
    361  1.36        ad 		c->c_cpu = cc;
    362  1.36        ad 		c->c_time = to_ticks + cc->cc_ticks;
    363   1.1   thorpej 		c->c_flags |= CALLOUT_PENDING;
    364  1.36        ad 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    365  1.36        ad 		mutex_spin_exit(&cc->cc_lock);
    366   1.1   thorpej 	}
    367  1.36        ad 	mutex_spin_exit(lock);
    368  1.29     joerg }
    369  1.29     joerg 
    370  1.29     joerg /*
    371  1.29     joerg  * callout_reset:
    372  1.29     joerg  *
    373  1.29     joerg  *	Reset a callout structure with a new function and argument, and
    374  1.29     joerg  *	schedule it to run.
    375  1.29     joerg  */
    376  1.29     joerg void
    377  1.29     joerg callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    378  1.29     joerg {
    379  1.29     joerg 	callout_impl_t *c = (callout_impl_t *)cs;
    380  1.36        ad 	kmutex_t *lock;
    381  1.29     joerg 
    382  1.29     joerg 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    383  1.42     rmind 	KASSERT(func != NULL);
    384  1.29     joerg 
    385  1.36        ad 	lock = callout_lock(c);
    386  1.29     joerg 	c->c_func = func;
    387  1.29     joerg 	c->c_arg = arg;
    388  1.36        ad 	callout_schedule_locked(c, lock, to_ticks);
    389   1.1   thorpej }
    390   1.1   thorpej 
    391   1.1   thorpej /*
    392   1.1   thorpej  * callout_schedule:
    393   1.1   thorpej  *
    394   1.1   thorpej  *	Schedule a callout to run.  The function and argument must
    395   1.1   thorpej  *	already be set in the callout structure.
    396   1.1   thorpej  */
    397   1.1   thorpej void
    398  1.22        ad callout_schedule(callout_t *cs, int to_ticks)
    399   1.1   thorpej {
    400  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    401  1.36        ad 	kmutex_t *lock;
    402   1.1   thorpej 
    403  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    404   1.1   thorpej 
    405  1.36        ad 	lock = callout_lock(c);
    406  1.36        ad 	callout_schedule_locked(c, lock, to_ticks);
    407   1.1   thorpej }
    408   1.1   thorpej 
    409   1.1   thorpej /*
    410   1.1   thorpej  * callout_stop:
    411   1.1   thorpej  *
    412  1.36        ad  *	Try to cancel a pending callout.  It may be too late: the callout
    413  1.36        ad  *	could be running on another CPU.  If called from interrupt context,
    414  1.36        ad  *	the callout could already be in progress at a lower priority.
    415   1.1   thorpej  */
    416  1.22        ad bool
    417  1.22        ad callout_stop(callout_t *cs)
    418   1.1   thorpej {
    419  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    420  1.36        ad 	struct callout_cpu *cc;
    421  1.36        ad 	kmutex_t *lock;
    422  1.22        ad 	bool expired;
    423  1.22        ad 
    424  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    425   1.1   thorpej 
    426  1.36        ad 	lock = callout_lock(c);
    427  1.20        ad 
    428  1.22        ad 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    429   1.1   thorpej 		CIRCQ_REMOVE(&c->c_list);
    430  1.32        ad 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    431  1.32        ad 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    432  1.32        ad 
    433  1.36        ad 	cc = c->c_cpu;
    434  1.36        ad 	if (cc->cc_active == c) {
    435  1.32        ad 		/*
    436  1.32        ad 		 * This is for non-MPSAFE callouts only.  To synchronize
    437  1.32        ad 		 * effectively we must be called with kernel_lock held.
    438  1.32        ad 		 * It's also taken in callout_softclock.
    439  1.32        ad 		 */
    440  1.36        ad 		cc->cc_cancel = c;
    441  1.32        ad 	}
    442  1.32        ad 
    443  1.36        ad 	mutex_spin_exit(lock);
    444  1.32        ad 
    445  1.32        ad 	return expired;
    446  1.32        ad }
    447  1.32        ad 
    448  1.32        ad /*
    449  1.32        ad  * callout_halt:
    450  1.32        ad  *
    451  1.32        ad  *	Cancel a pending callout.  If in-flight, block until it completes.
    452  1.36        ad  *	May not be called from a hard interrupt handler.  If the callout
    453  1.36        ad  * 	can take locks, the caller of callout_halt() must not hold any of
    454  1.37        ad  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    455  1.37        ad  *	non-NULL and we must wait for the callout to complete, it will be
    456  1.37        ad  *	released and re-acquired before returning.
    457  1.32        ad  */
    458  1.32        ad bool
    459  1.38        ad callout_halt(callout_t *cs, void *interlock)
    460  1.32        ad {
    461  1.32        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    462  1.36        ad 	struct callout_cpu *cc;
    463  1.32        ad 	struct lwp *l;
    464  1.37        ad 	kmutex_t *lock, *relock;
    465  1.32        ad 	bool expired;
    466  1.32        ad 
    467  1.32        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    468  1.32        ad 	KASSERT(!cpu_intr_p());
    469  1.32        ad 
    470  1.36        ad 	lock = callout_lock(c);
    471  1.37        ad 	relock = NULL;
    472   1.1   thorpej 
    473  1.22        ad 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    474  1.32        ad 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    475  1.32        ad 		CIRCQ_REMOVE(&c->c_list);
    476   1.9        he 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    477   1.1   thorpej 
    478  1.32        ad 	l = curlwp;
    479  1.36        ad 	for (;;) {
    480  1.36        ad 		cc = c->c_cpu;
    481  1.36        ad 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    482  1.36        ad 			break;
    483  1.37        ad 		if (interlock != NULL) {
    484  1.37        ad 			/*
    485  1.37        ad 			 * Avoid potential scheduler lock order problems by
    486  1.37        ad 			 * dropping the interlock without the callout lock
    487  1.37        ad 			 * held.
    488  1.37        ad 			 */
    489  1.37        ad 			mutex_spin_exit(lock);
    490  1.37        ad 			mutex_exit(interlock);
    491  1.37        ad 			relock = interlock;
    492  1.37        ad 			interlock = NULL;
    493  1.37        ad 		} else {
    494  1.37        ad 			/* XXX Better to do priority inheritance. */
    495  1.37        ad 			KASSERT(l->l_wchan == NULL);
    496  1.37        ad 			cc->cc_nwait++;
    497  1.37        ad 			cc->cc_ev_block.ev_count++;
    498  1.37        ad 			l->l_kpriority = true;
    499  1.40        ad 			sleepq_enter(&cc->cc_sleepq, l, &cc->cc_lock);
    500  1.37        ad 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    501  1.37        ad 			    &sleep_syncobj);
    502  1.37        ad 			sleepq_block(0, false);
    503  1.37        ad 		}
    504  1.36        ad 		lock = callout_lock(c);
    505  1.32        ad 	}
    506  1.32        ad 
    507  1.36        ad 	mutex_spin_exit(lock);
    508  1.37        ad 	if (__predict_false(relock != NULL))
    509  1.37        ad 		mutex_enter(relock);
    510  1.22        ad 
    511  1.22        ad 	return expired;
    512  1.22        ad }
    513  1.22        ad 
    514  1.36        ad #ifdef notyet
    515  1.36        ad /*
    516  1.36        ad  * callout_bind:
    517  1.36        ad  *
    518  1.36        ad  *	Bind a callout so that it will only execute on one CPU.
    519  1.36        ad  *	The callout must be stopped, and must be MPSAFE.
    520  1.36        ad  *
    521  1.36        ad  *	XXX Disabled for now until it is decided how to handle
    522  1.36        ad  *	offlined CPUs.  We may want weak+strong binding.
    523  1.36        ad  */
    524  1.36        ad void
    525  1.36        ad callout_bind(callout_t *cs, struct cpu_info *ci)
    526  1.36        ad {
    527  1.36        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    528  1.36        ad 	struct callout_cpu *cc;
    529  1.36        ad 	kmutex_t *lock;
    530  1.36        ad 
    531  1.36        ad 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    532  1.36        ad 	KASSERT(c->c_cpu->cc_active != c);
    533  1.36        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    534  1.36        ad 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    535  1.36        ad 
    536  1.36        ad 	lock = callout_lock(c);
    537  1.36        ad 	cc = ci->ci_data.cpu_callout;
    538  1.36        ad 	c->c_flags |= CALLOUT_BOUND;
    539  1.36        ad 	if (c->c_cpu != cc) {
    540  1.36        ad 		/*
    541  1.36        ad 		 * Assigning c_cpu effectively unlocks the callout
    542  1.36        ad 		 * structure, as we don't hold the new CPU's lock.
    543  1.36        ad 		 * Issue memory barrier to prevent accesses being
    544  1.36        ad 		 * reordered.
    545  1.36        ad 		 */
    546  1.36        ad 		membar_exit();
    547  1.36        ad 		c->c_cpu = cc;
    548  1.36        ad 	}
    549  1.36        ad 	mutex_spin_exit(lock);
    550  1.36        ad }
    551  1.36        ad #endif
    552  1.36        ad 
    553  1.22        ad void
    554  1.22        ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    555  1.22        ad {
    556  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    557  1.36        ad 	kmutex_t *lock;
    558  1.22        ad 
    559  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    560  1.42     rmind 	KASSERT(func != NULL);
    561  1.22        ad 
    562  1.36        ad 	lock = callout_lock(c);
    563  1.22        ad 	c->c_func = func;
    564  1.22        ad 	c->c_arg = arg;
    565  1.36        ad 	mutex_spin_exit(lock);
    566  1.22        ad }
    567  1.22        ad 
    568  1.22        ad bool
    569  1.22        ad callout_expired(callout_t *cs)
    570  1.22        ad {
    571  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    572  1.36        ad 	kmutex_t *lock;
    573  1.22        ad 	bool rv;
    574  1.22        ad 
    575  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    576  1.22        ad 
    577  1.36        ad 	lock = callout_lock(c);
    578  1.22        ad 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    579  1.36        ad 	mutex_spin_exit(lock);
    580  1.22        ad 
    581  1.22        ad 	return rv;
    582  1.22        ad }
    583  1.22        ad 
    584  1.22        ad bool
    585  1.22        ad callout_active(callout_t *cs)
    586  1.22        ad {
    587  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    588  1.36        ad 	kmutex_t *lock;
    589  1.22        ad 	bool rv;
    590  1.22        ad 
    591  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    592  1.22        ad 
    593  1.36        ad 	lock = callout_lock(c);
    594  1.22        ad 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    595  1.36        ad 	mutex_spin_exit(lock);
    596  1.22        ad 
    597  1.22        ad 	return rv;
    598  1.22        ad }
    599  1.22        ad 
    600  1.22        ad bool
    601  1.22        ad callout_pending(callout_t *cs)
    602  1.22        ad {
    603  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    604  1.36        ad 	kmutex_t *lock;
    605  1.22        ad 	bool rv;
    606  1.22        ad 
    607  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    608  1.22        ad 
    609  1.36        ad 	lock = callout_lock(c);
    610  1.22        ad 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    611  1.36        ad 	mutex_spin_exit(lock);
    612  1.22        ad 
    613  1.22        ad 	return rv;
    614  1.22        ad }
    615  1.22        ad 
    616  1.22        ad bool
    617  1.22        ad callout_invoking(callout_t *cs)
    618  1.22        ad {
    619  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    620  1.36        ad 	kmutex_t *lock;
    621  1.22        ad 	bool rv;
    622  1.22        ad 
    623  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    624  1.22        ad 
    625  1.36        ad 	lock = callout_lock(c);
    626  1.22        ad 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    627  1.36        ad 	mutex_spin_exit(lock);
    628  1.22        ad 
    629  1.22        ad 	return rv;
    630  1.22        ad }
    631  1.22        ad 
    632  1.22        ad void
    633  1.22        ad callout_ack(callout_t *cs)
    634  1.22        ad {
    635  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    636  1.36        ad 	kmutex_t *lock;
    637  1.22        ad 
    638  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    639  1.22        ad 
    640  1.36        ad 	lock = callout_lock(c);
    641  1.22        ad 	c->c_flags &= ~CALLOUT_INVOKING;
    642  1.36        ad 	mutex_spin_exit(lock);
    643   1.1   thorpej }
    644   1.1   thorpej 
    645   1.1   thorpej /*
    646  1.36        ad  * callout_hardclock:
    647  1.36        ad  *
    648  1.36        ad  *	Called from hardclock() once every tick.  We schedule a soft
    649  1.36        ad  *	interrupt if there is work to be done.
    650   1.1   thorpej  */
    651  1.22        ad void
    652   1.1   thorpej callout_hardclock(void)
    653   1.1   thorpej {
    654  1.36        ad 	struct callout_cpu *cc;
    655  1.36        ad 	int needsoftclock, ticks;
    656   1.1   thorpej 
    657  1.36        ad 	cc = curcpu()->ci_data.cpu_callout;
    658  1.36        ad 	mutex_spin_enter(&cc->cc_lock);
    659   1.1   thorpej 
    660  1.36        ad 	ticks = ++cc->cc_ticks;
    661  1.36        ad 
    662  1.36        ad 	MOVEBUCKET(cc, 0, ticks);
    663  1.36        ad 	if (MASKWHEEL(0, ticks) == 0) {
    664  1.36        ad 		MOVEBUCKET(cc, 1, ticks);
    665  1.36        ad 		if (MASKWHEEL(1, ticks) == 0) {
    666  1.36        ad 			MOVEBUCKET(cc, 2, ticks);
    667  1.36        ad 			if (MASKWHEEL(2, ticks) == 0)
    668  1.36        ad 				MOVEBUCKET(cc, 3, ticks);
    669   1.1   thorpej 		}
    670   1.1   thorpej 	}
    671   1.1   thorpej 
    672  1.36        ad 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    673  1.36        ad 	mutex_spin_exit(&cc->cc_lock);
    674   1.1   thorpej 
    675  1.22        ad 	if (needsoftclock)
    676  1.36        ad 		softint_schedule(callout_sih);
    677   1.1   thorpej }
    678   1.1   thorpej 
    679  1.36        ad /*
    680  1.36        ad  * callout_softclock:
    681  1.36        ad  *
    682  1.36        ad  *	Soft interrupt handler, scheduled above if there is work to
    683  1.36        ad  * 	be done.  Callouts are made in soft interrupt context.
    684  1.36        ad  */
    685  1.22        ad static void
    686  1.22        ad callout_softclock(void *v)
    687   1.1   thorpej {
    688  1.22        ad 	callout_impl_t *c;
    689  1.36        ad 	struct callout_cpu *cc;
    690   1.1   thorpej 	void (*func)(void *);
    691   1.1   thorpej 	void *arg;
    692  1.36        ad 	int mpsafe, count, ticks, delta;
    693  1.22        ad 	lwp_t *l;
    694   1.1   thorpej 
    695  1.22        ad 	l = curlwp;
    696  1.36        ad 	KASSERT(l->l_cpu == curcpu());
    697  1.36        ad 	cc = l->l_cpu->ci_data.cpu_callout;
    698   1.1   thorpej 
    699  1.36        ad 	mutex_spin_enter(&cc->cc_lock);
    700  1.36        ad 	cc->cc_lwp = l;
    701  1.36        ad 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    702  1.36        ad 		c = CIRCQ_FIRST(&cc->cc_todo);
    703  1.22        ad 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    704  1.22        ad 		KASSERT(c->c_func != NULL);
    705  1.36        ad 		KASSERT(c->c_cpu == cc);
    706  1.26        ad 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    707  1.26        ad 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    708   1.1   thorpej 		CIRCQ_REMOVE(&c->c_list);
    709   1.1   thorpej 
    710   1.1   thorpej 		/* If due run it, otherwise insert it into the right bucket. */
    711  1.36        ad 		ticks = cc->cc_ticks;
    712  1.36        ad 		delta = c->c_time - ticks;
    713  1.36        ad 		if (delta > 0) {
    714  1.36        ad 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    715  1.36        ad 			continue;
    716  1.36        ad 		}
    717  1.36        ad 		if (delta < 0)
    718  1.36        ad 			cc->cc_ev_late.ev_count++;
    719  1.36        ad 
    720  1.36        ad 		c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
    721  1.36        ad 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    722  1.36        ad 		func = c->c_func;
    723  1.36        ad 		arg = c->c_arg;
    724  1.36        ad 		cc->cc_active = c;
    725  1.36        ad 
    726  1.36        ad 		mutex_spin_exit(&cc->cc_lock);
    727  1.42     rmind 		KASSERT(func != NULL);
    728  1.36        ad 		if (!mpsafe) {
    729  1.36        ad 			KERNEL_LOCK(1, NULL);
    730  1.36        ad 			(*func)(arg);
    731  1.36        ad 			KERNEL_UNLOCK_ONE(NULL);
    732  1.36        ad 		} else
    733  1.36        ad 			(*func)(arg);
    734  1.36        ad 		mutex_spin_enter(&cc->cc_lock);
    735  1.36        ad 
    736  1.36        ad 		/*
    737  1.36        ad 		 * We can't touch 'c' here because it might be
    738  1.36        ad 		 * freed already.  If LWPs waiting for callout
    739  1.36        ad 		 * to complete, awaken them.
    740  1.36        ad 		 */
    741  1.36        ad 		cc->cc_active = NULL;
    742  1.36        ad 		if ((count = cc->cc_nwait) != 0) {
    743  1.36        ad 			cc->cc_nwait = 0;
    744  1.36        ad 			/* sleepq_wake() drops the lock. */
    745  1.40        ad 			sleepq_wake(&cc->cc_sleepq, cc, count, &cc->cc_lock);
    746  1.36        ad 			mutex_spin_enter(&cc->cc_lock);
    747   1.1   thorpej 		}
    748   1.1   thorpej 	}
    749  1.36        ad 	cc->cc_lwp = NULL;
    750  1.36        ad 	mutex_spin_exit(&cc->cc_lock);
    751   1.1   thorpej }
    752   1.1   thorpej 
    753   1.1   thorpej #ifdef DDB
    754   1.1   thorpej static void
    755  1.36        ad db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
    756   1.1   thorpej {
    757  1.22        ad 	callout_impl_t *c;
    758   1.1   thorpej 	db_expr_t offset;
    759  1.15  christos 	const char *name;
    760  1.15  christos 	static char question[] = "?";
    761  1.36        ad 	int b;
    762   1.1   thorpej 
    763  1.11       scw 	if (CIRCQ_EMPTY(bucket))
    764  1.11       scw 		return;
    765  1.11       scw 
    766  1.11       scw 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    767  1.10       scw 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    768  1.10       scw 		    &offset);
    769  1.15  christos 		name = name ? name : question;
    770  1.36        ad 		b = (bucket - cc->cc_wheel);
    771  1.36        ad 		if (b < 0)
    772  1.36        ad 			b = -WHEELSIZE;
    773  1.36        ad 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    774  1.36        ad 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    775  1.36        ad 		    (u_long)c->c_arg, name);
    776  1.11       scw 		if (CIRCQ_LAST(&c->c_list, bucket))
    777  1.11       scw 			break;
    778   1.1   thorpej 	}
    779   1.1   thorpej }
    780   1.1   thorpej 
    781   1.1   thorpej void
    782  1.21      matt db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    783   1.1   thorpej {
    784  1.36        ad 	CPU_INFO_ITERATOR cii;
    785  1.36        ad 	struct callout_cpu *cc;
    786  1.36        ad 	struct cpu_info *ci;
    787   1.1   thorpej 	int b;
    788   1.1   thorpej 
    789   1.1   thorpej 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
    790   1.1   thorpej 	db_printf("    ticks  wheel               arg  func\n");
    791   1.1   thorpej 
    792   1.1   thorpej 	/*
    793   1.1   thorpej 	 * Don't lock the callwheel; all the other CPUs are paused
    794   1.1   thorpej 	 * anyhow, and we might be called in a circumstance where
    795   1.1   thorpej 	 * some other CPU was paused while holding the lock.
    796   1.1   thorpej 	 */
    797  1.36        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    798  1.36        ad 		cc = ci->ci_data.cpu_callout;
    799  1.36        ad 		db_show_callout_bucket(cc, &cc->cc_todo);
    800  1.36        ad 	}
    801  1.36        ad 	for (b = 0; b < BUCKETS; b++) {
    802  1.36        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
    803  1.36        ad 			cc = ci->ci_data.cpu_callout;
    804  1.36        ad 			db_show_callout_bucket(cc, &cc->cc_wheel[b]);
    805  1.36        ad 		}
    806  1.36        ad 	}
    807   1.1   thorpej }
    808   1.1   thorpej #endif /* DDB */
    809