Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.45.18.2
      1  1.45.18.1       tls /*	$NetBSD: kern_timeout.c,v 1.45.18.2 2017/12/03 11:38:45 jdolecek Exp $	*/
      2        1.1   thorpej 
      3        1.1   thorpej /*-
      4       1.44        ad  * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5        1.1   thorpej  * All rights reserved.
      6        1.1   thorpej  *
      7        1.1   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.22        ad  * by Jason R. Thorpe, and by Andrew Doran.
      9        1.1   thorpej  *
     10        1.1   thorpej  * Redistribution and use in source and binary forms, with or without
     11        1.1   thorpej  * modification, are permitted provided that the following conditions
     12        1.1   thorpej  * are met:
     13        1.1   thorpej  * 1. Redistributions of source code must retain the above copyright
     14        1.1   thorpej  *    notice, this list of conditions and the following disclaimer.
     15        1.1   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17        1.1   thorpej  *    documentation and/or other materials provided with the distribution.
     18        1.1   thorpej  *
     19        1.1   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20        1.1   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21        1.1   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22        1.1   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23        1.1   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24        1.1   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25        1.1   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26        1.1   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27        1.1   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28        1.1   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29        1.1   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30        1.1   thorpej  */
     31        1.1   thorpej 
     32        1.1   thorpej /*
     33        1.1   thorpej  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34        1.1   thorpej  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35       1.14     perry  * All rights reserved.
     36       1.14     perry  *
     37       1.14     perry  * Redistribution and use in source and binary forms, with or without
     38       1.14     perry  * modification, are permitted provided that the following conditions
     39       1.14     perry  * are met:
     40        1.1   thorpej  *
     41       1.14     perry  * 1. Redistributions of source code must retain the above copyright
     42       1.14     perry  *    notice, this list of conditions and the following disclaimer.
     43       1.14     perry  * 2. Redistributions in binary form must reproduce the above copyright
     44       1.14     perry  *    notice, this list of conditions and the following disclaimer in the
     45       1.14     perry  *    documentation and/or other materials provided with the distribution.
     46        1.1   thorpej  * 3. The name of the author may not be used to endorse or promote products
     47       1.14     perry  *    derived from this software without specific prior written permission.
     48        1.1   thorpej  *
     49        1.1   thorpej  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50        1.1   thorpej  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51        1.1   thorpej  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52        1.1   thorpej  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53        1.1   thorpej  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54        1.1   thorpej  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55        1.1   thorpej  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56        1.1   thorpej  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57        1.1   thorpej  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58       1.14     perry  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59        1.1   thorpej  */
     60        1.7     lukem 
     61        1.7     lukem #include <sys/cdefs.h>
     62  1.45.18.1       tls __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.45.18.2 2017/12/03 11:38:45 jdolecek Exp $");
     63        1.1   thorpej 
     64        1.1   thorpej /*
     65       1.22        ad  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66       1.36        ad  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67       1.36        ad  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68       1.36        ad  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69       1.36        ad  * a Timer Facility" by George Varghese and Tony Lauck.
     70       1.22        ad  *
     71       1.22        ad  * Some of the "math" in here is a bit tricky.  We have to beware of
     72       1.22        ad  * wrapping ints.
     73       1.22        ad  *
     74       1.22        ad  * We use the fact that any element added to the queue must be added with
     75       1.22        ad  * a positive time.  That means that any element `to' on the queue cannot
     76       1.22        ad  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77       1.22        ad  * be positive or negative so comparing it with anything is dangerous.
     78       1.22        ad  * The only way we can use the c->c_time value in any predictable way is
     79       1.22        ad  * when we calculate how far in the future `to' will timeout - "c->c_time
     80       1.36        ad  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81       1.22        ad  * timeouts and 0 or negative for due timeouts.
     82        1.1   thorpej  */
     83        1.1   thorpej 
     84       1.24        ad #define	_CALLOUT_PRIVATE
     85       1.24        ad 
     86        1.1   thorpej #include <sys/param.h>
     87        1.1   thorpej #include <sys/systm.h>
     88        1.1   thorpej #include <sys/kernel.h>
     89        1.1   thorpej #include <sys/callout.h>
     90       1.45     rmind #include <sys/lwp.h>
     91       1.20        ad #include <sys/mutex.h>
     92       1.22        ad #include <sys/proc.h>
     93       1.22        ad #include <sys/sleepq.h>
     94       1.22        ad #include <sys/syncobj.h>
     95       1.22        ad #include <sys/evcnt.h>
     96       1.27        ad #include <sys/intr.h>
     97       1.33        ad #include <sys/cpu.h>
     98       1.36        ad #include <sys/kmem.h>
     99        1.1   thorpej 
    100        1.1   thorpej #ifdef DDB
    101        1.1   thorpej #include <machine/db_machdep.h>
    102        1.1   thorpej #include <ddb/db_interface.h>
    103        1.1   thorpej #include <ddb/db_access.h>
    104  1.45.18.2  jdolecek #include <ddb/db_cpu.h>
    105        1.1   thorpej #include <ddb/db_sym.h>
    106        1.1   thorpej #include <ddb/db_output.h>
    107        1.1   thorpej #endif
    108        1.1   thorpej 
    109       1.22        ad #define BUCKETS		1024
    110       1.22        ad #define WHEELSIZE	256
    111       1.22        ad #define WHEELMASK	255
    112       1.22        ad #define WHEELBITS	8
    113       1.22        ad 
    114        1.1   thorpej #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    115        1.1   thorpej 
    116       1.36        ad #define BUCKET(cc, rel, abs)						\
    117        1.1   thorpej     (((rel) <= (1 << (2*WHEELBITS)))					\
    118        1.1   thorpej     	? ((rel) <= (1 << WHEELBITS))					\
    119       1.36        ad             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    120       1.36        ad             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    121        1.1   thorpej         : ((rel) <= (1 << (3*WHEELBITS)))				\
    122       1.36        ad             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    123       1.36        ad             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    124        1.1   thorpej 
    125       1.36        ad #define MOVEBUCKET(cc, wheel, time)					\
    126       1.36        ad     CIRCQ_APPEND(&(cc)->cc_todo,					\
    127       1.36        ad         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    128        1.1   thorpej 
    129        1.1   thorpej /*
    130        1.1   thorpej  * Circular queue definitions.
    131        1.1   thorpej  */
    132        1.1   thorpej 
    133       1.11       scw #define CIRCQ_INIT(list)						\
    134        1.1   thorpej do {									\
    135       1.11       scw         (list)->cq_next_l = (list);					\
    136       1.11       scw         (list)->cq_prev_l = (list);					\
    137        1.1   thorpej } while (/*CONSTCOND*/0)
    138        1.1   thorpej 
    139        1.1   thorpej #define CIRCQ_INSERT(elem, list)					\
    140        1.1   thorpej do {									\
    141       1.11       scw         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    142       1.11       scw         (elem)->cq_next_l = (list);					\
    143       1.11       scw         (list)->cq_prev_l->cq_next_l = (elem);				\
    144       1.11       scw         (list)->cq_prev_l = (elem);					\
    145        1.1   thorpej } while (/*CONSTCOND*/0)
    146        1.1   thorpej 
    147        1.1   thorpej #define CIRCQ_APPEND(fst, snd)						\
    148        1.1   thorpej do {									\
    149        1.1   thorpej         if (!CIRCQ_EMPTY(snd)) {					\
    150       1.11       scw                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    151       1.11       scw                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    152       1.11       scw                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    153       1.11       scw                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    154        1.1   thorpej                 CIRCQ_INIT(snd);					\
    155        1.1   thorpej         }								\
    156        1.1   thorpej } while (/*CONSTCOND*/0)
    157        1.1   thorpej 
    158        1.1   thorpej #define CIRCQ_REMOVE(elem)						\
    159        1.1   thorpej do {									\
    160       1.11       scw         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    161       1.11       scw         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    162        1.1   thorpej } while (/*CONSTCOND*/0)
    163        1.1   thorpej 
    164       1.11       scw #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    165       1.11       scw #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    166       1.11       scw #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    167       1.11       scw #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    168        1.1   thorpej 
    169       1.36        ad struct callout_cpu {
    170       1.44        ad 	kmutex_t	*cc_lock;
    171       1.36        ad 	sleepq_t	cc_sleepq;
    172       1.36        ad 	u_int		cc_nwait;
    173       1.36        ad 	u_int		cc_ticks;
    174       1.36        ad 	lwp_t		*cc_lwp;
    175       1.36        ad 	callout_impl_t	*cc_active;
    176       1.36        ad 	callout_impl_t	*cc_cancel;
    177       1.36        ad 	struct evcnt	cc_ev_late;
    178       1.36        ad 	struct evcnt	cc_ev_block;
    179       1.36        ad 	struct callout_circq cc_todo;		/* Worklist */
    180       1.36        ad 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    181       1.36        ad 	char		cc_name1[12];
    182       1.36        ad 	char		cc_name2[12];
    183       1.36        ad };
    184       1.36        ad 
    185  1.45.18.2  jdolecek #ifndef CRASH
    186  1.45.18.2  jdolecek 
    187  1.45.18.2  jdolecek static void	callout_softclock(void *);
    188       1.36        ad static struct callout_cpu callout_cpu0;
    189       1.36        ad static void *callout_sih;
    190       1.36        ad 
    191       1.36        ad static inline kmutex_t *
    192       1.36        ad callout_lock(callout_impl_t *c)
    193       1.36        ad {
    194       1.44        ad 	struct callout_cpu *cc;
    195       1.36        ad 	kmutex_t *lock;
    196       1.36        ad 
    197       1.36        ad 	for (;;) {
    198       1.44        ad 		cc = c->c_cpu;
    199       1.44        ad 		lock = cc->cc_lock;
    200       1.36        ad 		mutex_spin_enter(lock);
    201       1.44        ad 		if (__predict_true(cc == c->c_cpu))
    202       1.36        ad 			return lock;
    203       1.36        ad 		mutex_spin_exit(lock);
    204       1.36        ad 	}
    205       1.36        ad }
    206        1.5   thorpej 
    207        1.1   thorpej /*
    208        1.1   thorpej  * callout_startup:
    209        1.1   thorpej  *
    210        1.1   thorpej  *	Initialize the callout facility, called at system startup time.
    211       1.36        ad  *	Do just enough to allow callouts to be safely registered.
    212        1.1   thorpej  */
    213        1.1   thorpej void
    214        1.1   thorpej callout_startup(void)
    215        1.1   thorpej {
    216       1.36        ad 	struct callout_cpu *cc;
    217        1.1   thorpej 	int b;
    218        1.1   thorpej 
    219       1.36        ad 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    220       1.22        ad 
    221       1.36        ad 	cc = &callout_cpu0;
    222       1.44        ad 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    223       1.36        ad 	CIRCQ_INIT(&cc->cc_todo);
    224        1.1   thorpej 	for (b = 0; b < BUCKETS; b++)
    225       1.36        ad 		CIRCQ_INIT(&cc->cc_wheel[b]);
    226       1.36        ad 	curcpu()->ci_data.cpu_callout = cc;
    227       1.22        ad }
    228       1.22        ad 
    229       1.22        ad /*
    230       1.36        ad  * callout_init_cpu:
    231       1.22        ad  *
    232       1.36        ad  *	Per-CPU initialization.
    233       1.22        ad  */
    234  1.45.18.1       tls CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    235  1.45.18.1       tls 
    236       1.22        ad void
    237       1.36        ad callout_init_cpu(struct cpu_info *ci)
    238       1.22        ad {
    239       1.36        ad 	struct callout_cpu *cc;
    240       1.36        ad 	int b;
    241       1.22        ad 
    242       1.36        ad 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    243       1.36        ad 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    244       1.44        ad 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    245       1.36        ad 		CIRCQ_INIT(&cc->cc_todo);
    246       1.36        ad 		for (b = 0; b < BUCKETS; b++)
    247       1.36        ad 			CIRCQ_INIT(&cc->cc_wheel[b]);
    248       1.36        ad 	} else {
    249       1.36        ad 		/* Boot CPU, one time only. */
    250       1.36        ad 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    251       1.36        ad 		    callout_softclock, NULL);
    252       1.36        ad 		if (callout_sih == NULL)
    253       1.36        ad 			panic("callout_init_cpu (2)");
    254       1.36        ad 	}
    255       1.36        ad 
    256       1.40        ad 	sleepq_init(&cc->cc_sleepq);
    257       1.36        ad 
    258       1.36        ad 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    259       1.36        ad 	    cpu_index(ci));
    260       1.36        ad 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    261       1.36        ad 	    NULL, "callout", cc->cc_name1);
    262       1.36        ad 
    263       1.36        ad 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    264       1.36        ad 	    cpu_index(ci));
    265       1.36        ad 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    266       1.36        ad 	    NULL, "callout", cc->cc_name2);
    267       1.36        ad 
    268       1.36        ad 	ci->ci_data.cpu_callout = cc;
    269        1.1   thorpej }
    270        1.1   thorpej 
    271        1.1   thorpej /*
    272        1.1   thorpej  * callout_init:
    273        1.1   thorpej  *
    274       1.36        ad  *	Initialize a callout structure.  This must be quick, so we fill
    275       1.36        ad  *	only the minimum number of fields.
    276        1.1   thorpej  */
    277        1.1   thorpej void
    278       1.22        ad callout_init(callout_t *cs, u_int flags)
    279        1.1   thorpej {
    280       1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    281       1.36        ad 	struct callout_cpu *cc;
    282       1.22        ad 
    283       1.22        ad 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    284        1.1   thorpej 
    285       1.36        ad 	cc = curcpu()->ci_data.cpu_callout;
    286       1.36        ad 	c->c_func = NULL;
    287       1.22        ad 	c->c_magic = CALLOUT_MAGIC;
    288       1.36        ad 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    289       1.36        ad 		c->c_flags = flags;
    290       1.36        ad 		c->c_cpu = cc;
    291       1.36        ad 		return;
    292       1.36        ad 	}
    293       1.36        ad 	c->c_flags = flags | CALLOUT_BOUND;
    294       1.36        ad 	c->c_cpu = &callout_cpu0;
    295       1.22        ad }
    296       1.22        ad 
    297       1.22        ad /*
    298       1.22        ad  * callout_destroy:
    299       1.22        ad  *
    300       1.22        ad  *	Destroy a callout structure.  The callout must be stopped.
    301       1.22        ad  */
    302       1.22        ad void
    303       1.22        ad callout_destroy(callout_t *cs)
    304       1.22        ad {
    305       1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    306       1.22        ad 
    307       1.22        ad 	/*
    308       1.22        ad 	 * It's not necessary to lock in order to see the correct value
    309       1.22        ad 	 * of c->c_flags.  If the callout could potentially have been
    310       1.22        ad 	 * running, the current thread should have stopped it.
    311       1.22        ad 	 */
    312  1.45.18.2  jdolecek 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
    313  1.45.18.2  jdolecek 	    "callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    314  1.45.18.2  jdolecek 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    315       1.36        ad 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
    316  1.45.18.1       tls 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
    317  1.45.18.1       tls 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
    318  1.45.18.1       tls 	    c, c->c_magic, CALLOUT_MAGIC);
    319       1.22        ad 	c->c_magic = 0;
    320        1.1   thorpej }
    321        1.1   thorpej 
    322        1.1   thorpej /*
    323       1.29     joerg  * callout_schedule_locked:
    324        1.1   thorpej  *
    325       1.29     joerg  *	Schedule a callout to run.  The function and argument must
    326       1.29     joerg  *	already be set in the callout structure.  Must be called with
    327       1.29     joerg  *	callout_lock.
    328        1.1   thorpej  */
    329       1.29     joerg static void
    330       1.36        ad callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    331        1.1   thorpej {
    332       1.36        ad 	struct callout_cpu *cc, *occ;
    333       1.20        ad 	int old_time;
    334        1.1   thorpej 
    335        1.1   thorpej 	KASSERT(to_ticks >= 0);
    336       1.29     joerg 	KASSERT(c->c_func != NULL);
    337        1.1   thorpej 
    338        1.1   thorpej 	/* Initialize the time here, it won't change. */
    339       1.36        ad 	occ = c->c_cpu;
    340       1.43        ad 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    341        1.1   thorpej 
    342        1.1   thorpej 	/*
    343        1.1   thorpej 	 * If this timeout is already scheduled and now is moved
    344       1.36        ad 	 * earlier, reschedule it now.  Otherwise leave it in place
    345        1.1   thorpej 	 * and let it be rescheduled later.
    346        1.1   thorpej 	 */
    347       1.22        ad 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    348       1.36        ad 		/* Leave on existing CPU. */
    349       1.36        ad 		old_time = c->c_time;
    350       1.36        ad 		c->c_time = to_ticks + occ->cc_ticks;
    351        1.4      yamt 		if (c->c_time - old_time < 0) {
    352        1.1   thorpej 			CIRCQ_REMOVE(&c->c_list);
    353       1.36        ad 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    354        1.1   thorpej 		}
    355       1.36        ad 		mutex_spin_exit(lock);
    356       1.36        ad 		return;
    357       1.36        ad 	}
    358       1.36        ad 
    359       1.36        ad 	cc = curcpu()->ci_data.cpu_callout;
    360       1.36        ad 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    361       1.44        ad 	    !mutex_tryenter(cc->cc_lock)) {
    362       1.36        ad 		/* Leave on existing CPU. */
    363       1.36        ad 		c->c_time = to_ticks + occ->cc_ticks;
    364       1.36        ad 		c->c_flags |= CALLOUT_PENDING;
    365       1.36        ad 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    366        1.1   thorpej 	} else {
    367       1.36        ad 		/* Move to this CPU. */
    368       1.36        ad 		c->c_cpu = cc;
    369       1.36        ad 		c->c_time = to_ticks + cc->cc_ticks;
    370        1.1   thorpej 		c->c_flags |= CALLOUT_PENDING;
    371       1.36        ad 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    372       1.44        ad 		mutex_spin_exit(cc->cc_lock);
    373        1.1   thorpej 	}
    374       1.36        ad 	mutex_spin_exit(lock);
    375       1.29     joerg }
    376       1.29     joerg 
    377       1.29     joerg /*
    378       1.29     joerg  * callout_reset:
    379       1.29     joerg  *
    380       1.29     joerg  *	Reset a callout structure with a new function and argument, and
    381       1.29     joerg  *	schedule it to run.
    382       1.29     joerg  */
    383       1.29     joerg void
    384       1.29     joerg callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    385       1.29     joerg {
    386       1.29     joerg 	callout_impl_t *c = (callout_impl_t *)cs;
    387       1.36        ad 	kmutex_t *lock;
    388       1.29     joerg 
    389       1.29     joerg 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    390       1.42     rmind 	KASSERT(func != NULL);
    391       1.29     joerg 
    392       1.36        ad 	lock = callout_lock(c);
    393       1.29     joerg 	c->c_func = func;
    394       1.29     joerg 	c->c_arg = arg;
    395       1.36        ad 	callout_schedule_locked(c, lock, to_ticks);
    396        1.1   thorpej }
    397        1.1   thorpej 
    398        1.1   thorpej /*
    399        1.1   thorpej  * callout_schedule:
    400        1.1   thorpej  *
    401        1.1   thorpej  *	Schedule a callout to run.  The function and argument must
    402        1.1   thorpej  *	already be set in the callout structure.
    403        1.1   thorpej  */
    404        1.1   thorpej void
    405       1.22        ad callout_schedule(callout_t *cs, int to_ticks)
    406        1.1   thorpej {
    407       1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    408       1.36        ad 	kmutex_t *lock;
    409        1.1   thorpej 
    410       1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    411        1.1   thorpej 
    412       1.36        ad 	lock = callout_lock(c);
    413       1.36        ad 	callout_schedule_locked(c, lock, to_ticks);
    414        1.1   thorpej }
    415        1.1   thorpej 
    416        1.1   thorpej /*
    417        1.1   thorpej  * callout_stop:
    418        1.1   thorpej  *
    419       1.36        ad  *	Try to cancel a pending callout.  It may be too late: the callout
    420       1.36        ad  *	could be running on another CPU.  If called from interrupt context,
    421       1.36        ad  *	the callout could already be in progress at a lower priority.
    422        1.1   thorpej  */
    423       1.22        ad bool
    424       1.22        ad callout_stop(callout_t *cs)
    425        1.1   thorpej {
    426       1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    427       1.36        ad 	struct callout_cpu *cc;
    428       1.36        ad 	kmutex_t *lock;
    429       1.22        ad 	bool expired;
    430       1.22        ad 
    431       1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    432        1.1   thorpej 
    433       1.36        ad 	lock = callout_lock(c);
    434       1.20        ad 
    435       1.22        ad 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    436        1.1   thorpej 		CIRCQ_REMOVE(&c->c_list);
    437       1.32        ad 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    438       1.32        ad 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    439       1.32        ad 
    440       1.36        ad 	cc = c->c_cpu;
    441       1.36        ad 	if (cc->cc_active == c) {
    442       1.32        ad 		/*
    443       1.32        ad 		 * This is for non-MPSAFE callouts only.  To synchronize
    444       1.32        ad 		 * effectively we must be called with kernel_lock held.
    445       1.32        ad 		 * It's also taken in callout_softclock.
    446       1.32        ad 		 */
    447       1.36        ad 		cc->cc_cancel = c;
    448       1.32        ad 	}
    449       1.32        ad 
    450       1.36        ad 	mutex_spin_exit(lock);
    451       1.32        ad 
    452       1.32        ad 	return expired;
    453       1.32        ad }
    454       1.32        ad 
    455       1.32        ad /*
    456       1.32        ad  * callout_halt:
    457       1.32        ad  *
    458       1.32        ad  *	Cancel a pending callout.  If in-flight, block until it completes.
    459       1.36        ad  *	May not be called from a hard interrupt handler.  If the callout
    460       1.36        ad  * 	can take locks, the caller of callout_halt() must not hold any of
    461       1.37        ad  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    462       1.37        ad  *	non-NULL and we must wait for the callout to complete, it will be
    463       1.37        ad  *	released and re-acquired before returning.
    464       1.32        ad  */
    465       1.32        ad bool
    466       1.38        ad callout_halt(callout_t *cs, void *interlock)
    467       1.32        ad {
    468       1.32        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    469       1.36        ad 	struct callout_cpu *cc;
    470       1.32        ad 	struct lwp *l;
    471       1.37        ad 	kmutex_t *lock, *relock;
    472       1.32        ad 	bool expired;
    473       1.32        ad 
    474       1.32        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    475       1.32        ad 	KASSERT(!cpu_intr_p());
    476       1.32        ad 
    477       1.36        ad 	lock = callout_lock(c);
    478       1.37        ad 	relock = NULL;
    479        1.1   thorpej 
    480       1.22        ad 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    481       1.32        ad 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    482       1.32        ad 		CIRCQ_REMOVE(&c->c_list);
    483        1.9        he 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    484        1.1   thorpej 
    485       1.32        ad 	l = curlwp;
    486       1.36        ad 	for (;;) {
    487       1.36        ad 		cc = c->c_cpu;
    488       1.36        ad 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    489       1.36        ad 			break;
    490       1.37        ad 		if (interlock != NULL) {
    491       1.37        ad 			/*
    492       1.37        ad 			 * Avoid potential scheduler lock order problems by
    493       1.37        ad 			 * dropping the interlock without the callout lock
    494       1.37        ad 			 * held.
    495       1.37        ad 			 */
    496       1.37        ad 			mutex_spin_exit(lock);
    497       1.37        ad 			mutex_exit(interlock);
    498       1.37        ad 			relock = interlock;
    499       1.37        ad 			interlock = NULL;
    500       1.37        ad 		} else {
    501       1.37        ad 			/* XXX Better to do priority inheritance. */
    502       1.37        ad 			KASSERT(l->l_wchan == NULL);
    503       1.37        ad 			cc->cc_nwait++;
    504       1.37        ad 			cc->cc_ev_block.ev_count++;
    505       1.37        ad 			l->l_kpriority = true;
    506       1.44        ad 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    507       1.37        ad 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    508       1.37        ad 			    &sleep_syncobj);
    509       1.37        ad 			sleepq_block(0, false);
    510       1.37        ad 		}
    511       1.36        ad 		lock = callout_lock(c);
    512       1.32        ad 	}
    513       1.32        ad 
    514       1.36        ad 	mutex_spin_exit(lock);
    515       1.37        ad 	if (__predict_false(relock != NULL))
    516       1.37        ad 		mutex_enter(relock);
    517       1.22        ad 
    518       1.22        ad 	return expired;
    519       1.22        ad }
    520       1.22        ad 
    521       1.36        ad #ifdef notyet
    522       1.36        ad /*
    523       1.36        ad  * callout_bind:
    524       1.36        ad  *
    525       1.36        ad  *	Bind a callout so that it will only execute on one CPU.
    526       1.36        ad  *	The callout must be stopped, and must be MPSAFE.
    527       1.36        ad  *
    528       1.36        ad  *	XXX Disabled for now until it is decided how to handle
    529       1.36        ad  *	offlined CPUs.  We may want weak+strong binding.
    530       1.36        ad  */
    531       1.36        ad void
    532       1.36        ad callout_bind(callout_t *cs, struct cpu_info *ci)
    533       1.36        ad {
    534       1.36        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    535       1.36        ad 	struct callout_cpu *cc;
    536       1.36        ad 	kmutex_t *lock;
    537       1.36        ad 
    538       1.36        ad 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    539       1.36        ad 	KASSERT(c->c_cpu->cc_active != c);
    540       1.36        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    541       1.36        ad 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    542       1.36        ad 
    543       1.36        ad 	lock = callout_lock(c);
    544       1.36        ad 	cc = ci->ci_data.cpu_callout;
    545       1.36        ad 	c->c_flags |= CALLOUT_BOUND;
    546       1.36        ad 	if (c->c_cpu != cc) {
    547       1.36        ad 		/*
    548       1.36        ad 		 * Assigning c_cpu effectively unlocks the callout
    549       1.36        ad 		 * structure, as we don't hold the new CPU's lock.
    550       1.36        ad 		 * Issue memory barrier to prevent accesses being
    551       1.36        ad 		 * reordered.
    552       1.36        ad 		 */
    553       1.36        ad 		membar_exit();
    554       1.36        ad 		c->c_cpu = cc;
    555       1.36        ad 	}
    556       1.36        ad 	mutex_spin_exit(lock);
    557       1.36        ad }
    558       1.36        ad #endif
    559       1.36        ad 
    560       1.22        ad void
    561       1.22        ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    562       1.22        ad {
    563       1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    564       1.36        ad 	kmutex_t *lock;
    565       1.22        ad 
    566       1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    567       1.42     rmind 	KASSERT(func != NULL);
    568       1.22        ad 
    569       1.36        ad 	lock = callout_lock(c);
    570       1.22        ad 	c->c_func = func;
    571       1.22        ad 	c->c_arg = arg;
    572       1.36        ad 	mutex_spin_exit(lock);
    573       1.22        ad }
    574       1.22        ad 
    575       1.22        ad bool
    576       1.22        ad callout_expired(callout_t *cs)
    577       1.22        ad {
    578       1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    579       1.36        ad 	kmutex_t *lock;
    580       1.22        ad 	bool rv;
    581       1.22        ad 
    582       1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    583       1.22        ad 
    584       1.36        ad 	lock = callout_lock(c);
    585       1.22        ad 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    586       1.36        ad 	mutex_spin_exit(lock);
    587       1.22        ad 
    588       1.22        ad 	return rv;
    589       1.22        ad }
    590       1.22        ad 
    591       1.22        ad bool
    592       1.22        ad callout_active(callout_t *cs)
    593       1.22        ad {
    594       1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    595       1.36        ad 	kmutex_t *lock;
    596       1.22        ad 	bool rv;
    597       1.22        ad 
    598       1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    599       1.22        ad 
    600       1.36        ad 	lock = callout_lock(c);
    601       1.22        ad 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    602       1.36        ad 	mutex_spin_exit(lock);
    603       1.22        ad 
    604       1.22        ad 	return rv;
    605       1.22        ad }
    606       1.22        ad 
    607       1.22        ad bool
    608       1.22        ad callout_pending(callout_t *cs)
    609       1.22        ad {
    610       1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    611       1.36        ad 	kmutex_t *lock;
    612       1.22        ad 	bool rv;
    613       1.22        ad 
    614       1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    615       1.22        ad 
    616       1.36        ad 	lock = callout_lock(c);
    617       1.22        ad 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    618       1.36        ad 	mutex_spin_exit(lock);
    619       1.22        ad 
    620       1.22        ad 	return rv;
    621       1.22        ad }
    622       1.22        ad 
    623       1.22        ad bool
    624       1.22        ad callout_invoking(callout_t *cs)
    625       1.22        ad {
    626       1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    627       1.36        ad 	kmutex_t *lock;
    628       1.22        ad 	bool rv;
    629       1.22        ad 
    630       1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    631       1.22        ad 
    632       1.36        ad 	lock = callout_lock(c);
    633       1.22        ad 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    634       1.36        ad 	mutex_spin_exit(lock);
    635       1.22        ad 
    636       1.22        ad 	return rv;
    637       1.22        ad }
    638       1.22        ad 
    639       1.22        ad void
    640       1.22        ad callout_ack(callout_t *cs)
    641       1.22        ad {
    642       1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    643       1.36        ad 	kmutex_t *lock;
    644       1.22        ad 
    645       1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    646       1.22        ad 
    647       1.36        ad 	lock = callout_lock(c);
    648       1.22        ad 	c->c_flags &= ~CALLOUT_INVOKING;
    649       1.36        ad 	mutex_spin_exit(lock);
    650        1.1   thorpej }
    651        1.1   thorpej 
    652        1.1   thorpej /*
    653       1.36        ad  * callout_hardclock:
    654       1.36        ad  *
    655       1.36        ad  *	Called from hardclock() once every tick.  We schedule a soft
    656       1.36        ad  *	interrupt if there is work to be done.
    657        1.1   thorpej  */
    658       1.22        ad void
    659        1.1   thorpej callout_hardclock(void)
    660        1.1   thorpej {
    661       1.36        ad 	struct callout_cpu *cc;
    662       1.36        ad 	int needsoftclock, ticks;
    663        1.1   thorpej 
    664       1.36        ad 	cc = curcpu()->ci_data.cpu_callout;
    665       1.44        ad 	mutex_spin_enter(cc->cc_lock);
    666        1.1   thorpej 
    667       1.36        ad 	ticks = ++cc->cc_ticks;
    668       1.36        ad 
    669       1.36        ad 	MOVEBUCKET(cc, 0, ticks);
    670       1.36        ad 	if (MASKWHEEL(0, ticks) == 0) {
    671       1.36        ad 		MOVEBUCKET(cc, 1, ticks);
    672       1.36        ad 		if (MASKWHEEL(1, ticks) == 0) {
    673       1.36        ad 			MOVEBUCKET(cc, 2, ticks);
    674       1.36        ad 			if (MASKWHEEL(2, ticks) == 0)
    675       1.36        ad 				MOVEBUCKET(cc, 3, ticks);
    676        1.1   thorpej 		}
    677        1.1   thorpej 	}
    678        1.1   thorpej 
    679       1.36        ad 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    680       1.44        ad 	mutex_spin_exit(cc->cc_lock);
    681        1.1   thorpej 
    682       1.22        ad 	if (needsoftclock)
    683       1.36        ad 		softint_schedule(callout_sih);
    684        1.1   thorpej }
    685        1.1   thorpej 
    686       1.36        ad /*
    687       1.36        ad  * callout_softclock:
    688       1.36        ad  *
    689       1.36        ad  *	Soft interrupt handler, scheduled above if there is work to
    690       1.36        ad  * 	be done.  Callouts are made in soft interrupt context.
    691       1.36        ad  */
    692       1.22        ad static void
    693       1.22        ad callout_softclock(void *v)
    694        1.1   thorpej {
    695       1.22        ad 	callout_impl_t *c;
    696       1.36        ad 	struct callout_cpu *cc;
    697        1.1   thorpej 	void (*func)(void *);
    698        1.1   thorpej 	void *arg;
    699       1.36        ad 	int mpsafe, count, ticks, delta;
    700       1.22        ad 	lwp_t *l;
    701        1.1   thorpej 
    702       1.22        ad 	l = curlwp;
    703       1.36        ad 	KASSERT(l->l_cpu == curcpu());
    704       1.36        ad 	cc = l->l_cpu->ci_data.cpu_callout;
    705        1.1   thorpej 
    706       1.44        ad 	mutex_spin_enter(cc->cc_lock);
    707       1.36        ad 	cc->cc_lwp = l;
    708       1.36        ad 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    709       1.36        ad 		c = CIRCQ_FIRST(&cc->cc_todo);
    710       1.22        ad 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    711       1.22        ad 		KASSERT(c->c_func != NULL);
    712       1.36        ad 		KASSERT(c->c_cpu == cc);
    713       1.26        ad 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    714       1.26        ad 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    715        1.1   thorpej 		CIRCQ_REMOVE(&c->c_list);
    716        1.1   thorpej 
    717        1.1   thorpej 		/* If due run it, otherwise insert it into the right bucket. */
    718       1.36        ad 		ticks = cc->cc_ticks;
    719       1.36        ad 		delta = c->c_time - ticks;
    720       1.36        ad 		if (delta > 0) {
    721       1.36        ad 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    722       1.36        ad 			continue;
    723       1.36        ad 		}
    724       1.36        ad 		if (delta < 0)
    725       1.36        ad 			cc->cc_ev_late.ev_count++;
    726       1.36        ad 
    727       1.43        ad 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    728       1.43        ad 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    729       1.36        ad 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    730       1.36        ad 		func = c->c_func;
    731       1.36        ad 		arg = c->c_arg;
    732       1.36        ad 		cc->cc_active = c;
    733       1.36        ad 
    734       1.44        ad 		mutex_spin_exit(cc->cc_lock);
    735       1.42     rmind 		KASSERT(func != NULL);
    736       1.44        ad 		if (__predict_false(!mpsafe)) {
    737       1.36        ad 			KERNEL_LOCK(1, NULL);
    738       1.36        ad 			(*func)(arg);
    739       1.36        ad 			KERNEL_UNLOCK_ONE(NULL);
    740       1.36        ad 		} else
    741       1.36        ad 			(*func)(arg);
    742       1.44        ad 		mutex_spin_enter(cc->cc_lock);
    743       1.36        ad 
    744       1.36        ad 		/*
    745       1.36        ad 		 * We can't touch 'c' here because it might be
    746       1.36        ad 		 * freed already.  If LWPs waiting for callout
    747       1.36        ad 		 * to complete, awaken them.
    748       1.36        ad 		 */
    749       1.36        ad 		cc->cc_active = NULL;
    750       1.36        ad 		if ((count = cc->cc_nwait) != 0) {
    751       1.36        ad 			cc->cc_nwait = 0;
    752       1.36        ad 			/* sleepq_wake() drops the lock. */
    753       1.44        ad 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    754       1.44        ad 			mutex_spin_enter(cc->cc_lock);
    755        1.1   thorpej 		}
    756        1.1   thorpej 	}
    757       1.36        ad 	cc->cc_lwp = NULL;
    758       1.44        ad 	mutex_spin_exit(cc->cc_lock);
    759        1.1   thorpej }
    760  1.45.18.2  jdolecek #endif
    761        1.1   thorpej 
    762        1.1   thorpej #ifdef DDB
    763        1.1   thorpej static void
    764  1.45.18.2  jdolecek db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
    765  1.45.18.2  jdolecek     struct callout_circq *bucket)
    766        1.1   thorpej {
    767  1.45.18.2  jdolecek 	callout_impl_t *c, ci;
    768        1.1   thorpej 	db_expr_t offset;
    769       1.15  christos 	const char *name;
    770       1.15  christos 	static char question[] = "?";
    771       1.36        ad 	int b;
    772        1.1   thorpej 
    773  1.45.18.2  jdolecek 	if (CIRCQ_LAST(bucket, kbucket))
    774       1.11       scw 		return;
    775       1.11       scw 
    776       1.11       scw 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    777  1.45.18.2  jdolecek 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
    778  1.45.18.2  jdolecek 		c = &ci;
    779       1.10       scw 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    780       1.10       scw 		    &offset);
    781       1.15  christos 		name = name ? name : question;
    782       1.36        ad 		b = (bucket - cc->cc_wheel);
    783       1.36        ad 		if (b < 0)
    784       1.36        ad 			b = -WHEELSIZE;
    785       1.36        ad 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    786       1.36        ad 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    787       1.36        ad 		    (u_long)c->c_arg, name);
    788  1.45.18.2  jdolecek 		if (CIRCQ_LAST(&c->c_list, kbucket))
    789       1.11       scw 			break;
    790        1.1   thorpej 	}
    791        1.1   thorpej }
    792        1.1   thorpej 
    793        1.1   thorpej void
    794       1.21      matt db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    795        1.1   thorpej {
    796  1.45.18.2  jdolecek 	struct callout_cpu *cc, ccb;
    797  1.45.18.2  jdolecek 	struct cpu_info *ci, cib;
    798        1.1   thorpej 	int b;
    799        1.1   thorpej 
    800  1.45.18.2  jdolecek #ifndef CRASH
    801        1.1   thorpej 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
    802  1.45.18.2  jdolecek #endif
    803        1.1   thorpej 	db_printf("    ticks  wheel               arg  func\n");
    804        1.1   thorpej 
    805        1.1   thorpej 	/*
    806        1.1   thorpej 	 * Don't lock the callwheel; all the other CPUs are paused
    807        1.1   thorpej 	 * anyhow, and we might be called in a circumstance where
    808        1.1   thorpej 	 * some other CPU was paused while holding the lock.
    809        1.1   thorpej 	 */
    810  1.45.18.2  jdolecek 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    811  1.45.18.2  jdolecek 		db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
    812  1.45.18.2  jdolecek 		cc = cib.ci_data.cpu_callout;
    813  1.45.18.2  jdolecek 		db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    814  1.45.18.2  jdolecek 		db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
    815       1.36        ad 	}
    816       1.36        ad 	for (b = 0; b < BUCKETS; b++) {
    817  1.45.18.2  jdolecek 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    818  1.45.18.2  jdolecek 			db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
    819  1.45.18.2  jdolecek 			cc = cib.ci_data.cpu_callout;
    820  1.45.18.2  jdolecek 			db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    821  1.45.18.2  jdolecek 			db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
    822  1.45.18.2  jdolecek 			    &ccb.cc_wheel[b]);
    823       1.36        ad 		}
    824       1.36        ad 	}
    825        1.1   thorpej }
    826        1.1   thorpej #endif /* DDB */
    827