kern_timeout.c revision 1.46.2.1 1 1.46.2.1 rmind /* $NetBSD: kern_timeout.c,v 1.46.2.1 2014/05/18 17:46:07 rmind Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*-
4 1.44 ad * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.22 ad * by Jason R. Thorpe, and by Andrew Doran.
9 1.1 thorpej *
10 1.1 thorpej * Redistribution and use in source and binary forms, with or without
11 1.1 thorpej * modification, are permitted provided that the following conditions
12 1.1 thorpej * are met:
13 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.1 thorpej * notice, this list of conditions and the following disclaimer.
15 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.1 thorpej * documentation and/or other materials provided with the distribution.
18 1.1 thorpej *
19 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.1 thorpej */
31 1.1 thorpej
32 1.1 thorpej /*
33 1.1 thorpej * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
34 1.1 thorpej * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
35 1.14 perry * All rights reserved.
36 1.14 perry *
37 1.14 perry * Redistribution and use in source and binary forms, with or without
38 1.14 perry * modification, are permitted provided that the following conditions
39 1.14 perry * are met:
40 1.1 thorpej *
41 1.14 perry * 1. Redistributions of source code must retain the above copyright
42 1.14 perry * notice, this list of conditions and the following disclaimer.
43 1.14 perry * 2. Redistributions in binary form must reproduce the above copyright
44 1.14 perry * notice, this list of conditions and the following disclaimer in the
45 1.14 perry * documentation and/or other materials provided with the distribution.
46 1.1 thorpej * 3. The name of the author may not be used to endorse or promote products
47 1.14 perry * derived from this software without specific prior written permission.
48 1.1 thorpej *
49 1.1 thorpej * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50 1.1 thorpej * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51 1.1 thorpej * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52 1.1 thorpej * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53 1.1 thorpej * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 1.1 thorpej * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 1.1 thorpej * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 1.1 thorpej * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 1.1 thorpej * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 1.14 perry * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 1.1 thorpej */
60 1.7 lukem
61 1.7 lukem #include <sys/cdefs.h>
62 1.46.2.1 rmind __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.46.2.1 2014/05/18 17:46:07 rmind Exp $");
63 1.1 thorpej
64 1.1 thorpej /*
65 1.22 ad * Timeouts are kept in a hierarchical timing wheel. The c_time is the
66 1.36 ad * value of c_cpu->cc_ticks when the timeout should be called. There are
67 1.36 ad * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68 1.36 ad * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69 1.36 ad * a Timer Facility" by George Varghese and Tony Lauck.
70 1.22 ad *
71 1.22 ad * Some of the "math" in here is a bit tricky. We have to beware of
72 1.22 ad * wrapping ints.
73 1.22 ad *
74 1.22 ad * We use the fact that any element added to the queue must be added with
75 1.22 ad * a positive time. That means that any element `to' on the queue cannot
76 1.22 ad * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77 1.22 ad * be positive or negative so comparing it with anything is dangerous.
78 1.22 ad * The only way we can use the c->c_time value in any predictable way is
79 1.22 ad * when we calculate how far in the future `to' will timeout - "c->c_time
80 1.36 ad * - c->c_cpu->cc_ticks". The result will always be positive for future
81 1.22 ad * timeouts and 0 or negative for due timeouts.
82 1.1 thorpej */
83 1.1 thorpej
84 1.24 ad #define _CALLOUT_PRIVATE
85 1.24 ad
86 1.1 thorpej #include <sys/param.h>
87 1.1 thorpej #include <sys/systm.h>
88 1.1 thorpej #include <sys/kernel.h>
89 1.1 thorpej #include <sys/callout.h>
90 1.45 rmind #include <sys/lwp.h>
91 1.20 ad #include <sys/mutex.h>
92 1.22 ad #include <sys/proc.h>
93 1.22 ad #include <sys/sleepq.h>
94 1.22 ad #include <sys/syncobj.h>
95 1.22 ad #include <sys/evcnt.h>
96 1.27 ad #include <sys/intr.h>
97 1.33 ad #include <sys/cpu.h>
98 1.36 ad #include <sys/kmem.h>
99 1.1 thorpej
100 1.1 thorpej #ifdef DDB
101 1.1 thorpej #include <machine/db_machdep.h>
102 1.1 thorpej #include <ddb/db_interface.h>
103 1.1 thorpej #include <ddb/db_access.h>
104 1.1 thorpej #include <ddb/db_sym.h>
105 1.1 thorpej #include <ddb/db_output.h>
106 1.1 thorpej #endif
107 1.1 thorpej
108 1.22 ad #define BUCKETS 1024
109 1.22 ad #define WHEELSIZE 256
110 1.22 ad #define WHEELMASK 255
111 1.22 ad #define WHEELBITS 8
112 1.22 ad
113 1.1 thorpej #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
114 1.1 thorpej
115 1.36 ad #define BUCKET(cc, rel, abs) \
116 1.1 thorpej (((rel) <= (1 << (2*WHEELBITS))) \
117 1.1 thorpej ? ((rel) <= (1 << WHEELBITS)) \
118 1.36 ad ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
119 1.36 ad : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
120 1.1 thorpej : ((rel) <= (1 << (3*WHEELBITS))) \
121 1.36 ad ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
122 1.36 ad : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
123 1.1 thorpej
124 1.36 ad #define MOVEBUCKET(cc, wheel, time) \
125 1.36 ad CIRCQ_APPEND(&(cc)->cc_todo, \
126 1.36 ad &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
127 1.1 thorpej
128 1.1 thorpej /*
129 1.1 thorpej * Circular queue definitions.
130 1.1 thorpej */
131 1.1 thorpej
132 1.11 scw #define CIRCQ_INIT(list) \
133 1.1 thorpej do { \
134 1.11 scw (list)->cq_next_l = (list); \
135 1.11 scw (list)->cq_prev_l = (list); \
136 1.1 thorpej } while (/*CONSTCOND*/0)
137 1.1 thorpej
138 1.1 thorpej #define CIRCQ_INSERT(elem, list) \
139 1.1 thorpej do { \
140 1.11 scw (elem)->cq_prev_e = (list)->cq_prev_e; \
141 1.11 scw (elem)->cq_next_l = (list); \
142 1.11 scw (list)->cq_prev_l->cq_next_l = (elem); \
143 1.11 scw (list)->cq_prev_l = (elem); \
144 1.1 thorpej } while (/*CONSTCOND*/0)
145 1.1 thorpej
146 1.1 thorpej #define CIRCQ_APPEND(fst, snd) \
147 1.1 thorpej do { \
148 1.1 thorpej if (!CIRCQ_EMPTY(snd)) { \
149 1.11 scw (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
150 1.11 scw (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
151 1.11 scw (snd)->cq_prev_l->cq_next_l = (fst); \
152 1.11 scw (fst)->cq_prev_l = (snd)->cq_prev_l; \
153 1.1 thorpej CIRCQ_INIT(snd); \
154 1.1 thorpej } \
155 1.1 thorpej } while (/*CONSTCOND*/0)
156 1.1 thorpej
157 1.1 thorpej #define CIRCQ_REMOVE(elem) \
158 1.1 thorpej do { \
159 1.11 scw (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
160 1.11 scw (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
161 1.1 thorpej } while (/*CONSTCOND*/0)
162 1.1 thorpej
163 1.11 scw #define CIRCQ_FIRST(list) ((list)->cq_next_e)
164 1.11 scw #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
165 1.11 scw #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
166 1.11 scw #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
167 1.1 thorpej
168 1.22 ad static void callout_softclock(void *);
169 1.22 ad
170 1.36 ad struct callout_cpu {
171 1.44 ad kmutex_t *cc_lock;
172 1.36 ad sleepq_t cc_sleepq;
173 1.36 ad u_int cc_nwait;
174 1.36 ad u_int cc_ticks;
175 1.36 ad lwp_t *cc_lwp;
176 1.36 ad callout_impl_t *cc_active;
177 1.36 ad callout_impl_t *cc_cancel;
178 1.36 ad struct evcnt cc_ev_late;
179 1.36 ad struct evcnt cc_ev_block;
180 1.36 ad struct callout_circq cc_todo; /* Worklist */
181 1.36 ad struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
182 1.36 ad char cc_name1[12];
183 1.36 ad char cc_name2[12];
184 1.36 ad };
185 1.36 ad
186 1.36 ad static struct callout_cpu callout_cpu0;
187 1.36 ad static void *callout_sih;
188 1.36 ad
189 1.36 ad static inline kmutex_t *
190 1.36 ad callout_lock(callout_impl_t *c)
191 1.36 ad {
192 1.44 ad struct callout_cpu *cc;
193 1.36 ad kmutex_t *lock;
194 1.36 ad
195 1.36 ad for (;;) {
196 1.44 ad cc = c->c_cpu;
197 1.44 ad lock = cc->cc_lock;
198 1.36 ad mutex_spin_enter(lock);
199 1.44 ad if (__predict_true(cc == c->c_cpu))
200 1.36 ad return lock;
201 1.36 ad mutex_spin_exit(lock);
202 1.36 ad }
203 1.36 ad }
204 1.5 thorpej
205 1.1 thorpej /*
206 1.1 thorpej * callout_startup:
207 1.1 thorpej *
208 1.1 thorpej * Initialize the callout facility, called at system startup time.
209 1.36 ad * Do just enough to allow callouts to be safely registered.
210 1.1 thorpej */
211 1.1 thorpej void
212 1.1 thorpej callout_startup(void)
213 1.1 thorpej {
214 1.36 ad struct callout_cpu *cc;
215 1.1 thorpej int b;
216 1.1 thorpej
217 1.36 ad KASSERT(curcpu()->ci_data.cpu_callout == NULL);
218 1.22 ad
219 1.36 ad cc = &callout_cpu0;
220 1.44 ad cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
221 1.36 ad CIRCQ_INIT(&cc->cc_todo);
222 1.1 thorpej for (b = 0; b < BUCKETS; b++)
223 1.36 ad CIRCQ_INIT(&cc->cc_wheel[b]);
224 1.36 ad curcpu()->ci_data.cpu_callout = cc;
225 1.22 ad }
226 1.22 ad
227 1.22 ad /*
228 1.36 ad * callout_init_cpu:
229 1.22 ad *
230 1.36 ad * Per-CPU initialization.
231 1.22 ad */
232 1.46.2.1 rmind CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
233 1.46.2.1 rmind
234 1.22 ad void
235 1.36 ad callout_init_cpu(struct cpu_info *ci)
236 1.22 ad {
237 1.36 ad struct callout_cpu *cc;
238 1.36 ad int b;
239 1.22 ad
240 1.36 ad if ((cc = ci->ci_data.cpu_callout) == NULL) {
241 1.36 ad cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
242 1.36 ad if (cc == NULL)
243 1.36 ad panic("callout_init_cpu (1)");
244 1.44 ad cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
245 1.36 ad CIRCQ_INIT(&cc->cc_todo);
246 1.36 ad for (b = 0; b < BUCKETS; b++)
247 1.36 ad CIRCQ_INIT(&cc->cc_wheel[b]);
248 1.36 ad } else {
249 1.36 ad /* Boot CPU, one time only. */
250 1.36 ad callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
251 1.36 ad callout_softclock, NULL);
252 1.36 ad if (callout_sih == NULL)
253 1.36 ad panic("callout_init_cpu (2)");
254 1.36 ad }
255 1.36 ad
256 1.40 ad sleepq_init(&cc->cc_sleepq);
257 1.36 ad
258 1.36 ad snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
259 1.36 ad cpu_index(ci));
260 1.36 ad evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
261 1.36 ad NULL, "callout", cc->cc_name1);
262 1.36 ad
263 1.36 ad snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
264 1.36 ad cpu_index(ci));
265 1.36 ad evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
266 1.36 ad NULL, "callout", cc->cc_name2);
267 1.36 ad
268 1.36 ad ci->ci_data.cpu_callout = cc;
269 1.1 thorpej }
270 1.1 thorpej
271 1.1 thorpej /*
272 1.1 thorpej * callout_init:
273 1.1 thorpej *
274 1.36 ad * Initialize a callout structure. This must be quick, so we fill
275 1.36 ad * only the minimum number of fields.
276 1.1 thorpej */
277 1.1 thorpej void
278 1.22 ad callout_init(callout_t *cs, u_int flags)
279 1.1 thorpej {
280 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
281 1.36 ad struct callout_cpu *cc;
282 1.22 ad
283 1.22 ad KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
284 1.1 thorpej
285 1.36 ad cc = curcpu()->ci_data.cpu_callout;
286 1.36 ad c->c_func = NULL;
287 1.22 ad c->c_magic = CALLOUT_MAGIC;
288 1.36 ad if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
289 1.36 ad c->c_flags = flags;
290 1.36 ad c->c_cpu = cc;
291 1.36 ad return;
292 1.36 ad }
293 1.36 ad c->c_flags = flags | CALLOUT_BOUND;
294 1.36 ad c->c_cpu = &callout_cpu0;
295 1.22 ad }
296 1.22 ad
297 1.22 ad /*
298 1.22 ad * callout_destroy:
299 1.22 ad *
300 1.22 ad * Destroy a callout structure. The callout must be stopped.
301 1.22 ad */
302 1.22 ad void
303 1.22 ad callout_destroy(callout_t *cs)
304 1.22 ad {
305 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
306 1.22 ad
307 1.22 ad /*
308 1.22 ad * It's not necessary to lock in order to see the correct value
309 1.22 ad * of c->c_flags. If the callout could potentially have been
310 1.22 ad * running, the current thread should have stopped it.
311 1.22 ad */
312 1.22 ad KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
313 1.36 ad KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
314 1.46 matt KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
315 1.46 matt "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
316 1.46 matt c, c->c_magic, CALLOUT_MAGIC);
317 1.22 ad c->c_magic = 0;
318 1.1 thorpej }
319 1.1 thorpej
320 1.1 thorpej /*
321 1.29 joerg * callout_schedule_locked:
322 1.1 thorpej *
323 1.29 joerg * Schedule a callout to run. The function and argument must
324 1.29 joerg * already be set in the callout structure. Must be called with
325 1.29 joerg * callout_lock.
326 1.1 thorpej */
327 1.29 joerg static void
328 1.36 ad callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
329 1.1 thorpej {
330 1.36 ad struct callout_cpu *cc, *occ;
331 1.20 ad int old_time;
332 1.1 thorpej
333 1.1 thorpej KASSERT(to_ticks >= 0);
334 1.29 joerg KASSERT(c->c_func != NULL);
335 1.1 thorpej
336 1.1 thorpej /* Initialize the time here, it won't change. */
337 1.36 ad occ = c->c_cpu;
338 1.43 ad c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
339 1.1 thorpej
340 1.1 thorpej /*
341 1.1 thorpej * If this timeout is already scheduled and now is moved
342 1.36 ad * earlier, reschedule it now. Otherwise leave it in place
343 1.1 thorpej * and let it be rescheduled later.
344 1.1 thorpej */
345 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0) {
346 1.36 ad /* Leave on existing CPU. */
347 1.36 ad old_time = c->c_time;
348 1.36 ad c->c_time = to_ticks + occ->cc_ticks;
349 1.4 yamt if (c->c_time - old_time < 0) {
350 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
351 1.36 ad CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
352 1.1 thorpej }
353 1.36 ad mutex_spin_exit(lock);
354 1.36 ad return;
355 1.36 ad }
356 1.36 ad
357 1.36 ad cc = curcpu()->ci_data.cpu_callout;
358 1.36 ad if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
359 1.44 ad !mutex_tryenter(cc->cc_lock)) {
360 1.36 ad /* Leave on existing CPU. */
361 1.36 ad c->c_time = to_ticks + occ->cc_ticks;
362 1.36 ad c->c_flags |= CALLOUT_PENDING;
363 1.36 ad CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
364 1.1 thorpej } else {
365 1.36 ad /* Move to this CPU. */
366 1.36 ad c->c_cpu = cc;
367 1.36 ad c->c_time = to_ticks + cc->cc_ticks;
368 1.1 thorpej c->c_flags |= CALLOUT_PENDING;
369 1.36 ad CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
370 1.44 ad mutex_spin_exit(cc->cc_lock);
371 1.1 thorpej }
372 1.36 ad mutex_spin_exit(lock);
373 1.29 joerg }
374 1.29 joerg
375 1.29 joerg /*
376 1.29 joerg * callout_reset:
377 1.29 joerg *
378 1.29 joerg * Reset a callout structure with a new function and argument, and
379 1.29 joerg * schedule it to run.
380 1.29 joerg */
381 1.29 joerg void
382 1.29 joerg callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
383 1.29 joerg {
384 1.29 joerg callout_impl_t *c = (callout_impl_t *)cs;
385 1.36 ad kmutex_t *lock;
386 1.29 joerg
387 1.29 joerg KASSERT(c->c_magic == CALLOUT_MAGIC);
388 1.42 rmind KASSERT(func != NULL);
389 1.29 joerg
390 1.36 ad lock = callout_lock(c);
391 1.29 joerg c->c_func = func;
392 1.29 joerg c->c_arg = arg;
393 1.36 ad callout_schedule_locked(c, lock, to_ticks);
394 1.1 thorpej }
395 1.1 thorpej
396 1.1 thorpej /*
397 1.1 thorpej * callout_schedule:
398 1.1 thorpej *
399 1.1 thorpej * Schedule a callout to run. The function and argument must
400 1.1 thorpej * already be set in the callout structure.
401 1.1 thorpej */
402 1.1 thorpej void
403 1.22 ad callout_schedule(callout_t *cs, int to_ticks)
404 1.1 thorpej {
405 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
406 1.36 ad kmutex_t *lock;
407 1.1 thorpej
408 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
409 1.1 thorpej
410 1.36 ad lock = callout_lock(c);
411 1.36 ad callout_schedule_locked(c, lock, to_ticks);
412 1.1 thorpej }
413 1.1 thorpej
414 1.1 thorpej /*
415 1.1 thorpej * callout_stop:
416 1.1 thorpej *
417 1.36 ad * Try to cancel a pending callout. It may be too late: the callout
418 1.36 ad * could be running on another CPU. If called from interrupt context,
419 1.36 ad * the callout could already be in progress at a lower priority.
420 1.1 thorpej */
421 1.22 ad bool
422 1.22 ad callout_stop(callout_t *cs)
423 1.1 thorpej {
424 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
425 1.36 ad struct callout_cpu *cc;
426 1.36 ad kmutex_t *lock;
427 1.22 ad bool expired;
428 1.22 ad
429 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
430 1.1 thorpej
431 1.36 ad lock = callout_lock(c);
432 1.20 ad
433 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
434 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
435 1.32 ad expired = ((c->c_flags & CALLOUT_FIRED) != 0);
436 1.32 ad c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
437 1.32 ad
438 1.36 ad cc = c->c_cpu;
439 1.36 ad if (cc->cc_active == c) {
440 1.32 ad /*
441 1.32 ad * This is for non-MPSAFE callouts only. To synchronize
442 1.32 ad * effectively we must be called with kernel_lock held.
443 1.32 ad * It's also taken in callout_softclock.
444 1.32 ad */
445 1.36 ad cc->cc_cancel = c;
446 1.32 ad }
447 1.32 ad
448 1.36 ad mutex_spin_exit(lock);
449 1.32 ad
450 1.32 ad return expired;
451 1.32 ad }
452 1.32 ad
453 1.32 ad /*
454 1.32 ad * callout_halt:
455 1.32 ad *
456 1.32 ad * Cancel a pending callout. If in-flight, block until it completes.
457 1.36 ad * May not be called from a hard interrupt handler. If the callout
458 1.36 ad * can take locks, the caller of callout_halt() must not hold any of
459 1.37 ad * those locks, otherwise the two could deadlock. If 'interlock' is
460 1.37 ad * non-NULL and we must wait for the callout to complete, it will be
461 1.37 ad * released and re-acquired before returning.
462 1.32 ad */
463 1.32 ad bool
464 1.38 ad callout_halt(callout_t *cs, void *interlock)
465 1.32 ad {
466 1.32 ad callout_impl_t *c = (callout_impl_t *)cs;
467 1.36 ad struct callout_cpu *cc;
468 1.32 ad struct lwp *l;
469 1.37 ad kmutex_t *lock, *relock;
470 1.32 ad bool expired;
471 1.32 ad
472 1.32 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
473 1.32 ad KASSERT(!cpu_intr_p());
474 1.32 ad
475 1.36 ad lock = callout_lock(c);
476 1.37 ad relock = NULL;
477 1.1 thorpej
478 1.22 ad expired = ((c->c_flags & CALLOUT_FIRED) != 0);
479 1.32 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
480 1.32 ad CIRCQ_REMOVE(&c->c_list);
481 1.9 he c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
482 1.1 thorpej
483 1.32 ad l = curlwp;
484 1.36 ad for (;;) {
485 1.36 ad cc = c->c_cpu;
486 1.36 ad if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
487 1.36 ad break;
488 1.37 ad if (interlock != NULL) {
489 1.37 ad /*
490 1.37 ad * Avoid potential scheduler lock order problems by
491 1.37 ad * dropping the interlock without the callout lock
492 1.37 ad * held.
493 1.37 ad */
494 1.37 ad mutex_spin_exit(lock);
495 1.37 ad mutex_exit(interlock);
496 1.37 ad relock = interlock;
497 1.37 ad interlock = NULL;
498 1.37 ad } else {
499 1.37 ad /* XXX Better to do priority inheritance. */
500 1.37 ad KASSERT(l->l_wchan == NULL);
501 1.37 ad cc->cc_nwait++;
502 1.37 ad cc->cc_ev_block.ev_count++;
503 1.37 ad l->l_kpriority = true;
504 1.44 ad sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
505 1.37 ad sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
506 1.37 ad &sleep_syncobj);
507 1.37 ad sleepq_block(0, false);
508 1.37 ad }
509 1.36 ad lock = callout_lock(c);
510 1.32 ad }
511 1.32 ad
512 1.36 ad mutex_spin_exit(lock);
513 1.37 ad if (__predict_false(relock != NULL))
514 1.37 ad mutex_enter(relock);
515 1.22 ad
516 1.22 ad return expired;
517 1.22 ad }
518 1.22 ad
519 1.36 ad #ifdef notyet
520 1.36 ad /*
521 1.36 ad * callout_bind:
522 1.36 ad *
523 1.36 ad * Bind a callout so that it will only execute on one CPU.
524 1.36 ad * The callout must be stopped, and must be MPSAFE.
525 1.36 ad *
526 1.36 ad * XXX Disabled for now until it is decided how to handle
527 1.36 ad * offlined CPUs. We may want weak+strong binding.
528 1.36 ad */
529 1.36 ad void
530 1.36 ad callout_bind(callout_t *cs, struct cpu_info *ci)
531 1.36 ad {
532 1.36 ad callout_impl_t *c = (callout_impl_t *)cs;
533 1.36 ad struct callout_cpu *cc;
534 1.36 ad kmutex_t *lock;
535 1.36 ad
536 1.36 ad KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
537 1.36 ad KASSERT(c->c_cpu->cc_active != c);
538 1.36 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
539 1.36 ad KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
540 1.36 ad
541 1.36 ad lock = callout_lock(c);
542 1.36 ad cc = ci->ci_data.cpu_callout;
543 1.36 ad c->c_flags |= CALLOUT_BOUND;
544 1.36 ad if (c->c_cpu != cc) {
545 1.36 ad /*
546 1.36 ad * Assigning c_cpu effectively unlocks the callout
547 1.36 ad * structure, as we don't hold the new CPU's lock.
548 1.36 ad * Issue memory barrier to prevent accesses being
549 1.36 ad * reordered.
550 1.36 ad */
551 1.36 ad membar_exit();
552 1.36 ad c->c_cpu = cc;
553 1.36 ad }
554 1.36 ad mutex_spin_exit(lock);
555 1.36 ad }
556 1.36 ad #endif
557 1.36 ad
558 1.22 ad void
559 1.22 ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
560 1.22 ad {
561 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
562 1.36 ad kmutex_t *lock;
563 1.22 ad
564 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
565 1.42 rmind KASSERT(func != NULL);
566 1.22 ad
567 1.36 ad lock = callout_lock(c);
568 1.22 ad c->c_func = func;
569 1.22 ad c->c_arg = arg;
570 1.36 ad mutex_spin_exit(lock);
571 1.22 ad }
572 1.22 ad
573 1.22 ad bool
574 1.22 ad callout_expired(callout_t *cs)
575 1.22 ad {
576 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
577 1.36 ad kmutex_t *lock;
578 1.22 ad bool rv;
579 1.22 ad
580 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
581 1.22 ad
582 1.36 ad lock = callout_lock(c);
583 1.22 ad rv = ((c->c_flags & CALLOUT_FIRED) != 0);
584 1.36 ad mutex_spin_exit(lock);
585 1.22 ad
586 1.22 ad return rv;
587 1.22 ad }
588 1.22 ad
589 1.22 ad bool
590 1.22 ad callout_active(callout_t *cs)
591 1.22 ad {
592 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
593 1.36 ad kmutex_t *lock;
594 1.22 ad bool rv;
595 1.22 ad
596 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
597 1.22 ad
598 1.36 ad lock = callout_lock(c);
599 1.22 ad rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
600 1.36 ad mutex_spin_exit(lock);
601 1.22 ad
602 1.22 ad return rv;
603 1.22 ad }
604 1.22 ad
605 1.22 ad bool
606 1.22 ad callout_pending(callout_t *cs)
607 1.22 ad {
608 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
609 1.36 ad kmutex_t *lock;
610 1.22 ad bool rv;
611 1.22 ad
612 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
613 1.22 ad
614 1.36 ad lock = callout_lock(c);
615 1.22 ad rv = ((c->c_flags & CALLOUT_PENDING) != 0);
616 1.36 ad mutex_spin_exit(lock);
617 1.22 ad
618 1.22 ad return rv;
619 1.22 ad }
620 1.22 ad
621 1.22 ad bool
622 1.22 ad callout_invoking(callout_t *cs)
623 1.22 ad {
624 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
625 1.36 ad kmutex_t *lock;
626 1.22 ad bool rv;
627 1.22 ad
628 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
629 1.22 ad
630 1.36 ad lock = callout_lock(c);
631 1.22 ad rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
632 1.36 ad mutex_spin_exit(lock);
633 1.22 ad
634 1.22 ad return rv;
635 1.22 ad }
636 1.22 ad
637 1.22 ad void
638 1.22 ad callout_ack(callout_t *cs)
639 1.22 ad {
640 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
641 1.36 ad kmutex_t *lock;
642 1.22 ad
643 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
644 1.22 ad
645 1.36 ad lock = callout_lock(c);
646 1.22 ad c->c_flags &= ~CALLOUT_INVOKING;
647 1.36 ad mutex_spin_exit(lock);
648 1.1 thorpej }
649 1.1 thorpej
650 1.1 thorpej /*
651 1.36 ad * callout_hardclock:
652 1.36 ad *
653 1.36 ad * Called from hardclock() once every tick. We schedule a soft
654 1.36 ad * interrupt if there is work to be done.
655 1.1 thorpej */
656 1.22 ad void
657 1.1 thorpej callout_hardclock(void)
658 1.1 thorpej {
659 1.36 ad struct callout_cpu *cc;
660 1.36 ad int needsoftclock, ticks;
661 1.1 thorpej
662 1.36 ad cc = curcpu()->ci_data.cpu_callout;
663 1.44 ad mutex_spin_enter(cc->cc_lock);
664 1.1 thorpej
665 1.36 ad ticks = ++cc->cc_ticks;
666 1.36 ad
667 1.36 ad MOVEBUCKET(cc, 0, ticks);
668 1.36 ad if (MASKWHEEL(0, ticks) == 0) {
669 1.36 ad MOVEBUCKET(cc, 1, ticks);
670 1.36 ad if (MASKWHEEL(1, ticks) == 0) {
671 1.36 ad MOVEBUCKET(cc, 2, ticks);
672 1.36 ad if (MASKWHEEL(2, ticks) == 0)
673 1.36 ad MOVEBUCKET(cc, 3, ticks);
674 1.1 thorpej }
675 1.1 thorpej }
676 1.1 thorpej
677 1.36 ad needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
678 1.44 ad mutex_spin_exit(cc->cc_lock);
679 1.1 thorpej
680 1.22 ad if (needsoftclock)
681 1.36 ad softint_schedule(callout_sih);
682 1.1 thorpej }
683 1.1 thorpej
684 1.36 ad /*
685 1.36 ad * callout_softclock:
686 1.36 ad *
687 1.36 ad * Soft interrupt handler, scheduled above if there is work to
688 1.36 ad * be done. Callouts are made in soft interrupt context.
689 1.36 ad */
690 1.22 ad static void
691 1.22 ad callout_softclock(void *v)
692 1.1 thorpej {
693 1.22 ad callout_impl_t *c;
694 1.36 ad struct callout_cpu *cc;
695 1.1 thorpej void (*func)(void *);
696 1.1 thorpej void *arg;
697 1.36 ad int mpsafe, count, ticks, delta;
698 1.22 ad lwp_t *l;
699 1.1 thorpej
700 1.22 ad l = curlwp;
701 1.36 ad KASSERT(l->l_cpu == curcpu());
702 1.36 ad cc = l->l_cpu->ci_data.cpu_callout;
703 1.1 thorpej
704 1.44 ad mutex_spin_enter(cc->cc_lock);
705 1.36 ad cc->cc_lwp = l;
706 1.36 ad while (!CIRCQ_EMPTY(&cc->cc_todo)) {
707 1.36 ad c = CIRCQ_FIRST(&cc->cc_todo);
708 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
709 1.22 ad KASSERT(c->c_func != NULL);
710 1.36 ad KASSERT(c->c_cpu == cc);
711 1.26 ad KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
712 1.26 ad KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
713 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
714 1.1 thorpej
715 1.1 thorpej /* If due run it, otherwise insert it into the right bucket. */
716 1.36 ad ticks = cc->cc_ticks;
717 1.36 ad delta = c->c_time - ticks;
718 1.36 ad if (delta > 0) {
719 1.36 ad CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
720 1.36 ad continue;
721 1.36 ad }
722 1.36 ad if (delta < 0)
723 1.36 ad cc->cc_ev_late.ev_count++;
724 1.36 ad
725 1.43 ad c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
726 1.43 ad (CALLOUT_FIRED | CALLOUT_INVOKING);
727 1.36 ad mpsafe = (c->c_flags & CALLOUT_MPSAFE);
728 1.36 ad func = c->c_func;
729 1.36 ad arg = c->c_arg;
730 1.36 ad cc->cc_active = c;
731 1.36 ad
732 1.44 ad mutex_spin_exit(cc->cc_lock);
733 1.42 rmind KASSERT(func != NULL);
734 1.44 ad if (__predict_false(!mpsafe)) {
735 1.36 ad KERNEL_LOCK(1, NULL);
736 1.36 ad (*func)(arg);
737 1.36 ad KERNEL_UNLOCK_ONE(NULL);
738 1.36 ad } else
739 1.36 ad (*func)(arg);
740 1.44 ad mutex_spin_enter(cc->cc_lock);
741 1.36 ad
742 1.36 ad /*
743 1.36 ad * We can't touch 'c' here because it might be
744 1.36 ad * freed already. If LWPs waiting for callout
745 1.36 ad * to complete, awaken them.
746 1.36 ad */
747 1.36 ad cc->cc_active = NULL;
748 1.36 ad if ((count = cc->cc_nwait) != 0) {
749 1.36 ad cc->cc_nwait = 0;
750 1.36 ad /* sleepq_wake() drops the lock. */
751 1.44 ad sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
752 1.44 ad mutex_spin_enter(cc->cc_lock);
753 1.1 thorpej }
754 1.1 thorpej }
755 1.36 ad cc->cc_lwp = NULL;
756 1.44 ad mutex_spin_exit(cc->cc_lock);
757 1.1 thorpej }
758 1.1 thorpej
759 1.1 thorpej #ifdef DDB
760 1.1 thorpej static void
761 1.36 ad db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
762 1.1 thorpej {
763 1.22 ad callout_impl_t *c;
764 1.1 thorpej db_expr_t offset;
765 1.15 christos const char *name;
766 1.15 christos static char question[] = "?";
767 1.36 ad int b;
768 1.1 thorpej
769 1.11 scw if (CIRCQ_EMPTY(bucket))
770 1.11 scw return;
771 1.11 scw
772 1.11 scw for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
773 1.10 scw db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
774 1.10 scw &offset);
775 1.15 christos name = name ? name : question;
776 1.36 ad b = (bucket - cc->cc_wheel);
777 1.36 ad if (b < 0)
778 1.36 ad b = -WHEELSIZE;
779 1.36 ad db_printf("%9d %2d/%-4d %16lx %s\n",
780 1.36 ad c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
781 1.36 ad (u_long)c->c_arg, name);
782 1.11 scw if (CIRCQ_LAST(&c->c_list, bucket))
783 1.11 scw break;
784 1.1 thorpej }
785 1.1 thorpej }
786 1.1 thorpej
787 1.1 thorpej void
788 1.21 matt db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
789 1.1 thorpej {
790 1.36 ad CPU_INFO_ITERATOR cii;
791 1.36 ad struct callout_cpu *cc;
792 1.36 ad struct cpu_info *ci;
793 1.1 thorpej int b;
794 1.1 thorpej
795 1.1 thorpej db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
796 1.1 thorpej db_printf(" ticks wheel arg func\n");
797 1.1 thorpej
798 1.1 thorpej /*
799 1.1 thorpej * Don't lock the callwheel; all the other CPUs are paused
800 1.1 thorpej * anyhow, and we might be called in a circumstance where
801 1.1 thorpej * some other CPU was paused while holding the lock.
802 1.1 thorpej */
803 1.36 ad for (CPU_INFO_FOREACH(cii, ci)) {
804 1.36 ad cc = ci->ci_data.cpu_callout;
805 1.36 ad db_show_callout_bucket(cc, &cc->cc_todo);
806 1.36 ad }
807 1.36 ad for (b = 0; b < BUCKETS; b++) {
808 1.36 ad for (CPU_INFO_FOREACH(cii, ci)) {
809 1.36 ad cc = ci->ci_data.cpu_callout;
810 1.36 ad db_show_callout_bucket(cc, &cc->cc_wheel[b]);
811 1.36 ad }
812 1.36 ad }
813 1.1 thorpej }
814 1.1 thorpej #endif /* DDB */
815