Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.60
      1  1.60      maxv /*	$NetBSD: kern_timeout.c,v 1.60 2020/04/13 15:54:45 maxv Exp $	*/
      2   1.1   thorpej 
      3   1.1   thorpej /*-
      4  1.57        ad  * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
      5   1.1   thorpej  * All rights reserved.
      6   1.1   thorpej  *
      7   1.1   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.22        ad  * by Jason R. Thorpe, and by Andrew Doran.
      9   1.1   thorpej  *
     10   1.1   thorpej  * Redistribution and use in source and binary forms, with or without
     11   1.1   thorpej  * modification, are permitted provided that the following conditions
     12   1.1   thorpej  * are met:
     13   1.1   thorpej  * 1. Redistributions of source code must retain the above copyright
     14   1.1   thorpej  *    notice, this list of conditions and the following disclaimer.
     15   1.1   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17   1.1   thorpej  *    documentation and/or other materials provided with the distribution.
     18   1.1   thorpej  *
     19   1.1   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1   thorpej  */
     31   1.1   thorpej 
     32   1.1   thorpej /*
     33   1.1   thorpej  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34   1.1   thorpej  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35  1.14     perry  * All rights reserved.
     36  1.14     perry  *
     37  1.14     perry  * Redistribution and use in source and binary forms, with or without
     38  1.14     perry  * modification, are permitted provided that the following conditions
     39  1.14     perry  * are met:
     40   1.1   thorpej  *
     41  1.14     perry  * 1. Redistributions of source code must retain the above copyright
     42  1.14     perry  *    notice, this list of conditions and the following disclaimer.
     43  1.14     perry  * 2. Redistributions in binary form must reproduce the above copyright
     44  1.14     perry  *    notice, this list of conditions and the following disclaimer in the
     45  1.14     perry  *    documentation and/or other materials provided with the distribution.
     46   1.1   thorpej  * 3. The name of the author may not be used to endorse or promote products
     47  1.14     perry  *    derived from this software without specific prior written permission.
     48   1.1   thorpej  *
     49   1.1   thorpej  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50   1.1   thorpej  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51   1.1   thorpej  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52   1.1   thorpej  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53   1.1   thorpej  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54   1.1   thorpej  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55   1.1   thorpej  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56   1.1   thorpej  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57   1.1   thorpej  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  1.14     perry  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59   1.1   thorpej  */
     60   1.7     lukem 
     61   1.7     lukem #include <sys/cdefs.h>
     62  1.60      maxv __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.60 2020/04/13 15:54:45 maxv Exp $");
     63   1.1   thorpej 
     64   1.1   thorpej /*
     65  1.22        ad  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  1.36        ad  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  1.36        ad  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  1.36        ad  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  1.36        ad  * a Timer Facility" by George Varghese and Tony Lauck.
     70  1.22        ad  *
     71  1.22        ad  * Some of the "math" in here is a bit tricky.  We have to beware of
     72  1.22        ad  * wrapping ints.
     73  1.22        ad  *
     74  1.22        ad  * We use the fact that any element added to the queue must be added with
     75  1.22        ad  * a positive time.  That means that any element `to' on the queue cannot
     76  1.22        ad  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77  1.22        ad  * be positive or negative so comparing it with anything is dangerous.
     78  1.22        ad  * The only way we can use the c->c_time value in any predictable way is
     79  1.22        ad  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  1.36        ad  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81  1.22        ad  * timeouts and 0 or negative for due timeouts.
     82   1.1   thorpej  */
     83   1.1   thorpej 
     84  1.24        ad #define	_CALLOUT_PRIVATE
     85  1.24        ad 
     86   1.1   thorpej #include <sys/param.h>
     87   1.1   thorpej #include <sys/systm.h>
     88   1.1   thorpej #include <sys/kernel.h>
     89   1.1   thorpej #include <sys/callout.h>
     90  1.45     rmind #include <sys/lwp.h>
     91  1.20        ad #include <sys/mutex.h>
     92  1.22        ad #include <sys/proc.h>
     93  1.22        ad #include <sys/sleepq.h>
     94  1.22        ad #include <sys/syncobj.h>
     95  1.22        ad #include <sys/evcnt.h>
     96  1.27        ad #include <sys/intr.h>
     97  1.33        ad #include <sys/cpu.h>
     98  1.36        ad #include <sys/kmem.h>
     99   1.1   thorpej 
    100   1.1   thorpej #ifdef DDB
    101   1.1   thorpej #include <machine/db_machdep.h>
    102   1.1   thorpej #include <ddb/db_interface.h>
    103   1.1   thorpej #include <ddb/db_access.h>
    104  1.49  christos #include <ddb/db_cpu.h>
    105   1.1   thorpej #include <ddb/db_sym.h>
    106   1.1   thorpej #include <ddb/db_output.h>
    107   1.1   thorpej #endif
    108   1.1   thorpej 
    109  1.22        ad #define BUCKETS		1024
    110  1.22        ad #define WHEELSIZE	256
    111  1.22        ad #define WHEELMASK	255
    112  1.22        ad #define WHEELBITS	8
    113  1.22        ad 
    114   1.1   thorpej #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    115   1.1   thorpej 
    116  1.36        ad #define BUCKET(cc, rel, abs)						\
    117   1.1   thorpej     (((rel) <= (1 << (2*WHEELBITS)))					\
    118   1.1   thorpej     	? ((rel) <= (1 << WHEELBITS))					\
    119  1.36        ad             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    120  1.36        ad             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    121   1.1   thorpej         : ((rel) <= (1 << (3*WHEELBITS)))				\
    122  1.36        ad             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    123  1.36        ad             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    124   1.1   thorpej 
    125  1.36        ad #define MOVEBUCKET(cc, wheel, time)					\
    126  1.36        ad     CIRCQ_APPEND(&(cc)->cc_todo,					\
    127  1.36        ad         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    128   1.1   thorpej 
    129   1.1   thorpej /*
    130   1.1   thorpej  * Circular queue definitions.
    131   1.1   thorpej  */
    132   1.1   thorpej 
    133  1.11       scw #define CIRCQ_INIT(list)						\
    134   1.1   thorpej do {									\
    135  1.11       scw         (list)->cq_next_l = (list);					\
    136  1.11       scw         (list)->cq_prev_l = (list);					\
    137   1.1   thorpej } while (/*CONSTCOND*/0)
    138   1.1   thorpej 
    139   1.1   thorpej #define CIRCQ_INSERT(elem, list)					\
    140   1.1   thorpej do {									\
    141  1.11       scw         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    142  1.11       scw         (elem)->cq_next_l = (list);					\
    143  1.11       scw         (list)->cq_prev_l->cq_next_l = (elem);				\
    144  1.11       scw         (list)->cq_prev_l = (elem);					\
    145   1.1   thorpej } while (/*CONSTCOND*/0)
    146   1.1   thorpej 
    147   1.1   thorpej #define CIRCQ_APPEND(fst, snd)						\
    148   1.1   thorpej do {									\
    149   1.1   thorpej         if (!CIRCQ_EMPTY(snd)) {					\
    150  1.11       scw                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    151  1.11       scw                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    152  1.11       scw                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    153  1.11       scw                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    154   1.1   thorpej                 CIRCQ_INIT(snd);					\
    155   1.1   thorpej         }								\
    156   1.1   thorpej } while (/*CONSTCOND*/0)
    157   1.1   thorpej 
    158   1.1   thorpej #define CIRCQ_REMOVE(elem)						\
    159   1.1   thorpej do {									\
    160  1.11       scw         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    161  1.11       scw         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    162   1.1   thorpej } while (/*CONSTCOND*/0)
    163   1.1   thorpej 
    164  1.11       scw #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    165  1.11       scw #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    166  1.11       scw #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    167  1.11       scw #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    168   1.1   thorpej 
    169  1.36        ad struct callout_cpu {
    170  1.44        ad 	kmutex_t	*cc_lock;
    171  1.36        ad 	sleepq_t	cc_sleepq;
    172  1.36        ad 	u_int		cc_nwait;
    173  1.36        ad 	u_int		cc_ticks;
    174  1.36        ad 	lwp_t		*cc_lwp;
    175  1.36        ad 	callout_impl_t	*cc_active;
    176  1.36        ad 	callout_impl_t	*cc_cancel;
    177  1.36        ad 	struct evcnt	cc_ev_late;
    178  1.36        ad 	struct evcnt	cc_ev_block;
    179  1.36        ad 	struct callout_circq cc_todo;		/* Worklist */
    180  1.36        ad 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    181  1.36        ad 	char		cc_name1[12];
    182  1.36        ad 	char		cc_name2[12];
    183  1.36        ad };
    184  1.36        ad 
    185  1.49  christos #ifndef CRASH
    186  1.49  christos 
    187  1.49  christos static void	callout_softclock(void *);
    188  1.57        ad static void	callout_wait(callout_impl_t *, void *, kmutex_t *);
    189  1.57        ad 
    190  1.57        ad static struct callout_cpu callout_cpu0 __cacheline_aligned;
    191  1.57        ad static void *callout_sih __read_mostly;
    192  1.36        ad 
    193  1.36        ad static inline kmutex_t *
    194  1.36        ad callout_lock(callout_impl_t *c)
    195  1.36        ad {
    196  1.44        ad 	struct callout_cpu *cc;
    197  1.36        ad 	kmutex_t *lock;
    198  1.36        ad 
    199  1.36        ad 	for (;;) {
    200  1.44        ad 		cc = c->c_cpu;
    201  1.44        ad 		lock = cc->cc_lock;
    202  1.36        ad 		mutex_spin_enter(lock);
    203  1.44        ad 		if (__predict_true(cc == c->c_cpu))
    204  1.36        ad 			return lock;
    205  1.36        ad 		mutex_spin_exit(lock);
    206  1.36        ad 	}
    207  1.36        ad }
    208   1.5   thorpej 
    209   1.1   thorpej /*
    210   1.1   thorpej  * callout_startup:
    211   1.1   thorpej  *
    212   1.1   thorpej  *	Initialize the callout facility, called at system startup time.
    213  1.36        ad  *	Do just enough to allow callouts to be safely registered.
    214   1.1   thorpej  */
    215   1.1   thorpej void
    216   1.1   thorpej callout_startup(void)
    217   1.1   thorpej {
    218  1.36        ad 	struct callout_cpu *cc;
    219   1.1   thorpej 	int b;
    220   1.1   thorpej 
    221  1.36        ad 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    222  1.22        ad 
    223  1.36        ad 	cc = &callout_cpu0;
    224  1.44        ad 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    225  1.36        ad 	CIRCQ_INIT(&cc->cc_todo);
    226   1.1   thorpej 	for (b = 0; b < BUCKETS; b++)
    227  1.36        ad 		CIRCQ_INIT(&cc->cc_wheel[b]);
    228  1.36        ad 	curcpu()->ci_data.cpu_callout = cc;
    229  1.22        ad }
    230  1.22        ad 
    231  1.22        ad /*
    232  1.36        ad  * callout_init_cpu:
    233  1.22        ad  *
    234  1.36        ad  *	Per-CPU initialization.
    235  1.22        ad  */
    236  1.47    martin CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    237  1.47    martin 
    238  1.22        ad void
    239  1.36        ad callout_init_cpu(struct cpu_info *ci)
    240  1.22        ad {
    241  1.36        ad 	struct callout_cpu *cc;
    242  1.36        ad 	int b;
    243  1.22        ad 
    244  1.36        ad 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    245  1.36        ad 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    246  1.44        ad 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    247  1.36        ad 		CIRCQ_INIT(&cc->cc_todo);
    248  1.36        ad 		for (b = 0; b < BUCKETS; b++)
    249  1.36        ad 			CIRCQ_INIT(&cc->cc_wheel[b]);
    250  1.36        ad 	} else {
    251  1.36        ad 		/* Boot CPU, one time only. */
    252  1.36        ad 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    253  1.36        ad 		    callout_softclock, NULL);
    254  1.36        ad 		if (callout_sih == NULL)
    255  1.36        ad 			panic("callout_init_cpu (2)");
    256  1.36        ad 	}
    257  1.36        ad 
    258  1.40        ad 	sleepq_init(&cc->cc_sleepq);
    259  1.36        ad 
    260  1.36        ad 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    261  1.36        ad 	    cpu_index(ci));
    262  1.36        ad 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    263  1.36        ad 	    NULL, "callout", cc->cc_name1);
    264  1.36        ad 
    265  1.36        ad 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    266  1.36        ad 	    cpu_index(ci));
    267  1.36        ad 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    268  1.36        ad 	    NULL, "callout", cc->cc_name2);
    269  1.36        ad 
    270  1.36        ad 	ci->ci_data.cpu_callout = cc;
    271   1.1   thorpej }
    272   1.1   thorpej 
    273   1.1   thorpej /*
    274   1.1   thorpej  * callout_init:
    275   1.1   thorpej  *
    276  1.36        ad  *	Initialize a callout structure.  This must be quick, so we fill
    277  1.36        ad  *	only the minimum number of fields.
    278   1.1   thorpej  */
    279   1.1   thorpej void
    280  1.22        ad callout_init(callout_t *cs, u_int flags)
    281   1.1   thorpej {
    282  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    283  1.36        ad 	struct callout_cpu *cc;
    284  1.22        ad 
    285  1.22        ad 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    286   1.1   thorpej 
    287  1.36        ad 	cc = curcpu()->ci_data.cpu_callout;
    288  1.36        ad 	c->c_func = NULL;
    289  1.22        ad 	c->c_magic = CALLOUT_MAGIC;
    290  1.36        ad 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    291  1.36        ad 		c->c_flags = flags;
    292  1.36        ad 		c->c_cpu = cc;
    293  1.36        ad 		return;
    294  1.36        ad 	}
    295  1.36        ad 	c->c_flags = flags | CALLOUT_BOUND;
    296  1.36        ad 	c->c_cpu = &callout_cpu0;
    297  1.22        ad }
    298  1.22        ad 
    299  1.22        ad /*
    300  1.22        ad  * callout_destroy:
    301  1.22        ad  *
    302  1.22        ad  *	Destroy a callout structure.  The callout must be stopped.
    303  1.22        ad  */
    304  1.22        ad void
    305  1.22        ad callout_destroy(callout_t *cs)
    306  1.22        ad {
    307  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    308  1.22        ad 
    309  1.53  christos 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
    310  1.53  christos 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
    311  1.53  christos 	    c, c->c_magic, CALLOUT_MAGIC);
    312  1.22        ad 	/*
    313  1.22        ad 	 * It's not necessary to lock in order to see the correct value
    314  1.22        ad 	 * of c->c_flags.  If the callout could potentially have been
    315  1.22        ad 	 * running, the current thread should have stopped it.
    316  1.22        ad 	 */
    317  1.48    martin 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
    318  1.59        ad 	    "pending callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    319  1.59        ad 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    320  1.59        ad 	KASSERTMSG(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c,
    321  1.59        ad 	    "running callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    322  1.48    martin 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    323  1.22        ad 	c->c_magic = 0;
    324   1.1   thorpej }
    325   1.1   thorpej 
    326   1.1   thorpej /*
    327  1.29     joerg  * callout_schedule_locked:
    328   1.1   thorpej  *
    329  1.29     joerg  *	Schedule a callout to run.  The function and argument must
    330  1.29     joerg  *	already be set in the callout structure.  Must be called with
    331  1.29     joerg  *	callout_lock.
    332   1.1   thorpej  */
    333  1.29     joerg static void
    334  1.36        ad callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    335   1.1   thorpej {
    336  1.36        ad 	struct callout_cpu *cc, *occ;
    337  1.20        ad 	int old_time;
    338   1.1   thorpej 
    339   1.1   thorpej 	KASSERT(to_ticks >= 0);
    340  1.29     joerg 	KASSERT(c->c_func != NULL);
    341   1.1   thorpej 
    342   1.1   thorpej 	/* Initialize the time here, it won't change. */
    343  1.36        ad 	occ = c->c_cpu;
    344  1.43        ad 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    345   1.1   thorpej 
    346   1.1   thorpej 	/*
    347   1.1   thorpej 	 * If this timeout is already scheduled and now is moved
    348  1.36        ad 	 * earlier, reschedule it now.  Otherwise leave it in place
    349   1.1   thorpej 	 * and let it be rescheduled later.
    350   1.1   thorpej 	 */
    351  1.22        ad 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    352  1.36        ad 		/* Leave on existing CPU. */
    353  1.36        ad 		old_time = c->c_time;
    354  1.36        ad 		c->c_time = to_ticks + occ->cc_ticks;
    355   1.4      yamt 		if (c->c_time - old_time < 0) {
    356   1.1   thorpej 			CIRCQ_REMOVE(&c->c_list);
    357  1.36        ad 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    358   1.1   thorpej 		}
    359  1.36        ad 		mutex_spin_exit(lock);
    360  1.36        ad 		return;
    361  1.36        ad 	}
    362  1.36        ad 
    363  1.36        ad 	cc = curcpu()->ci_data.cpu_callout;
    364  1.36        ad 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    365  1.44        ad 	    !mutex_tryenter(cc->cc_lock)) {
    366  1.36        ad 		/* Leave on existing CPU. */
    367  1.36        ad 		c->c_time = to_ticks + occ->cc_ticks;
    368  1.36        ad 		c->c_flags |= CALLOUT_PENDING;
    369  1.36        ad 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    370   1.1   thorpej 	} else {
    371  1.36        ad 		/* Move to this CPU. */
    372  1.36        ad 		c->c_cpu = cc;
    373  1.36        ad 		c->c_time = to_ticks + cc->cc_ticks;
    374   1.1   thorpej 		c->c_flags |= CALLOUT_PENDING;
    375  1.36        ad 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    376  1.44        ad 		mutex_spin_exit(cc->cc_lock);
    377   1.1   thorpej 	}
    378  1.36        ad 	mutex_spin_exit(lock);
    379  1.29     joerg }
    380  1.29     joerg 
    381  1.29     joerg /*
    382  1.29     joerg  * callout_reset:
    383  1.29     joerg  *
    384  1.29     joerg  *	Reset a callout structure with a new function and argument, and
    385  1.29     joerg  *	schedule it to run.
    386  1.29     joerg  */
    387  1.29     joerg void
    388  1.29     joerg callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    389  1.29     joerg {
    390  1.29     joerg 	callout_impl_t *c = (callout_impl_t *)cs;
    391  1.36        ad 	kmutex_t *lock;
    392  1.29     joerg 
    393  1.29     joerg 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    394  1.42     rmind 	KASSERT(func != NULL);
    395  1.29     joerg 
    396  1.36        ad 	lock = callout_lock(c);
    397  1.29     joerg 	c->c_func = func;
    398  1.29     joerg 	c->c_arg = arg;
    399  1.36        ad 	callout_schedule_locked(c, lock, to_ticks);
    400   1.1   thorpej }
    401   1.1   thorpej 
    402   1.1   thorpej /*
    403   1.1   thorpej  * callout_schedule:
    404   1.1   thorpej  *
    405   1.1   thorpej  *	Schedule a callout to run.  The function and argument must
    406   1.1   thorpej  *	already be set in the callout structure.
    407   1.1   thorpej  */
    408   1.1   thorpej void
    409  1.22        ad callout_schedule(callout_t *cs, int to_ticks)
    410   1.1   thorpej {
    411  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    412  1.36        ad 	kmutex_t *lock;
    413   1.1   thorpej 
    414  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    415   1.1   thorpej 
    416  1.36        ad 	lock = callout_lock(c);
    417  1.36        ad 	callout_schedule_locked(c, lock, to_ticks);
    418   1.1   thorpej }
    419   1.1   thorpej 
    420   1.1   thorpej /*
    421   1.1   thorpej  * callout_stop:
    422   1.1   thorpej  *
    423  1.36        ad  *	Try to cancel a pending callout.  It may be too late: the callout
    424  1.36        ad  *	could be running on another CPU.  If called from interrupt context,
    425  1.36        ad  *	the callout could already be in progress at a lower priority.
    426   1.1   thorpej  */
    427  1.22        ad bool
    428  1.22        ad callout_stop(callout_t *cs)
    429   1.1   thorpej {
    430  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    431  1.36        ad 	struct callout_cpu *cc;
    432  1.36        ad 	kmutex_t *lock;
    433  1.22        ad 	bool expired;
    434  1.22        ad 
    435  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    436   1.1   thorpej 
    437  1.36        ad 	lock = callout_lock(c);
    438  1.20        ad 
    439  1.22        ad 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    440   1.1   thorpej 		CIRCQ_REMOVE(&c->c_list);
    441  1.32        ad 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    442  1.32        ad 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    443  1.32        ad 
    444  1.36        ad 	cc = c->c_cpu;
    445  1.36        ad 	if (cc->cc_active == c) {
    446  1.32        ad 		/*
    447  1.32        ad 		 * This is for non-MPSAFE callouts only.  To synchronize
    448  1.32        ad 		 * effectively we must be called with kernel_lock held.
    449  1.32        ad 		 * It's also taken in callout_softclock.
    450  1.32        ad 		 */
    451  1.36        ad 		cc->cc_cancel = c;
    452  1.32        ad 	}
    453  1.32        ad 
    454  1.36        ad 	mutex_spin_exit(lock);
    455  1.32        ad 
    456  1.32        ad 	return expired;
    457  1.32        ad }
    458  1.32        ad 
    459  1.32        ad /*
    460  1.32        ad  * callout_halt:
    461  1.32        ad  *
    462  1.32        ad  *	Cancel a pending callout.  If in-flight, block until it completes.
    463  1.36        ad  *	May not be called from a hard interrupt handler.  If the callout
    464  1.36        ad  * 	can take locks, the caller of callout_halt() must not hold any of
    465  1.37        ad  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    466  1.37        ad  *	non-NULL and we must wait for the callout to complete, it will be
    467  1.37        ad  *	released and re-acquired before returning.
    468  1.32        ad  */
    469  1.32        ad bool
    470  1.38        ad callout_halt(callout_t *cs, void *interlock)
    471  1.32        ad {
    472  1.32        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    473  1.57        ad 	kmutex_t *lock;
    474  1.57        ad 	int flags;
    475  1.32        ad 
    476  1.32        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    477  1.32        ad 	KASSERT(!cpu_intr_p());
    478  1.54     ozaki 	KASSERT(interlock == NULL || mutex_owned(interlock));
    479  1.32        ad 
    480  1.57        ad 	/* Fast path. */
    481  1.36        ad 	lock = callout_lock(c);
    482  1.57        ad 	flags = c->c_flags;
    483  1.57        ad 	if ((flags & CALLOUT_PENDING) != 0)
    484  1.57        ad 		CIRCQ_REMOVE(&c->c_list);
    485  1.57        ad 	c->c_flags = flags & ~(CALLOUT_PENDING|CALLOUT_FIRED);
    486  1.57        ad 	if (__predict_false(flags & CALLOUT_FIRED)) {
    487  1.57        ad 		callout_wait(c, interlock, lock);
    488  1.57        ad 		return true;
    489  1.57        ad 	}
    490  1.57        ad 	mutex_spin_exit(lock);
    491  1.57        ad 	return false;
    492  1.57        ad }
    493   1.1   thorpej 
    494  1.57        ad /*
    495  1.57        ad  * callout_wait:
    496  1.57        ad  *
    497  1.57        ad  *	Slow path for callout_halt().  Deliberately marked __noinline to
    498  1.57        ad  *	prevent unneeded overhead in the caller.
    499  1.57        ad  */
    500  1.57        ad static void __noinline
    501  1.57        ad callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
    502  1.57        ad {
    503  1.57        ad 	struct callout_cpu *cc;
    504  1.57        ad 	struct lwp *l;
    505  1.57        ad 	kmutex_t *relock;
    506   1.1   thorpej 
    507  1.32        ad 	l = curlwp;
    508  1.57        ad 	relock = NULL;
    509  1.36        ad 	for (;;) {
    510  1.58        ad 		/*
    511  1.58        ad 		 * At this point we know the callout is not pending, but it
    512  1.58        ad 		 * could be running on a CPU somewhere.  That can be curcpu
    513  1.58        ad 		 * in a few cases:
    514  1.58        ad 		 *
    515  1.58        ad 		 * - curlwp is a higher priority soft interrupt
    516  1.58        ad 		 * - the callout blocked on a lock and is currently asleep
    517  1.58        ad 		 * - the callout itself has called callout_halt() (nice!)
    518  1.58        ad 		 */
    519  1.36        ad 		cc = c->c_cpu;
    520  1.36        ad 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    521  1.36        ad 			break;
    522  1.58        ad 
    523  1.58        ad 		/* It's running - need to wait for it to complete. */
    524  1.37        ad 		if (interlock != NULL) {
    525  1.37        ad 			/*
    526  1.37        ad 			 * Avoid potential scheduler lock order problems by
    527  1.37        ad 			 * dropping the interlock without the callout lock
    528  1.58        ad 			 * held; then retry.
    529  1.37        ad 			 */
    530  1.37        ad 			mutex_spin_exit(lock);
    531  1.37        ad 			mutex_exit(interlock);
    532  1.37        ad 			relock = interlock;
    533  1.37        ad 			interlock = NULL;
    534  1.37        ad 		} else {
    535  1.37        ad 			/* XXX Better to do priority inheritance. */
    536  1.37        ad 			KASSERT(l->l_wchan == NULL);
    537  1.37        ad 			cc->cc_nwait++;
    538  1.37        ad 			cc->cc_ev_block.ev_count++;
    539  1.37        ad 			l->l_kpriority = true;
    540  1.44        ad 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    541  1.37        ad 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    542  1.37        ad 			    &sleep_syncobj);
    543  1.37        ad 			sleepq_block(0, false);
    544  1.37        ad 		}
    545  1.58        ad 
    546  1.58        ad 		/*
    547  1.58        ad 		 * Re-lock the callout and check the state of play again.
    548  1.58        ad 		 * It's a common design pattern for callouts to re-schedule
    549  1.58        ad 		 * themselves so put a stop to it again if needed.
    550  1.58        ad 		 */
    551  1.36        ad 		lock = callout_lock(c);
    552  1.58        ad 		if ((c->c_flags & CALLOUT_PENDING) != 0)
    553  1.58        ad 			CIRCQ_REMOVE(&c->c_list);
    554  1.58        ad 		c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    555  1.32        ad 	}
    556  1.32        ad 
    557  1.36        ad 	mutex_spin_exit(lock);
    558  1.37        ad 	if (__predict_false(relock != NULL))
    559  1.37        ad 		mutex_enter(relock);
    560  1.22        ad }
    561  1.22        ad 
    562  1.36        ad #ifdef notyet
    563  1.36        ad /*
    564  1.36        ad  * callout_bind:
    565  1.36        ad  *
    566  1.36        ad  *	Bind a callout so that it will only execute on one CPU.
    567  1.36        ad  *	The callout must be stopped, and must be MPSAFE.
    568  1.36        ad  *
    569  1.36        ad  *	XXX Disabled for now until it is decided how to handle
    570  1.36        ad  *	offlined CPUs.  We may want weak+strong binding.
    571  1.36        ad  */
    572  1.36        ad void
    573  1.36        ad callout_bind(callout_t *cs, struct cpu_info *ci)
    574  1.36        ad {
    575  1.36        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    576  1.36        ad 	struct callout_cpu *cc;
    577  1.36        ad 	kmutex_t *lock;
    578  1.36        ad 
    579  1.36        ad 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    580  1.36        ad 	KASSERT(c->c_cpu->cc_active != c);
    581  1.36        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    582  1.36        ad 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    583  1.36        ad 
    584  1.36        ad 	lock = callout_lock(c);
    585  1.36        ad 	cc = ci->ci_data.cpu_callout;
    586  1.36        ad 	c->c_flags |= CALLOUT_BOUND;
    587  1.36        ad 	if (c->c_cpu != cc) {
    588  1.36        ad 		/*
    589  1.36        ad 		 * Assigning c_cpu effectively unlocks the callout
    590  1.36        ad 		 * structure, as we don't hold the new CPU's lock.
    591  1.36        ad 		 * Issue memory barrier to prevent accesses being
    592  1.36        ad 		 * reordered.
    593  1.36        ad 		 */
    594  1.36        ad 		membar_exit();
    595  1.36        ad 		c->c_cpu = cc;
    596  1.36        ad 	}
    597  1.36        ad 	mutex_spin_exit(lock);
    598  1.36        ad }
    599  1.36        ad #endif
    600  1.36        ad 
    601  1.22        ad void
    602  1.22        ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    603  1.22        ad {
    604  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    605  1.36        ad 	kmutex_t *lock;
    606  1.22        ad 
    607  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    608  1.42     rmind 	KASSERT(func != NULL);
    609  1.22        ad 
    610  1.36        ad 	lock = callout_lock(c);
    611  1.22        ad 	c->c_func = func;
    612  1.22        ad 	c->c_arg = arg;
    613  1.36        ad 	mutex_spin_exit(lock);
    614  1.22        ad }
    615  1.22        ad 
    616  1.22        ad bool
    617  1.22        ad callout_expired(callout_t *cs)
    618  1.22        ad {
    619  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    620  1.36        ad 	kmutex_t *lock;
    621  1.22        ad 	bool rv;
    622  1.22        ad 
    623  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    624  1.22        ad 
    625  1.36        ad 	lock = callout_lock(c);
    626  1.22        ad 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    627  1.36        ad 	mutex_spin_exit(lock);
    628  1.22        ad 
    629  1.22        ad 	return rv;
    630  1.22        ad }
    631  1.22        ad 
    632  1.22        ad bool
    633  1.22        ad callout_active(callout_t *cs)
    634  1.22        ad {
    635  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    636  1.36        ad 	kmutex_t *lock;
    637  1.22        ad 	bool rv;
    638  1.22        ad 
    639  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    640  1.22        ad 
    641  1.36        ad 	lock = callout_lock(c);
    642  1.22        ad 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    643  1.36        ad 	mutex_spin_exit(lock);
    644  1.22        ad 
    645  1.22        ad 	return rv;
    646  1.22        ad }
    647  1.22        ad 
    648  1.22        ad bool
    649  1.22        ad callout_pending(callout_t *cs)
    650  1.22        ad {
    651  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    652  1.36        ad 	kmutex_t *lock;
    653  1.22        ad 	bool rv;
    654  1.22        ad 
    655  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    656  1.22        ad 
    657  1.36        ad 	lock = callout_lock(c);
    658  1.22        ad 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    659  1.36        ad 	mutex_spin_exit(lock);
    660  1.22        ad 
    661  1.22        ad 	return rv;
    662  1.22        ad }
    663  1.22        ad 
    664  1.22        ad bool
    665  1.22        ad callout_invoking(callout_t *cs)
    666  1.22        ad {
    667  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    668  1.36        ad 	kmutex_t *lock;
    669  1.22        ad 	bool rv;
    670  1.22        ad 
    671  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    672  1.22        ad 
    673  1.36        ad 	lock = callout_lock(c);
    674  1.22        ad 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    675  1.36        ad 	mutex_spin_exit(lock);
    676  1.22        ad 
    677  1.22        ad 	return rv;
    678  1.22        ad }
    679  1.22        ad 
    680  1.22        ad void
    681  1.22        ad callout_ack(callout_t *cs)
    682  1.22        ad {
    683  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    684  1.36        ad 	kmutex_t *lock;
    685  1.22        ad 
    686  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    687  1.22        ad 
    688  1.36        ad 	lock = callout_lock(c);
    689  1.22        ad 	c->c_flags &= ~CALLOUT_INVOKING;
    690  1.36        ad 	mutex_spin_exit(lock);
    691   1.1   thorpej }
    692   1.1   thorpej 
    693   1.1   thorpej /*
    694  1.36        ad  * callout_hardclock:
    695  1.36        ad  *
    696  1.36        ad  *	Called from hardclock() once every tick.  We schedule a soft
    697  1.36        ad  *	interrupt if there is work to be done.
    698   1.1   thorpej  */
    699  1.22        ad void
    700   1.1   thorpej callout_hardclock(void)
    701   1.1   thorpej {
    702  1.36        ad 	struct callout_cpu *cc;
    703  1.36        ad 	int needsoftclock, ticks;
    704   1.1   thorpej 
    705  1.36        ad 	cc = curcpu()->ci_data.cpu_callout;
    706  1.44        ad 	mutex_spin_enter(cc->cc_lock);
    707   1.1   thorpej 
    708  1.36        ad 	ticks = ++cc->cc_ticks;
    709  1.36        ad 
    710  1.36        ad 	MOVEBUCKET(cc, 0, ticks);
    711  1.36        ad 	if (MASKWHEEL(0, ticks) == 0) {
    712  1.36        ad 		MOVEBUCKET(cc, 1, ticks);
    713  1.36        ad 		if (MASKWHEEL(1, ticks) == 0) {
    714  1.36        ad 			MOVEBUCKET(cc, 2, ticks);
    715  1.36        ad 			if (MASKWHEEL(2, ticks) == 0)
    716  1.36        ad 				MOVEBUCKET(cc, 3, ticks);
    717   1.1   thorpej 		}
    718   1.1   thorpej 	}
    719   1.1   thorpej 
    720  1.36        ad 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    721  1.44        ad 	mutex_spin_exit(cc->cc_lock);
    722   1.1   thorpej 
    723  1.22        ad 	if (needsoftclock)
    724  1.36        ad 		softint_schedule(callout_sih);
    725   1.1   thorpej }
    726   1.1   thorpej 
    727  1.36        ad /*
    728  1.36        ad  * callout_softclock:
    729  1.36        ad  *
    730  1.36        ad  *	Soft interrupt handler, scheduled above if there is work to
    731  1.36        ad  * 	be done.  Callouts are made in soft interrupt context.
    732  1.36        ad  */
    733  1.22        ad static void
    734  1.22        ad callout_softclock(void *v)
    735   1.1   thorpej {
    736  1.22        ad 	callout_impl_t *c;
    737  1.36        ad 	struct callout_cpu *cc;
    738   1.1   thorpej 	void (*func)(void *);
    739   1.1   thorpej 	void *arg;
    740  1.36        ad 	int mpsafe, count, ticks, delta;
    741  1.22        ad 	lwp_t *l;
    742   1.1   thorpej 
    743  1.22        ad 	l = curlwp;
    744  1.36        ad 	KASSERT(l->l_cpu == curcpu());
    745  1.36        ad 	cc = l->l_cpu->ci_data.cpu_callout;
    746   1.1   thorpej 
    747  1.44        ad 	mutex_spin_enter(cc->cc_lock);
    748  1.36        ad 	cc->cc_lwp = l;
    749  1.36        ad 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    750  1.36        ad 		c = CIRCQ_FIRST(&cc->cc_todo);
    751  1.22        ad 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    752  1.22        ad 		KASSERT(c->c_func != NULL);
    753  1.36        ad 		KASSERT(c->c_cpu == cc);
    754  1.26        ad 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    755  1.26        ad 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    756   1.1   thorpej 		CIRCQ_REMOVE(&c->c_list);
    757   1.1   thorpej 
    758   1.1   thorpej 		/* If due run it, otherwise insert it into the right bucket. */
    759  1.36        ad 		ticks = cc->cc_ticks;
    760  1.56       kre 		delta = (int)((unsigned)c->c_time - (unsigned)ticks);
    761  1.56       kre 		if (delta > 0) {
    762  1.36        ad 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    763  1.36        ad 			continue;
    764  1.36        ad 		}
    765  1.56       kre 		if (delta < 0)
    766  1.36        ad 			cc->cc_ev_late.ev_count++;
    767  1.36        ad 
    768  1.43        ad 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    769  1.43        ad 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    770  1.36        ad 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    771  1.36        ad 		func = c->c_func;
    772  1.36        ad 		arg = c->c_arg;
    773  1.36        ad 		cc->cc_active = c;
    774  1.36        ad 
    775  1.44        ad 		mutex_spin_exit(cc->cc_lock);
    776  1.42     rmind 		KASSERT(func != NULL);
    777  1.44        ad 		if (__predict_false(!mpsafe)) {
    778  1.36        ad 			KERNEL_LOCK(1, NULL);
    779  1.36        ad 			(*func)(arg);
    780  1.36        ad 			KERNEL_UNLOCK_ONE(NULL);
    781  1.36        ad 		} else
    782  1.36        ad 			(*func)(arg);
    783  1.44        ad 		mutex_spin_enter(cc->cc_lock);
    784  1.36        ad 
    785  1.36        ad 		/*
    786  1.36        ad 		 * We can't touch 'c' here because it might be
    787  1.36        ad 		 * freed already.  If LWPs waiting for callout
    788  1.36        ad 		 * to complete, awaken them.
    789  1.36        ad 		 */
    790  1.36        ad 		cc->cc_active = NULL;
    791  1.36        ad 		if ((count = cc->cc_nwait) != 0) {
    792  1.36        ad 			cc->cc_nwait = 0;
    793  1.36        ad 			/* sleepq_wake() drops the lock. */
    794  1.44        ad 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    795  1.44        ad 			mutex_spin_enter(cc->cc_lock);
    796   1.1   thorpej 		}
    797   1.1   thorpej 	}
    798  1.36        ad 	cc->cc_lwp = NULL;
    799  1.44        ad 	mutex_spin_exit(cc->cc_lock);
    800   1.1   thorpej }
    801  1.49  christos #endif
    802   1.1   thorpej 
    803   1.1   thorpej #ifdef DDB
    804   1.1   thorpej static void
    805  1.51  christos db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
    806  1.51  christos     struct callout_circq *bucket)
    807   1.1   thorpej {
    808  1.49  christos 	callout_impl_t *c, ci;
    809   1.1   thorpej 	db_expr_t offset;
    810  1.15  christos 	const char *name;
    811  1.15  christos 	static char question[] = "?";
    812  1.36        ad 	int b;
    813   1.1   thorpej 
    814  1.51  christos 	if (CIRCQ_LAST(bucket, kbucket))
    815  1.11       scw 		return;
    816  1.11       scw 
    817  1.51  christos 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    818  1.49  christos 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
    819  1.49  christos 		c = &ci;
    820  1.10       scw 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    821  1.10       scw 		    &offset);
    822  1.15  christos 		name = name ? name : question;
    823  1.36        ad 		b = (bucket - cc->cc_wheel);
    824  1.36        ad 		if (b < 0)
    825  1.36        ad 			b = -WHEELSIZE;
    826  1.36        ad 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    827  1.36        ad 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    828  1.36        ad 		    (u_long)c->c_arg, name);
    829  1.51  christos 		if (CIRCQ_LAST(&c->c_list, kbucket))
    830  1.11       scw 			break;
    831   1.1   thorpej 	}
    832   1.1   thorpej }
    833   1.1   thorpej 
    834   1.1   thorpej void
    835  1.21      matt db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    836   1.1   thorpej {
    837  1.51  christos 	struct callout_cpu *cc, ccb;
    838  1.51  christos 	struct cpu_info *ci, cib;
    839   1.1   thorpej 	int b;
    840   1.1   thorpej 
    841  1.49  christos #ifndef CRASH
    842  1.60      maxv 	db_printf("hardclock_ticks now: %d\n", getticks());
    843  1.49  christos #endif
    844   1.1   thorpej 	db_printf("    ticks  wheel               arg  func\n");
    845   1.1   thorpej 
    846   1.1   thorpej 	/*
    847   1.1   thorpej 	 * Don't lock the callwheel; all the other CPUs are paused
    848   1.1   thorpej 	 * anyhow, and we might be called in a circumstance where
    849   1.1   thorpej 	 * some other CPU was paused while holding the lock.
    850   1.1   thorpej 	 */
    851  1.49  christos 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    852  1.51  christos 		db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
    853  1.51  christos 		cc = cib.ci_data.cpu_callout;
    854  1.51  christos 		db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    855  1.51  christos 		db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
    856  1.36        ad 	}
    857  1.36        ad 	for (b = 0; b < BUCKETS; b++) {
    858  1.49  christos 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    859  1.51  christos 			db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
    860  1.51  christos 			cc = cib.ci_data.cpu_callout;
    861  1.51  christos 			db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    862  1.51  christos 			db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
    863  1.51  christos 			    &ccb.cc_wheel[b]);
    864  1.36        ad 		}
    865  1.36        ad 	}
    866   1.1   thorpej }
    867   1.1   thorpej #endif /* DDB */
    868