kern_timeout.c revision 1.62 1 1.62 rin /* $NetBSD: kern_timeout.c,v 1.62 2020/05/31 08:33:47 rin Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*-
4 1.57 ad * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.22 ad * by Jason R. Thorpe, and by Andrew Doran.
9 1.1 thorpej *
10 1.1 thorpej * Redistribution and use in source and binary forms, with or without
11 1.1 thorpej * modification, are permitted provided that the following conditions
12 1.1 thorpej * are met:
13 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.1 thorpej * notice, this list of conditions and the following disclaimer.
15 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.1 thorpej * documentation and/or other materials provided with the distribution.
18 1.1 thorpej *
19 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.1 thorpej */
31 1.1 thorpej
32 1.1 thorpej /*
33 1.1 thorpej * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
34 1.1 thorpej * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
35 1.14 perry * All rights reserved.
36 1.14 perry *
37 1.14 perry * Redistribution and use in source and binary forms, with or without
38 1.14 perry * modification, are permitted provided that the following conditions
39 1.14 perry * are met:
40 1.1 thorpej *
41 1.14 perry * 1. Redistributions of source code must retain the above copyright
42 1.14 perry * notice, this list of conditions and the following disclaimer.
43 1.14 perry * 2. Redistributions in binary form must reproduce the above copyright
44 1.14 perry * notice, this list of conditions and the following disclaimer in the
45 1.14 perry * documentation and/or other materials provided with the distribution.
46 1.1 thorpej * 3. The name of the author may not be used to endorse or promote products
47 1.14 perry * derived from this software without specific prior written permission.
48 1.1 thorpej *
49 1.1 thorpej * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50 1.1 thorpej * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51 1.1 thorpej * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52 1.1 thorpej * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53 1.1 thorpej * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 1.1 thorpej * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 1.1 thorpej * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 1.1 thorpej * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 1.1 thorpej * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 1.14 perry * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 1.1 thorpej */
60 1.7 lukem
61 1.7 lukem #include <sys/cdefs.h>
62 1.62 rin __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.62 2020/05/31 08:33:47 rin Exp $");
63 1.1 thorpej
64 1.1 thorpej /*
65 1.22 ad * Timeouts are kept in a hierarchical timing wheel. The c_time is the
66 1.36 ad * value of c_cpu->cc_ticks when the timeout should be called. There are
67 1.36 ad * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68 1.36 ad * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69 1.36 ad * a Timer Facility" by George Varghese and Tony Lauck.
70 1.22 ad *
71 1.22 ad * Some of the "math" in here is a bit tricky. We have to beware of
72 1.22 ad * wrapping ints.
73 1.22 ad *
74 1.22 ad * We use the fact that any element added to the queue must be added with
75 1.22 ad * a positive time. That means that any element `to' on the queue cannot
76 1.22 ad * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77 1.22 ad * be positive or negative so comparing it with anything is dangerous.
78 1.22 ad * The only way we can use the c->c_time value in any predictable way is
79 1.22 ad * when we calculate how far in the future `to' will timeout - "c->c_time
80 1.36 ad * - c->c_cpu->cc_ticks". The result will always be positive for future
81 1.22 ad * timeouts and 0 or negative for due timeouts.
82 1.1 thorpej */
83 1.1 thorpej
84 1.24 ad #define _CALLOUT_PRIVATE
85 1.24 ad
86 1.1 thorpej #include <sys/param.h>
87 1.1 thorpej #include <sys/systm.h>
88 1.1 thorpej #include <sys/kernel.h>
89 1.1 thorpej #include <sys/callout.h>
90 1.45 rmind #include <sys/lwp.h>
91 1.20 ad #include <sys/mutex.h>
92 1.22 ad #include <sys/proc.h>
93 1.22 ad #include <sys/sleepq.h>
94 1.22 ad #include <sys/syncobj.h>
95 1.22 ad #include <sys/evcnt.h>
96 1.27 ad #include <sys/intr.h>
97 1.33 ad #include <sys/cpu.h>
98 1.36 ad #include <sys/kmem.h>
99 1.1 thorpej
100 1.1 thorpej #ifdef DDB
101 1.1 thorpej #include <machine/db_machdep.h>
102 1.1 thorpej #include <ddb/db_interface.h>
103 1.1 thorpej #include <ddb/db_access.h>
104 1.49 christos #include <ddb/db_cpu.h>
105 1.1 thorpej #include <ddb/db_sym.h>
106 1.1 thorpej #include <ddb/db_output.h>
107 1.1 thorpej #endif
108 1.1 thorpej
109 1.22 ad #define BUCKETS 1024
110 1.22 ad #define WHEELSIZE 256
111 1.22 ad #define WHEELMASK 255
112 1.22 ad #define WHEELBITS 8
113 1.22 ad
114 1.1 thorpej #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
115 1.1 thorpej
116 1.36 ad #define BUCKET(cc, rel, abs) \
117 1.1 thorpej (((rel) <= (1 << (2*WHEELBITS))) \
118 1.1 thorpej ? ((rel) <= (1 << WHEELBITS)) \
119 1.36 ad ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
120 1.36 ad : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
121 1.1 thorpej : ((rel) <= (1 << (3*WHEELBITS))) \
122 1.36 ad ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
123 1.36 ad : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
124 1.1 thorpej
125 1.36 ad #define MOVEBUCKET(cc, wheel, time) \
126 1.36 ad CIRCQ_APPEND(&(cc)->cc_todo, \
127 1.36 ad &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
128 1.1 thorpej
129 1.1 thorpej /*
130 1.1 thorpej * Circular queue definitions.
131 1.1 thorpej */
132 1.1 thorpej
133 1.11 scw #define CIRCQ_INIT(list) \
134 1.1 thorpej do { \
135 1.11 scw (list)->cq_next_l = (list); \
136 1.11 scw (list)->cq_prev_l = (list); \
137 1.1 thorpej } while (/*CONSTCOND*/0)
138 1.1 thorpej
139 1.1 thorpej #define CIRCQ_INSERT(elem, list) \
140 1.1 thorpej do { \
141 1.11 scw (elem)->cq_prev_e = (list)->cq_prev_e; \
142 1.11 scw (elem)->cq_next_l = (list); \
143 1.11 scw (list)->cq_prev_l->cq_next_l = (elem); \
144 1.11 scw (list)->cq_prev_l = (elem); \
145 1.1 thorpej } while (/*CONSTCOND*/0)
146 1.1 thorpej
147 1.1 thorpej #define CIRCQ_APPEND(fst, snd) \
148 1.1 thorpej do { \
149 1.1 thorpej if (!CIRCQ_EMPTY(snd)) { \
150 1.11 scw (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
151 1.11 scw (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
152 1.11 scw (snd)->cq_prev_l->cq_next_l = (fst); \
153 1.11 scw (fst)->cq_prev_l = (snd)->cq_prev_l; \
154 1.1 thorpej CIRCQ_INIT(snd); \
155 1.1 thorpej } \
156 1.1 thorpej } while (/*CONSTCOND*/0)
157 1.1 thorpej
158 1.1 thorpej #define CIRCQ_REMOVE(elem) \
159 1.1 thorpej do { \
160 1.11 scw (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
161 1.11 scw (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
162 1.1 thorpej } while (/*CONSTCOND*/0)
163 1.1 thorpej
164 1.11 scw #define CIRCQ_FIRST(list) ((list)->cq_next_e)
165 1.11 scw #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
166 1.11 scw #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
167 1.11 scw #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
168 1.1 thorpej
169 1.36 ad struct callout_cpu {
170 1.44 ad kmutex_t *cc_lock;
171 1.36 ad sleepq_t cc_sleepq;
172 1.36 ad u_int cc_nwait;
173 1.36 ad u_int cc_ticks;
174 1.36 ad lwp_t *cc_lwp;
175 1.36 ad callout_impl_t *cc_active;
176 1.36 ad callout_impl_t *cc_cancel;
177 1.36 ad struct evcnt cc_ev_late;
178 1.36 ad struct evcnt cc_ev_block;
179 1.36 ad struct callout_circq cc_todo; /* Worklist */
180 1.36 ad struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
181 1.36 ad char cc_name1[12];
182 1.36 ad char cc_name2[12];
183 1.36 ad };
184 1.36 ad
185 1.49 christos #ifndef CRASH
186 1.49 christos
187 1.49 christos static void callout_softclock(void *);
188 1.57 ad static void callout_wait(callout_impl_t *, void *, kmutex_t *);
189 1.57 ad
190 1.57 ad static struct callout_cpu callout_cpu0 __cacheline_aligned;
191 1.57 ad static void *callout_sih __read_mostly;
192 1.36 ad
193 1.36 ad static inline kmutex_t *
194 1.36 ad callout_lock(callout_impl_t *c)
195 1.36 ad {
196 1.44 ad struct callout_cpu *cc;
197 1.36 ad kmutex_t *lock;
198 1.36 ad
199 1.36 ad for (;;) {
200 1.44 ad cc = c->c_cpu;
201 1.44 ad lock = cc->cc_lock;
202 1.36 ad mutex_spin_enter(lock);
203 1.44 ad if (__predict_true(cc == c->c_cpu))
204 1.36 ad return lock;
205 1.36 ad mutex_spin_exit(lock);
206 1.36 ad }
207 1.36 ad }
208 1.5 thorpej
209 1.1 thorpej /*
210 1.1 thorpej * callout_startup:
211 1.1 thorpej *
212 1.1 thorpej * Initialize the callout facility, called at system startup time.
213 1.36 ad * Do just enough to allow callouts to be safely registered.
214 1.1 thorpej */
215 1.1 thorpej void
216 1.1 thorpej callout_startup(void)
217 1.1 thorpej {
218 1.36 ad struct callout_cpu *cc;
219 1.1 thorpej int b;
220 1.1 thorpej
221 1.36 ad KASSERT(curcpu()->ci_data.cpu_callout == NULL);
222 1.22 ad
223 1.36 ad cc = &callout_cpu0;
224 1.44 ad cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
225 1.36 ad CIRCQ_INIT(&cc->cc_todo);
226 1.1 thorpej for (b = 0; b < BUCKETS; b++)
227 1.36 ad CIRCQ_INIT(&cc->cc_wheel[b]);
228 1.36 ad curcpu()->ci_data.cpu_callout = cc;
229 1.22 ad }
230 1.22 ad
231 1.22 ad /*
232 1.36 ad * callout_init_cpu:
233 1.22 ad *
234 1.36 ad * Per-CPU initialization.
235 1.22 ad */
236 1.47 martin CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
237 1.47 martin
238 1.22 ad void
239 1.36 ad callout_init_cpu(struct cpu_info *ci)
240 1.22 ad {
241 1.36 ad struct callout_cpu *cc;
242 1.36 ad int b;
243 1.22 ad
244 1.36 ad if ((cc = ci->ci_data.cpu_callout) == NULL) {
245 1.36 ad cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
246 1.44 ad cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
247 1.36 ad CIRCQ_INIT(&cc->cc_todo);
248 1.36 ad for (b = 0; b < BUCKETS; b++)
249 1.36 ad CIRCQ_INIT(&cc->cc_wheel[b]);
250 1.36 ad } else {
251 1.36 ad /* Boot CPU, one time only. */
252 1.36 ad callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
253 1.36 ad callout_softclock, NULL);
254 1.36 ad if (callout_sih == NULL)
255 1.36 ad panic("callout_init_cpu (2)");
256 1.36 ad }
257 1.36 ad
258 1.40 ad sleepq_init(&cc->cc_sleepq);
259 1.36 ad
260 1.36 ad snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
261 1.36 ad cpu_index(ci));
262 1.36 ad evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
263 1.36 ad NULL, "callout", cc->cc_name1);
264 1.36 ad
265 1.36 ad snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
266 1.36 ad cpu_index(ci));
267 1.36 ad evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
268 1.36 ad NULL, "callout", cc->cc_name2);
269 1.36 ad
270 1.36 ad ci->ci_data.cpu_callout = cc;
271 1.1 thorpej }
272 1.1 thorpej
273 1.1 thorpej /*
274 1.1 thorpej * callout_init:
275 1.1 thorpej *
276 1.36 ad * Initialize a callout structure. This must be quick, so we fill
277 1.36 ad * only the minimum number of fields.
278 1.1 thorpej */
279 1.1 thorpej void
280 1.22 ad callout_init(callout_t *cs, u_int flags)
281 1.1 thorpej {
282 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
283 1.36 ad struct callout_cpu *cc;
284 1.22 ad
285 1.22 ad KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
286 1.1 thorpej
287 1.36 ad cc = curcpu()->ci_data.cpu_callout;
288 1.36 ad c->c_func = NULL;
289 1.22 ad c->c_magic = CALLOUT_MAGIC;
290 1.36 ad if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
291 1.36 ad c->c_flags = flags;
292 1.36 ad c->c_cpu = cc;
293 1.36 ad return;
294 1.36 ad }
295 1.36 ad c->c_flags = flags | CALLOUT_BOUND;
296 1.36 ad c->c_cpu = &callout_cpu0;
297 1.22 ad }
298 1.22 ad
299 1.22 ad /*
300 1.22 ad * callout_destroy:
301 1.22 ad *
302 1.22 ad * Destroy a callout structure. The callout must be stopped.
303 1.22 ad */
304 1.22 ad void
305 1.22 ad callout_destroy(callout_t *cs)
306 1.22 ad {
307 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
308 1.22 ad
309 1.53 christos KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
310 1.53 christos "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
311 1.53 christos c, c->c_magic, CALLOUT_MAGIC);
312 1.22 ad /*
313 1.22 ad * It's not necessary to lock in order to see the correct value
314 1.22 ad * of c->c_flags. If the callout could potentially have been
315 1.22 ad * running, the current thread should have stopped it.
316 1.22 ad */
317 1.48 martin KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
318 1.59 ad "pending callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
319 1.59 ad c, c->c_func, c->c_flags, __builtin_return_address(0));
320 1.59 ad KASSERTMSG(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c,
321 1.59 ad "running callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
322 1.48 martin c, c->c_func, c->c_flags, __builtin_return_address(0));
323 1.22 ad c->c_magic = 0;
324 1.1 thorpej }
325 1.1 thorpej
326 1.1 thorpej /*
327 1.29 joerg * callout_schedule_locked:
328 1.1 thorpej *
329 1.29 joerg * Schedule a callout to run. The function and argument must
330 1.29 joerg * already be set in the callout structure. Must be called with
331 1.29 joerg * callout_lock.
332 1.1 thorpej */
333 1.29 joerg static void
334 1.36 ad callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
335 1.1 thorpej {
336 1.36 ad struct callout_cpu *cc, *occ;
337 1.20 ad int old_time;
338 1.1 thorpej
339 1.1 thorpej KASSERT(to_ticks >= 0);
340 1.29 joerg KASSERT(c->c_func != NULL);
341 1.1 thorpej
342 1.1 thorpej /* Initialize the time here, it won't change. */
343 1.36 ad occ = c->c_cpu;
344 1.43 ad c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
345 1.1 thorpej
346 1.1 thorpej /*
347 1.1 thorpej * If this timeout is already scheduled and now is moved
348 1.36 ad * earlier, reschedule it now. Otherwise leave it in place
349 1.1 thorpej * and let it be rescheduled later.
350 1.1 thorpej */
351 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0) {
352 1.36 ad /* Leave on existing CPU. */
353 1.36 ad old_time = c->c_time;
354 1.36 ad c->c_time = to_ticks + occ->cc_ticks;
355 1.4 yamt if (c->c_time - old_time < 0) {
356 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
357 1.36 ad CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
358 1.1 thorpej }
359 1.36 ad mutex_spin_exit(lock);
360 1.36 ad return;
361 1.36 ad }
362 1.36 ad
363 1.36 ad cc = curcpu()->ci_data.cpu_callout;
364 1.36 ad if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
365 1.44 ad !mutex_tryenter(cc->cc_lock)) {
366 1.36 ad /* Leave on existing CPU. */
367 1.36 ad c->c_time = to_ticks + occ->cc_ticks;
368 1.36 ad c->c_flags |= CALLOUT_PENDING;
369 1.36 ad CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
370 1.1 thorpej } else {
371 1.36 ad /* Move to this CPU. */
372 1.36 ad c->c_cpu = cc;
373 1.36 ad c->c_time = to_ticks + cc->cc_ticks;
374 1.1 thorpej c->c_flags |= CALLOUT_PENDING;
375 1.36 ad CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
376 1.44 ad mutex_spin_exit(cc->cc_lock);
377 1.1 thorpej }
378 1.36 ad mutex_spin_exit(lock);
379 1.29 joerg }
380 1.29 joerg
381 1.29 joerg /*
382 1.29 joerg * callout_reset:
383 1.29 joerg *
384 1.29 joerg * Reset a callout structure with a new function and argument, and
385 1.29 joerg * schedule it to run.
386 1.29 joerg */
387 1.29 joerg void
388 1.29 joerg callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
389 1.29 joerg {
390 1.29 joerg callout_impl_t *c = (callout_impl_t *)cs;
391 1.36 ad kmutex_t *lock;
392 1.29 joerg
393 1.29 joerg KASSERT(c->c_magic == CALLOUT_MAGIC);
394 1.42 rmind KASSERT(func != NULL);
395 1.29 joerg
396 1.36 ad lock = callout_lock(c);
397 1.29 joerg c->c_func = func;
398 1.29 joerg c->c_arg = arg;
399 1.36 ad callout_schedule_locked(c, lock, to_ticks);
400 1.1 thorpej }
401 1.1 thorpej
402 1.1 thorpej /*
403 1.1 thorpej * callout_schedule:
404 1.1 thorpej *
405 1.1 thorpej * Schedule a callout to run. The function and argument must
406 1.1 thorpej * already be set in the callout structure.
407 1.1 thorpej */
408 1.1 thorpej void
409 1.22 ad callout_schedule(callout_t *cs, int to_ticks)
410 1.1 thorpej {
411 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
412 1.36 ad kmutex_t *lock;
413 1.1 thorpej
414 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
415 1.1 thorpej
416 1.36 ad lock = callout_lock(c);
417 1.36 ad callout_schedule_locked(c, lock, to_ticks);
418 1.1 thorpej }
419 1.1 thorpej
420 1.1 thorpej /*
421 1.1 thorpej * callout_stop:
422 1.1 thorpej *
423 1.36 ad * Try to cancel a pending callout. It may be too late: the callout
424 1.36 ad * could be running on another CPU. If called from interrupt context,
425 1.36 ad * the callout could already be in progress at a lower priority.
426 1.1 thorpej */
427 1.22 ad bool
428 1.22 ad callout_stop(callout_t *cs)
429 1.1 thorpej {
430 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
431 1.36 ad struct callout_cpu *cc;
432 1.36 ad kmutex_t *lock;
433 1.22 ad bool expired;
434 1.22 ad
435 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
436 1.1 thorpej
437 1.36 ad lock = callout_lock(c);
438 1.20 ad
439 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
440 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
441 1.32 ad expired = ((c->c_flags & CALLOUT_FIRED) != 0);
442 1.32 ad c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
443 1.32 ad
444 1.36 ad cc = c->c_cpu;
445 1.36 ad if (cc->cc_active == c) {
446 1.32 ad /*
447 1.32 ad * This is for non-MPSAFE callouts only. To synchronize
448 1.32 ad * effectively we must be called with kernel_lock held.
449 1.32 ad * It's also taken in callout_softclock.
450 1.32 ad */
451 1.36 ad cc->cc_cancel = c;
452 1.32 ad }
453 1.32 ad
454 1.36 ad mutex_spin_exit(lock);
455 1.32 ad
456 1.32 ad return expired;
457 1.32 ad }
458 1.32 ad
459 1.32 ad /*
460 1.32 ad * callout_halt:
461 1.32 ad *
462 1.32 ad * Cancel a pending callout. If in-flight, block until it completes.
463 1.36 ad * May not be called from a hard interrupt handler. If the callout
464 1.36 ad * can take locks, the caller of callout_halt() must not hold any of
465 1.37 ad * those locks, otherwise the two could deadlock. If 'interlock' is
466 1.37 ad * non-NULL and we must wait for the callout to complete, it will be
467 1.37 ad * released and re-acquired before returning.
468 1.32 ad */
469 1.32 ad bool
470 1.38 ad callout_halt(callout_t *cs, void *interlock)
471 1.32 ad {
472 1.32 ad callout_impl_t *c = (callout_impl_t *)cs;
473 1.57 ad kmutex_t *lock;
474 1.57 ad int flags;
475 1.32 ad
476 1.32 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
477 1.32 ad KASSERT(!cpu_intr_p());
478 1.54 ozaki KASSERT(interlock == NULL || mutex_owned(interlock));
479 1.32 ad
480 1.57 ad /* Fast path. */
481 1.36 ad lock = callout_lock(c);
482 1.57 ad flags = c->c_flags;
483 1.57 ad if ((flags & CALLOUT_PENDING) != 0)
484 1.57 ad CIRCQ_REMOVE(&c->c_list);
485 1.57 ad c->c_flags = flags & ~(CALLOUT_PENDING|CALLOUT_FIRED);
486 1.57 ad if (__predict_false(flags & CALLOUT_FIRED)) {
487 1.57 ad callout_wait(c, interlock, lock);
488 1.57 ad return true;
489 1.57 ad }
490 1.57 ad mutex_spin_exit(lock);
491 1.57 ad return false;
492 1.57 ad }
493 1.1 thorpej
494 1.57 ad /*
495 1.57 ad * callout_wait:
496 1.57 ad *
497 1.57 ad * Slow path for callout_halt(). Deliberately marked __noinline to
498 1.57 ad * prevent unneeded overhead in the caller.
499 1.57 ad */
500 1.57 ad static void __noinline
501 1.57 ad callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
502 1.57 ad {
503 1.57 ad struct callout_cpu *cc;
504 1.57 ad struct lwp *l;
505 1.57 ad kmutex_t *relock;
506 1.1 thorpej
507 1.32 ad l = curlwp;
508 1.57 ad relock = NULL;
509 1.36 ad for (;;) {
510 1.58 ad /*
511 1.58 ad * At this point we know the callout is not pending, but it
512 1.58 ad * could be running on a CPU somewhere. That can be curcpu
513 1.58 ad * in a few cases:
514 1.58 ad *
515 1.58 ad * - curlwp is a higher priority soft interrupt
516 1.58 ad * - the callout blocked on a lock and is currently asleep
517 1.58 ad * - the callout itself has called callout_halt() (nice!)
518 1.58 ad */
519 1.36 ad cc = c->c_cpu;
520 1.36 ad if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
521 1.36 ad break;
522 1.58 ad
523 1.58 ad /* It's running - need to wait for it to complete. */
524 1.37 ad if (interlock != NULL) {
525 1.37 ad /*
526 1.37 ad * Avoid potential scheduler lock order problems by
527 1.37 ad * dropping the interlock without the callout lock
528 1.58 ad * held; then retry.
529 1.37 ad */
530 1.37 ad mutex_spin_exit(lock);
531 1.37 ad mutex_exit(interlock);
532 1.37 ad relock = interlock;
533 1.37 ad interlock = NULL;
534 1.37 ad } else {
535 1.37 ad /* XXX Better to do priority inheritance. */
536 1.37 ad KASSERT(l->l_wchan == NULL);
537 1.37 ad cc->cc_nwait++;
538 1.37 ad cc->cc_ev_block.ev_count++;
539 1.37 ad l->l_kpriority = true;
540 1.44 ad sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
541 1.37 ad sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
542 1.61 ad &sleep_syncobj, false);
543 1.37 ad sleepq_block(0, false);
544 1.37 ad }
545 1.58 ad
546 1.58 ad /*
547 1.58 ad * Re-lock the callout and check the state of play again.
548 1.58 ad * It's a common design pattern for callouts to re-schedule
549 1.58 ad * themselves so put a stop to it again if needed.
550 1.58 ad */
551 1.36 ad lock = callout_lock(c);
552 1.58 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
553 1.58 ad CIRCQ_REMOVE(&c->c_list);
554 1.58 ad c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
555 1.32 ad }
556 1.32 ad
557 1.36 ad mutex_spin_exit(lock);
558 1.37 ad if (__predict_false(relock != NULL))
559 1.37 ad mutex_enter(relock);
560 1.22 ad }
561 1.22 ad
562 1.36 ad #ifdef notyet
563 1.36 ad /*
564 1.36 ad * callout_bind:
565 1.36 ad *
566 1.36 ad * Bind a callout so that it will only execute on one CPU.
567 1.36 ad * The callout must be stopped, and must be MPSAFE.
568 1.36 ad *
569 1.36 ad * XXX Disabled for now until it is decided how to handle
570 1.36 ad * offlined CPUs. We may want weak+strong binding.
571 1.36 ad */
572 1.36 ad void
573 1.36 ad callout_bind(callout_t *cs, struct cpu_info *ci)
574 1.36 ad {
575 1.36 ad callout_impl_t *c = (callout_impl_t *)cs;
576 1.36 ad struct callout_cpu *cc;
577 1.36 ad kmutex_t *lock;
578 1.36 ad
579 1.36 ad KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
580 1.36 ad KASSERT(c->c_cpu->cc_active != c);
581 1.36 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
582 1.36 ad KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
583 1.36 ad
584 1.36 ad lock = callout_lock(c);
585 1.36 ad cc = ci->ci_data.cpu_callout;
586 1.36 ad c->c_flags |= CALLOUT_BOUND;
587 1.36 ad if (c->c_cpu != cc) {
588 1.36 ad /*
589 1.36 ad * Assigning c_cpu effectively unlocks the callout
590 1.36 ad * structure, as we don't hold the new CPU's lock.
591 1.36 ad * Issue memory barrier to prevent accesses being
592 1.36 ad * reordered.
593 1.36 ad */
594 1.36 ad membar_exit();
595 1.36 ad c->c_cpu = cc;
596 1.36 ad }
597 1.36 ad mutex_spin_exit(lock);
598 1.36 ad }
599 1.36 ad #endif
600 1.36 ad
601 1.22 ad void
602 1.22 ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
603 1.22 ad {
604 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
605 1.36 ad kmutex_t *lock;
606 1.22 ad
607 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
608 1.42 rmind KASSERT(func != NULL);
609 1.22 ad
610 1.36 ad lock = callout_lock(c);
611 1.22 ad c->c_func = func;
612 1.22 ad c->c_arg = arg;
613 1.36 ad mutex_spin_exit(lock);
614 1.22 ad }
615 1.22 ad
616 1.22 ad bool
617 1.22 ad callout_expired(callout_t *cs)
618 1.22 ad {
619 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
620 1.36 ad kmutex_t *lock;
621 1.22 ad bool rv;
622 1.22 ad
623 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
624 1.22 ad
625 1.36 ad lock = callout_lock(c);
626 1.22 ad rv = ((c->c_flags & CALLOUT_FIRED) != 0);
627 1.36 ad mutex_spin_exit(lock);
628 1.22 ad
629 1.22 ad return rv;
630 1.22 ad }
631 1.22 ad
632 1.22 ad bool
633 1.22 ad callout_active(callout_t *cs)
634 1.22 ad {
635 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
636 1.36 ad kmutex_t *lock;
637 1.22 ad bool rv;
638 1.22 ad
639 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
640 1.22 ad
641 1.36 ad lock = callout_lock(c);
642 1.22 ad rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
643 1.36 ad mutex_spin_exit(lock);
644 1.22 ad
645 1.22 ad return rv;
646 1.22 ad }
647 1.22 ad
648 1.22 ad bool
649 1.22 ad callout_pending(callout_t *cs)
650 1.22 ad {
651 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
652 1.36 ad kmutex_t *lock;
653 1.22 ad bool rv;
654 1.22 ad
655 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
656 1.22 ad
657 1.36 ad lock = callout_lock(c);
658 1.22 ad rv = ((c->c_flags & CALLOUT_PENDING) != 0);
659 1.36 ad mutex_spin_exit(lock);
660 1.22 ad
661 1.22 ad return rv;
662 1.22 ad }
663 1.22 ad
664 1.22 ad bool
665 1.22 ad callout_invoking(callout_t *cs)
666 1.22 ad {
667 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
668 1.36 ad kmutex_t *lock;
669 1.22 ad bool rv;
670 1.22 ad
671 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
672 1.22 ad
673 1.36 ad lock = callout_lock(c);
674 1.22 ad rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
675 1.36 ad mutex_spin_exit(lock);
676 1.22 ad
677 1.22 ad return rv;
678 1.22 ad }
679 1.22 ad
680 1.22 ad void
681 1.22 ad callout_ack(callout_t *cs)
682 1.22 ad {
683 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
684 1.36 ad kmutex_t *lock;
685 1.22 ad
686 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
687 1.22 ad
688 1.36 ad lock = callout_lock(c);
689 1.22 ad c->c_flags &= ~CALLOUT_INVOKING;
690 1.36 ad mutex_spin_exit(lock);
691 1.1 thorpej }
692 1.1 thorpej
693 1.1 thorpej /*
694 1.36 ad * callout_hardclock:
695 1.36 ad *
696 1.36 ad * Called from hardclock() once every tick. We schedule a soft
697 1.36 ad * interrupt if there is work to be done.
698 1.1 thorpej */
699 1.22 ad void
700 1.1 thorpej callout_hardclock(void)
701 1.1 thorpej {
702 1.36 ad struct callout_cpu *cc;
703 1.36 ad int needsoftclock, ticks;
704 1.1 thorpej
705 1.36 ad cc = curcpu()->ci_data.cpu_callout;
706 1.44 ad mutex_spin_enter(cc->cc_lock);
707 1.1 thorpej
708 1.36 ad ticks = ++cc->cc_ticks;
709 1.36 ad
710 1.36 ad MOVEBUCKET(cc, 0, ticks);
711 1.36 ad if (MASKWHEEL(0, ticks) == 0) {
712 1.36 ad MOVEBUCKET(cc, 1, ticks);
713 1.36 ad if (MASKWHEEL(1, ticks) == 0) {
714 1.36 ad MOVEBUCKET(cc, 2, ticks);
715 1.36 ad if (MASKWHEEL(2, ticks) == 0)
716 1.36 ad MOVEBUCKET(cc, 3, ticks);
717 1.1 thorpej }
718 1.1 thorpej }
719 1.1 thorpej
720 1.36 ad needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
721 1.44 ad mutex_spin_exit(cc->cc_lock);
722 1.1 thorpej
723 1.22 ad if (needsoftclock)
724 1.36 ad softint_schedule(callout_sih);
725 1.1 thorpej }
726 1.1 thorpej
727 1.36 ad /*
728 1.36 ad * callout_softclock:
729 1.36 ad *
730 1.36 ad * Soft interrupt handler, scheduled above if there is work to
731 1.36 ad * be done. Callouts are made in soft interrupt context.
732 1.36 ad */
733 1.22 ad static void
734 1.22 ad callout_softclock(void *v)
735 1.1 thorpej {
736 1.22 ad callout_impl_t *c;
737 1.36 ad struct callout_cpu *cc;
738 1.1 thorpej void (*func)(void *);
739 1.1 thorpej void *arg;
740 1.36 ad int mpsafe, count, ticks, delta;
741 1.22 ad lwp_t *l;
742 1.1 thorpej
743 1.22 ad l = curlwp;
744 1.36 ad KASSERT(l->l_cpu == curcpu());
745 1.36 ad cc = l->l_cpu->ci_data.cpu_callout;
746 1.1 thorpej
747 1.44 ad mutex_spin_enter(cc->cc_lock);
748 1.36 ad cc->cc_lwp = l;
749 1.36 ad while (!CIRCQ_EMPTY(&cc->cc_todo)) {
750 1.36 ad c = CIRCQ_FIRST(&cc->cc_todo);
751 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
752 1.22 ad KASSERT(c->c_func != NULL);
753 1.36 ad KASSERT(c->c_cpu == cc);
754 1.26 ad KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
755 1.26 ad KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
756 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
757 1.1 thorpej
758 1.1 thorpej /* If due run it, otherwise insert it into the right bucket. */
759 1.36 ad ticks = cc->cc_ticks;
760 1.56 kre delta = (int)((unsigned)c->c_time - (unsigned)ticks);
761 1.56 kre if (delta > 0) {
762 1.36 ad CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
763 1.36 ad continue;
764 1.36 ad }
765 1.56 kre if (delta < 0)
766 1.36 ad cc->cc_ev_late.ev_count++;
767 1.36 ad
768 1.43 ad c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
769 1.43 ad (CALLOUT_FIRED | CALLOUT_INVOKING);
770 1.36 ad mpsafe = (c->c_flags & CALLOUT_MPSAFE);
771 1.36 ad func = c->c_func;
772 1.36 ad arg = c->c_arg;
773 1.36 ad cc->cc_active = c;
774 1.36 ad
775 1.44 ad mutex_spin_exit(cc->cc_lock);
776 1.42 rmind KASSERT(func != NULL);
777 1.44 ad if (__predict_false(!mpsafe)) {
778 1.36 ad KERNEL_LOCK(1, NULL);
779 1.36 ad (*func)(arg);
780 1.36 ad KERNEL_UNLOCK_ONE(NULL);
781 1.36 ad } else
782 1.36 ad (*func)(arg);
783 1.44 ad mutex_spin_enter(cc->cc_lock);
784 1.36 ad
785 1.36 ad /*
786 1.36 ad * We can't touch 'c' here because it might be
787 1.36 ad * freed already. If LWPs waiting for callout
788 1.36 ad * to complete, awaken them.
789 1.36 ad */
790 1.36 ad cc->cc_active = NULL;
791 1.36 ad if ((count = cc->cc_nwait) != 0) {
792 1.36 ad cc->cc_nwait = 0;
793 1.36 ad /* sleepq_wake() drops the lock. */
794 1.44 ad sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
795 1.44 ad mutex_spin_enter(cc->cc_lock);
796 1.1 thorpej }
797 1.1 thorpej }
798 1.36 ad cc->cc_lwp = NULL;
799 1.44 ad mutex_spin_exit(cc->cc_lock);
800 1.1 thorpej }
801 1.49 christos #endif
802 1.1 thorpej
803 1.1 thorpej #ifdef DDB
804 1.1 thorpej static void
805 1.51 christos db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
806 1.51 christos struct callout_circq *bucket)
807 1.1 thorpej {
808 1.49 christos callout_impl_t *c, ci;
809 1.1 thorpej db_expr_t offset;
810 1.15 christos const char *name;
811 1.15 christos static char question[] = "?";
812 1.36 ad int b;
813 1.1 thorpej
814 1.51 christos if (CIRCQ_LAST(bucket, kbucket))
815 1.11 scw return;
816 1.11 scw
817 1.51 christos for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
818 1.49 christos db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
819 1.49 christos c = &ci;
820 1.10 scw db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
821 1.10 scw &offset);
822 1.15 christos name = name ? name : question;
823 1.36 ad b = (bucket - cc->cc_wheel);
824 1.36 ad if (b < 0)
825 1.36 ad b = -WHEELSIZE;
826 1.36 ad db_printf("%9d %2d/%-4d %16lx %s\n",
827 1.36 ad c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
828 1.36 ad (u_long)c->c_arg, name);
829 1.51 christos if (CIRCQ_LAST(&c->c_list, kbucket))
830 1.11 scw break;
831 1.1 thorpej }
832 1.1 thorpej }
833 1.1 thorpej
834 1.1 thorpej void
835 1.21 matt db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
836 1.1 thorpej {
837 1.62 rin struct callout_cpu *cc, *ccp;
838 1.62 rin struct cpu_info *ci, *cip;
839 1.62 rin const size_t ccs = sizeof(*cc), cis = sizeof(*ci);
840 1.1 thorpej int b;
841 1.1 thorpej
842 1.49 christos #ifndef CRASH
843 1.60 maxv db_printf("hardclock_ticks now: %d\n", getticks());
844 1.49 christos #endif
845 1.1 thorpej db_printf(" ticks wheel arg func\n");
846 1.1 thorpej
847 1.62 rin ccp = kmem_intr_alloc(ccs, KM_NOSLEEP); /* XXX ddb */
848 1.62 rin if (ccp == NULL) {
849 1.62 rin db_printf("%s: cannot allocate callout_cpu\n", __func__);
850 1.62 rin return;
851 1.62 rin }
852 1.62 rin cip = kmem_intr_alloc(cis, KM_NOSLEEP); /* XXX ddb */
853 1.62 rin if (cip == NULL) {
854 1.62 rin kmem_intr_free(ccp, ccs);
855 1.62 rin db_printf("%s: cannot allocate cpu_info\n", __func__);
856 1.62 rin return;
857 1.62 rin }
858 1.62 rin
859 1.1 thorpej /*
860 1.1 thorpej * Don't lock the callwheel; all the other CPUs are paused
861 1.1 thorpej * anyhow, and we might be called in a circumstance where
862 1.1 thorpej * some other CPU was paused while holding the lock.
863 1.1 thorpej */
864 1.49 christos for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
865 1.62 rin db_read_bytes((db_addr_t)ci, cis, (char *)cip);
866 1.62 rin cc = cip->ci_data.cpu_callout;
867 1.62 rin db_read_bytes((db_addr_t)cc, ccs, (char *)ccp);
868 1.62 rin db_show_callout_bucket(ccp, &cc->cc_todo, &ccp->cc_todo);
869 1.36 ad }
870 1.36 ad for (b = 0; b < BUCKETS; b++) {
871 1.49 christos for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
872 1.62 rin db_read_bytes((db_addr_t)ci, cis, (char *)cip);
873 1.62 rin cc = cip->ci_data.cpu_callout;
874 1.62 rin db_read_bytes((db_addr_t)cc, ccs, (char *)ccp);
875 1.62 rin db_show_callout_bucket(ccp, &cc->cc_wheel[b],
876 1.62 rin &ccp->cc_wheel[b]);
877 1.36 ad }
878 1.36 ad }
879 1.62 rin
880 1.62 rin kmem_intr_free(ccp, ccs);
881 1.62 rin kmem_intr_free(cip, cis);
882 1.1 thorpej }
883 1.1 thorpej #endif /* DDB */
884