Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.63
      1  1.63       rin /*	$NetBSD: kern_timeout.c,v 1.63 2020/05/31 09:59:37 rin Exp $	*/
      2   1.1   thorpej 
      3   1.1   thorpej /*-
      4  1.57        ad  * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
      5   1.1   thorpej  * All rights reserved.
      6   1.1   thorpej  *
      7   1.1   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.22        ad  * by Jason R. Thorpe, and by Andrew Doran.
      9   1.1   thorpej  *
     10   1.1   thorpej  * Redistribution and use in source and binary forms, with or without
     11   1.1   thorpej  * modification, are permitted provided that the following conditions
     12   1.1   thorpej  * are met:
     13   1.1   thorpej  * 1. Redistributions of source code must retain the above copyright
     14   1.1   thorpej  *    notice, this list of conditions and the following disclaimer.
     15   1.1   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17   1.1   thorpej  *    documentation and/or other materials provided with the distribution.
     18   1.1   thorpej  *
     19   1.1   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1   thorpej  */
     31   1.1   thorpej 
     32   1.1   thorpej /*
     33   1.1   thorpej  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34   1.1   thorpej  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35  1.14     perry  * All rights reserved.
     36  1.14     perry  *
     37  1.14     perry  * Redistribution and use in source and binary forms, with or without
     38  1.14     perry  * modification, are permitted provided that the following conditions
     39  1.14     perry  * are met:
     40   1.1   thorpej  *
     41  1.14     perry  * 1. Redistributions of source code must retain the above copyright
     42  1.14     perry  *    notice, this list of conditions and the following disclaimer.
     43  1.14     perry  * 2. Redistributions in binary form must reproduce the above copyright
     44  1.14     perry  *    notice, this list of conditions and the following disclaimer in the
     45  1.14     perry  *    documentation and/or other materials provided with the distribution.
     46   1.1   thorpej  * 3. The name of the author may not be used to endorse or promote products
     47  1.14     perry  *    derived from this software without specific prior written permission.
     48   1.1   thorpej  *
     49   1.1   thorpej  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50   1.1   thorpej  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51   1.1   thorpej  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52   1.1   thorpej  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53   1.1   thorpej  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54   1.1   thorpej  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55   1.1   thorpej  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56   1.1   thorpej  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57   1.1   thorpej  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  1.14     perry  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59   1.1   thorpej  */
     60   1.7     lukem 
     61   1.7     lukem #include <sys/cdefs.h>
     62  1.63       rin __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.63 2020/05/31 09:59:37 rin Exp $");
     63   1.1   thorpej 
     64   1.1   thorpej /*
     65  1.22        ad  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  1.36        ad  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  1.36        ad  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  1.36        ad  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  1.36        ad  * a Timer Facility" by George Varghese and Tony Lauck.
     70  1.22        ad  *
     71  1.22        ad  * Some of the "math" in here is a bit tricky.  We have to beware of
     72  1.22        ad  * wrapping ints.
     73  1.22        ad  *
     74  1.22        ad  * We use the fact that any element added to the queue must be added with
     75  1.22        ad  * a positive time.  That means that any element `to' on the queue cannot
     76  1.22        ad  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77  1.22        ad  * be positive or negative so comparing it with anything is dangerous.
     78  1.22        ad  * The only way we can use the c->c_time value in any predictable way is
     79  1.22        ad  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  1.36        ad  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81  1.22        ad  * timeouts and 0 or negative for due timeouts.
     82   1.1   thorpej  */
     83   1.1   thorpej 
     84  1.24        ad #define	_CALLOUT_PRIVATE
     85  1.24        ad 
     86   1.1   thorpej #include <sys/param.h>
     87   1.1   thorpej #include <sys/systm.h>
     88   1.1   thorpej #include <sys/kernel.h>
     89   1.1   thorpej #include <sys/callout.h>
     90  1.45     rmind #include <sys/lwp.h>
     91  1.20        ad #include <sys/mutex.h>
     92  1.22        ad #include <sys/proc.h>
     93  1.22        ad #include <sys/sleepq.h>
     94  1.22        ad #include <sys/syncobj.h>
     95  1.22        ad #include <sys/evcnt.h>
     96  1.27        ad #include <sys/intr.h>
     97  1.33        ad #include <sys/cpu.h>
     98  1.36        ad #include <sys/kmem.h>
     99   1.1   thorpej 
    100   1.1   thorpej #ifdef DDB
    101   1.1   thorpej #include <machine/db_machdep.h>
    102   1.1   thorpej #include <ddb/db_interface.h>
    103   1.1   thorpej #include <ddb/db_access.h>
    104  1.49  christos #include <ddb/db_cpu.h>
    105  1.63       rin #include <ddb/db_command.h>
    106   1.1   thorpej #include <ddb/db_sym.h>
    107   1.1   thorpej #include <ddb/db_output.h>
    108   1.1   thorpej #endif
    109   1.1   thorpej 
    110  1.22        ad #define BUCKETS		1024
    111  1.22        ad #define WHEELSIZE	256
    112  1.22        ad #define WHEELMASK	255
    113  1.22        ad #define WHEELBITS	8
    114  1.22        ad 
    115   1.1   thorpej #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    116   1.1   thorpej 
    117  1.36        ad #define BUCKET(cc, rel, abs)						\
    118   1.1   thorpej     (((rel) <= (1 << (2*WHEELBITS)))					\
    119   1.1   thorpej     	? ((rel) <= (1 << WHEELBITS))					\
    120  1.36        ad             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    121  1.36        ad             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    122   1.1   thorpej         : ((rel) <= (1 << (3*WHEELBITS)))				\
    123  1.36        ad             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    124  1.36        ad             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    125   1.1   thorpej 
    126  1.36        ad #define MOVEBUCKET(cc, wheel, time)					\
    127  1.36        ad     CIRCQ_APPEND(&(cc)->cc_todo,					\
    128  1.36        ad         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    129   1.1   thorpej 
    130   1.1   thorpej /*
    131   1.1   thorpej  * Circular queue definitions.
    132   1.1   thorpej  */
    133   1.1   thorpej 
    134  1.11       scw #define CIRCQ_INIT(list)						\
    135   1.1   thorpej do {									\
    136  1.11       scw         (list)->cq_next_l = (list);					\
    137  1.11       scw         (list)->cq_prev_l = (list);					\
    138   1.1   thorpej } while (/*CONSTCOND*/0)
    139   1.1   thorpej 
    140   1.1   thorpej #define CIRCQ_INSERT(elem, list)					\
    141   1.1   thorpej do {									\
    142  1.11       scw         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    143  1.11       scw         (elem)->cq_next_l = (list);					\
    144  1.11       scw         (list)->cq_prev_l->cq_next_l = (elem);				\
    145  1.11       scw         (list)->cq_prev_l = (elem);					\
    146   1.1   thorpej } while (/*CONSTCOND*/0)
    147   1.1   thorpej 
    148   1.1   thorpej #define CIRCQ_APPEND(fst, snd)						\
    149   1.1   thorpej do {									\
    150   1.1   thorpej         if (!CIRCQ_EMPTY(snd)) {					\
    151  1.11       scw                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    152  1.11       scw                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    153  1.11       scw                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    154  1.11       scw                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    155   1.1   thorpej                 CIRCQ_INIT(snd);					\
    156   1.1   thorpej         }								\
    157   1.1   thorpej } while (/*CONSTCOND*/0)
    158   1.1   thorpej 
    159   1.1   thorpej #define CIRCQ_REMOVE(elem)						\
    160   1.1   thorpej do {									\
    161  1.11       scw         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    162  1.11       scw         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    163   1.1   thorpej } while (/*CONSTCOND*/0)
    164   1.1   thorpej 
    165  1.11       scw #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    166  1.11       scw #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    167  1.11       scw #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    168  1.11       scw #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    169   1.1   thorpej 
    170  1.36        ad struct callout_cpu {
    171  1.44        ad 	kmutex_t	*cc_lock;
    172  1.36        ad 	sleepq_t	cc_sleepq;
    173  1.36        ad 	u_int		cc_nwait;
    174  1.36        ad 	u_int		cc_ticks;
    175  1.36        ad 	lwp_t		*cc_lwp;
    176  1.36        ad 	callout_impl_t	*cc_active;
    177  1.36        ad 	callout_impl_t	*cc_cancel;
    178  1.36        ad 	struct evcnt	cc_ev_late;
    179  1.36        ad 	struct evcnt	cc_ev_block;
    180  1.36        ad 	struct callout_circq cc_todo;		/* Worklist */
    181  1.36        ad 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    182  1.36        ad 	char		cc_name1[12];
    183  1.36        ad 	char		cc_name2[12];
    184  1.36        ad };
    185  1.36        ad 
    186  1.49  christos #ifndef CRASH
    187  1.49  christos 
    188  1.49  christos static void	callout_softclock(void *);
    189  1.57        ad static void	callout_wait(callout_impl_t *, void *, kmutex_t *);
    190  1.57        ad 
    191  1.57        ad static struct callout_cpu callout_cpu0 __cacheline_aligned;
    192  1.57        ad static void *callout_sih __read_mostly;
    193  1.36        ad 
    194  1.36        ad static inline kmutex_t *
    195  1.36        ad callout_lock(callout_impl_t *c)
    196  1.36        ad {
    197  1.44        ad 	struct callout_cpu *cc;
    198  1.36        ad 	kmutex_t *lock;
    199  1.36        ad 
    200  1.36        ad 	for (;;) {
    201  1.44        ad 		cc = c->c_cpu;
    202  1.44        ad 		lock = cc->cc_lock;
    203  1.36        ad 		mutex_spin_enter(lock);
    204  1.44        ad 		if (__predict_true(cc == c->c_cpu))
    205  1.36        ad 			return lock;
    206  1.36        ad 		mutex_spin_exit(lock);
    207  1.36        ad 	}
    208  1.36        ad }
    209   1.5   thorpej 
    210   1.1   thorpej /*
    211   1.1   thorpej  * callout_startup:
    212   1.1   thorpej  *
    213   1.1   thorpej  *	Initialize the callout facility, called at system startup time.
    214  1.36        ad  *	Do just enough to allow callouts to be safely registered.
    215   1.1   thorpej  */
    216   1.1   thorpej void
    217   1.1   thorpej callout_startup(void)
    218   1.1   thorpej {
    219  1.36        ad 	struct callout_cpu *cc;
    220   1.1   thorpej 	int b;
    221   1.1   thorpej 
    222  1.36        ad 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    223  1.22        ad 
    224  1.36        ad 	cc = &callout_cpu0;
    225  1.44        ad 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    226  1.36        ad 	CIRCQ_INIT(&cc->cc_todo);
    227   1.1   thorpej 	for (b = 0; b < BUCKETS; b++)
    228  1.36        ad 		CIRCQ_INIT(&cc->cc_wheel[b]);
    229  1.36        ad 	curcpu()->ci_data.cpu_callout = cc;
    230  1.22        ad }
    231  1.22        ad 
    232  1.22        ad /*
    233  1.36        ad  * callout_init_cpu:
    234  1.22        ad  *
    235  1.36        ad  *	Per-CPU initialization.
    236  1.22        ad  */
    237  1.47    martin CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    238  1.47    martin 
    239  1.22        ad void
    240  1.36        ad callout_init_cpu(struct cpu_info *ci)
    241  1.22        ad {
    242  1.36        ad 	struct callout_cpu *cc;
    243  1.36        ad 	int b;
    244  1.22        ad 
    245  1.36        ad 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    246  1.36        ad 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    247  1.44        ad 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    248  1.36        ad 		CIRCQ_INIT(&cc->cc_todo);
    249  1.36        ad 		for (b = 0; b < BUCKETS; b++)
    250  1.36        ad 			CIRCQ_INIT(&cc->cc_wheel[b]);
    251  1.36        ad 	} else {
    252  1.36        ad 		/* Boot CPU, one time only. */
    253  1.36        ad 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    254  1.36        ad 		    callout_softclock, NULL);
    255  1.36        ad 		if (callout_sih == NULL)
    256  1.36        ad 			panic("callout_init_cpu (2)");
    257  1.36        ad 	}
    258  1.36        ad 
    259  1.40        ad 	sleepq_init(&cc->cc_sleepq);
    260  1.36        ad 
    261  1.36        ad 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    262  1.36        ad 	    cpu_index(ci));
    263  1.36        ad 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    264  1.36        ad 	    NULL, "callout", cc->cc_name1);
    265  1.36        ad 
    266  1.36        ad 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    267  1.36        ad 	    cpu_index(ci));
    268  1.36        ad 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    269  1.36        ad 	    NULL, "callout", cc->cc_name2);
    270  1.36        ad 
    271  1.36        ad 	ci->ci_data.cpu_callout = cc;
    272   1.1   thorpej }
    273   1.1   thorpej 
    274   1.1   thorpej /*
    275   1.1   thorpej  * callout_init:
    276   1.1   thorpej  *
    277  1.36        ad  *	Initialize a callout structure.  This must be quick, so we fill
    278  1.36        ad  *	only the minimum number of fields.
    279   1.1   thorpej  */
    280   1.1   thorpej void
    281  1.22        ad callout_init(callout_t *cs, u_int flags)
    282   1.1   thorpej {
    283  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    284  1.36        ad 	struct callout_cpu *cc;
    285  1.22        ad 
    286  1.22        ad 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    287   1.1   thorpej 
    288  1.36        ad 	cc = curcpu()->ci_data.cpu_callout;
    289  1.36        ad 	c->c_func = NULL;
    290  1.22        ad 	c->c_magic = CALLOUT_MAGIC;
    291  1.36        ad 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    292  1.36        ad 		c->c_flags = flags;
    293  1.36        ad 		c->c_cpu = cc;
    294  1.36        ad 		return;
    295  1.36        ad 	}
    296  1.36        ad 	c->c_flags = flags | CALLOUT_BOUND;
    297  1.36        ad 	c->c_cpu = &callout_cpu0;
    298  1.22        ad }
    299  1.22        ad 
    300  1.22        ad /*
    301  1.22        ad  * callout_destroy:
    302  1.22        ad  *
    303  1.22        ad  *	Destroy a callout structure.  The callout must be stopped.
    304  1.22        ad  */
    305  1.22        ad void
    306  1.22        ad callout_destroy(callout_t *cs)
    307  1.22        ad {
    308  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    309  1.22        ad 
    310  1.53  christos 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
    311  1.53  christos 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
    312  1.53  christos 	    c, c->c_magic, CALLOUT_MAGIC);
    313  1.22        ad 	/*
    314  1.22        ad 	 * It's not necessary to lock in order to see the correct value
    315  1.22        ad 	 * of c->c_flags.  If the callout could potentially have been
    316  1.22        ad 	 * running, the current thread should have stopped it.
    317  1.22        ad 	 */
    318  1.48    martin 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
    319  1.59        ad 	    "pending callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    320  1.59        ad 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    321  1.59        ad 	KASSERTMSG(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c,
    322  1.59        ad 	    "running callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    323  1.48    martin 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    324  1.22        ad 	c->c_magic = 0;
    325   1.1   thorpej }
    326   1.1   thorpej 
    327   1.1   thorpej /*
    328  1.29     joerg  * callout_schedule_locked:
    329   1.1   thorpej  *
    330  1.29     joerg  *	Schedule a callout to run.  The function and argument must
    331  1.29     joerg  *	already be set in the callout structure.  Must be called with
    332  1.29     joerg  *	callout_lock.
    333   1.1   thorpej  */
    334  1.29     joerg static void
    335  1.36        ad callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    336   1.1   thorpej {
    337  1.36        ad 	struct callout_cpu *cc, *occ;
    338  1.20        ad 	int old_time;
    339   1.1   thorpej 
    340   1.1   thorpej 	KASSERT(to_ticks >= 0);
    341  1.29     joerg 	KASSERT(c->c_func != NULL);
    342   1.1   thorpej 
    343   1.1   thorpej 	/* Initialize the time here, it won't change. */
    344  1.36        ad 	occ = c->c_cpu;
    345  1.43        ad 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    346   1.1   thorpej 
    347   1.1   thorpej 	/*
    348   1.1   thorpej 	 * If this timeout is already scheduled and now is moved
    349  1.36        ad 	 * earlier, reschedule it now.  Otherwise leave it in place
    350   1.1   thorpej 	 * and let it be rescheduled later.
    351   1.1   thorpej 	 */
    352  1.22        ad 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    353  1.36        ad 		/* Leave on existing CPU. */
    354  1.36        ad 		old_time = c->c_time;
    355  1.36        ad 		c->c_time = to_ticks + occ->cc_ticks;
    356   1.4      yamt 		if (c->c_time - old_time < 0) {
    357   1.1   thorpej 			CIRCQ_REMOVE(&c->c_list);
    358  1.36        ad 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    359   1.1   thorpej 		}
    360  1.36        ad 		mutex_spin_exit(lock);
    361  1.36        ad 		return;
    362  1.36        ad 	}
    363  1.36        ad 
    364  1.36        ad 	cc = curcpu()->ci_data.cpu_callout;
    365  1.36        ad 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    366  1.44        ad 	    !mutex_tryenter(cc->cc_lock)) {
    367  1.36        ad 		/* Leave on existing CPU. */
    368  1.36        ad 		c->c_time = to_ticks + occ->cc_ticks;
    369  1.36        ad 		c->c_flags |= CALLOUT_PENDING;
    370  1.36        ad 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    371   1.1   thorpej 	} else {
    372  1.36        ad 		/* Move to this CPU. */
    373  1.36        ad 		c->c_cpu = cc;
    374  1.36        ad 		c->c_time = to_ticks + cc->cc_ticks;
    375   1.1   thorpej 		c->c_flags |= CALLOUT_PENDING;
    376  1.36        ad 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    377  1.44        ad 		mutex_spin_exit(cc->cc_lock);
    378   1.1   thorpej 	}
    379  1.36        ad 	mutex_spin_exit(lock);
    380  1.29     joerg }
    381  1.29     joerg 
    382  1.29     joerg /*
    383  1.29     joerg  * callout_reset:
    384  1.29     joerg  *
    385  1.29     joerg  *	Reset a callout structure with a new function and argument, and
    386  1.29     joerg  *	schedule it to run.
    387  1.29     joerg  */
    388  1.29     joerg void
    389  1.29     joerg callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    390  1.29     joerg {
    391  1.29     joerg 	callout_impl_t *c = (callout_impl_t *)cs;
    392  1.36        ad 	kmutex_t *lock;
    393  1.29     joerg 
    394  1.29     joerg 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    395  1.42     rmind 	KASSERT(func != NULL);
    396  1.29     joerg 
    397  1.36        ad 	lock = callout_lock(c);
    398  1.29     joerg 	c->c_func = func;
    399  1.29     joerg 	c->c_arg = arg;
    400  1.36        ad 	callout_schedule_locked(c, lock, to_ticks);
    401   1.1   thorpej }
    402   1.1   thorpej 
    403   1.1   thorpej /*
    404   1.1   thorpej  * callout_schedule:
    405   1.1   thorpej  *
    406   1.1   thorpej  *	Schedule a callout to run.  The function and argument must
    407   1.1   thorpej  *	already be set in the callout structure.
    408   1.1   thorpej  */
    409   1.1   thorpej void
    410  1.22        ad callout_schedule(callout_t *cs, int to_ticks)
    411   1.1   thorpej {
    412  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    413  1.36        ad 	kmutex_t *lock;
    414   1.1   thorpej 
    415  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    416   1.1   thorpej 
    417  1.36        ad 	lock = callout_lock(c);
    418  1.36        ad 	callout_schedule_locked(c, lock, to_ticks);
    419   1.1   thorpej }
    420   1.1   thorpej 
    421   1.1   thorpej /*
    422   1.1   thorpej  * callout_stop:
    423   1.1   thorpej  *
    424  1.36        ad  *	Try to cancel a pending callout.  It may be too late: the callout
    425  1.36        ad  *	could be running on another CPU.  If called from interrupt context,
    426  1.36        ad  *	the callout could already be in progress at a lower priority.
    427   1.1   thorpej  */
    428  1.22        ad bool
    429  1.22        ad callout_stop(callout_t *cs)
    430   1.1   thorpej {
    431  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    432  1.36        ad 	struct callout_cpu *cc;
    433  1.36        ad 	kmutex_t *lock;
    434  1.22        ad 	bool expired;
    435  1.22        ad 
    436  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    437   1.1   thorpej 
    438  1.36        ad 	lock = callout_lock(c);
    439  1.20        ad 
    440  1.22        ad 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    441   1.1   thorpej 		CIRCQ_REMOVE(&c->c_list);
    442  1.32        ad 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    443  1.32        ad 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    444  1.32        ad 
    445  1.36        ad 	cc = c->c_cpu;
    446  1.36        ad 	if (cc->cc_active == c) {
    447  1.32        ad 		/*
    448  1.32        ad 		 * This is for non-MPSAFE callouts only.  To synchronize
    449  1.32        ad 		 * effectively we must be called with kernel_lock held.
    450  1.32        ad 		 * It's also taken in callout_softclock.
    451  1.32        ad 		 */
    452  1.36        ad 		cc->cc_cancel = c;
    453  1.32        ad 	}
    454  1.32        ad 
    455  1.36        ad 	mutex_spin_exit(lock);
    456  1.32        ad 
    457  1.32        ad 	return expired;
    458  1.32        ad }
    459  1.32        ad 
    460  1.32        ad /*
    461  1.32        ad  * callout_halt:
    462  1.32        ad  *
    463  1.32        ad  *	Cancel a pending callout.  If in-flight, block until it completes.
    464  1.36        ad  *	May not be called from a hard interrupt handler.  If the callout
    465  1.36        ad  * 	can take locks, the caller of callout_halt() must not hold any of
    466  1.37        ad  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    467  1.37        ad  *	non-NULL and we must wait for the callout to complete, it will be
    468  1.37        ad  *	released and re-acquired before returning.
    469  1.32        ad  */
    470  1.32        ad bool
    471  1.38        ad callout_halt(callout_t *cs, void *interlock)
    472  1.32        ad {
    473  1.32        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    474  1.57        ad 	kmutex_t *lock;
    475  1.57        ad 	int flags;
    476  1.32        ad 
    477  1.32        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    478  1.32        ad 	KASSERT(!cpu_intr_p());
    479  1.54     ozaki 	KASSERT(interlock == NULL || mutex_owned(interlock));
    480  1.32        ad 
    481  1.57        ad 	/* Fast path. */
    482  1.36        ad 	lock = callout_lock(c);
    483  1.57        ad 	flags = c->c_flags;
    484  1.57        ad 	if ((flags & CALLOUT_PENDING) != 0)
    485  1.57        ad 		CIRCQ_REMOVE(&c->c_list);
    486  1.57        ad 	c->c_flags = flags & ~(CALLOUT_PENDING|CALLOUT_FIRED);
    487  1.57        ad 	if (__predict_false(flags & CALLOUT_FIRED)) {
    488  1.57        ad 		callout_wait(c, interlock, lock);
    489  1.57        ad 		return true;
    490  1.57        ad 	}
    491  1.57        ad 	mutex_spin_exit(lock);
    492  1.57        ad 	return false;
    493  1.57        ad }
    494   1.1   thorpej 
    495  1.57        ad /*
    496  1.57        ad  * callout_wait:
    497  1.57        ad  *
    498  1.57        ad  *	Slow path for callout_halt().  Deliberately marked __noinline to
    499  1.57        ad  *	prevent unneeded overhead in the caller.
    500  1.57        ad  */
    501  1.57        ad static void __noinline
    502  1.57        ad callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
    503  1.57        ad {
    504  1.57        ad 	struct callout_cpu *cc;
    505  1.57        ad 	struct lwp *l;
    506  1.57        ad 	kmutex_t *relock;
    507   1.1   thorpej 
    508  1.32        ad 	l = curlwp;
    509  1.57        ad 	relock = NULL;
    510  1.36        ad 	for (;;) {
    511  1.58        ad 		/*
    512  1.58        ad 		 * At this point we know the callout is not pending, but it
    513  1.58        ad 		 * could be running on a CPU somewhere.  That can be curcpu
    514  1.58        ad 		 * in a few cases:
    515  1.58        ad 		 *
    516  1.58        ad 		 * - curlwp is a higher priority soft interrupt
    517  1.58        ad 		 * - the callout blocked on a lock and is currently asleep
    518  1.58        ad 		 * - the callout itself has called callout_halt() (nice!)
    519  1.58        ad 		 */
    520  1.36        ad 		cc = c->c_cpu;
    521  1.36        ad 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    522  1.36        ad 			break;
    523  1.58        ad 
    524  1.58        ad 		/* It's running - need to wait for it to complete. */
    525  1.37        ad 		if (interlock != NULL) {
    526  1.37        ad 			/*
    527  1.37        ad 			 * Avoid potential scheduler lock order problems by
    528  1.37        ad 			 * dropping the interlock without the callout lock
    529  1.58        ad 			 * held; then retry.
    530  1.37        ad 			 */
    531  1.37        ad 			mutex_spin_exit(lock);
    532  1.37        ad 			mutex_exit(interlock);
    533  1.37        ad 			relock = interlock;
    534  1.37        ad 			interlock = NULL;
    535  1.37        ad 		} else {
    536  1.37        ad 			/* XXX Better to do priority inheritance. */
    537  1.37        ad 			KASSERT(l->l_wchan == NULL);
    538  1.37        ad 			cc->cc_nwait++;
    539  1.37        ad 			cc->cc_ev_block.ev_count++;
    540  1.37        ad 			l->l_kpriority = true;
    541  1.44        ad 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    542  1.37        ad 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    543  1.61        ad 			    &sleep_syncobj, false);
    544  1.37        ad 			sleepq_block(0, false);
    545  1.37        ad 		}
    546  1.58        ad 
    547  1.58        ad 		/*
    548  1.58        ad 		 * Re-lock the callout and check the state of play again.
    549  1.58        ad 		 * It's a common design pattern for callouts to re-schedule
    550  1.58        ad 		 * themselves so put a stop to it again if needed.
    551  1.58        ad 		 */
    552  1.36        ad 		lock = callout_lock(c);
    553  1.58        ad 		if ((c->c_flags & CALLOUT_PENDING) != 0)
    554  1.58        ad 			CIRCQ_REMOVE(&c->c_list);
    555  1.58        ad 		c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    556  1.32        ad 	}
    557  1.32        ad 
    558  1.36        ad 	mutex_spin_exit(lock);
    559  1.37        ad 	if (__predict_false(relock != NULL))
    560  1.37        ad 		mutex_enter(relock);
    561  1.22        ad }
    562  1.22        ad 
    563  1.36        ad #ifdef notyet
    564  1.36        ad /*
    565  1.36        ad  * callout_bind:
    566  1.36        ad  *
    567  1.36        ad  *	Bind a callout so that it will only execute on one CPU.
    568  1.36        ad  *	The callout must be stopped, and must be MPSAFE.
    569  1.36        ad  *
    570  1.36        ad  *	XXX Disabled for now until it is decided how to handle
    571  1.36        ad  *	offlined CPUs.  We may want weak+strong binding.
    572  1.36        ad  */
    573  1.36        ad void
    574  1.36        ad callout_bind(callout_t *cs, struct cpu_info *ci)
    575  1.36        ad {
    576  1.36        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    577  1.36        ad 	struct callout_cpu *cc;
    578  1.36        ad 	kmutex_t *lock;
    579  1.36        ad 
    580  1.36        ad 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    581  1.36        ad 	KASSERT(c->c_cpu->cc_active != c);
    582  1.36        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    583  1.36        ad 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    584  1.36        ad 
    585  1.36        ad 	lock = callout_lock(c);
    586  1.36        ad 	cc = ci->ci_data.cpu_callout;
    587  1.36        ad 	c->c_flags |= CALLOUT_BOUND;
    588  1.36        ad 	if (c->c_cpu != cc) {
    589  1.36        ad 		/*
    590  1.36        ad 		 * Assigning c_cpu effectively unlocks the callout
    591  1.36        ad 		 * structure, as we don't hold the new CPU's lock.
    592  1.36        ad 		 * Issue memory barrier to prevent accesses being
    593  1.36        ad 		 * reordered.
    594  1.36        ad 		 */
    595  1.36        ad 		membar_exit();
    596  1.36        ad 		c->c_cpu = cc;
    597  1.36        ad 	}
    598  1.36        ad 	mutex_spin_exit(lock);
    599  1.36        ad }
    600  1.36        ad #endif
    601  1.36        ad 
    602  1.22        ad void
    603  1.22        ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    604  1.22        ad {
    605  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    606  1.36        ad 	kmutex_t *lock;
    607  1.22        ad 
    608  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    609  1.42     rmind 	KASSERT(func != NULL);
    610  1.22        ad 
    611  1.36        ad 	lock = callout_lock(c);
    612  1.22        ad 	c->c_func = func;
    613  1.22        ad 	c->c_arg = arg;
    614  1.36        ad 	mutex_spin_exit(lock);
    615  1.22        ad }
    616  1.22        ad 
    617  1.22        ad bool
    618  1.22        ad callout_expired(callout_t *cs)
    619  1.22        ad {
    620  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    621  1.36        ad 	kmutex_t *lock;
    622  1.22        ad 	bool rv;
    623  1.22        ad 
    624  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    625  1.22        ad 
    626  1.36        ad 	lock = callout_lock(c);
    627  1.22        ad 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    628  1.36        ad 	mutex_spin_exit(lock);
    629  1.22        ad 
    630  1.22        ad 	return rv;
    631  1.22        ad }
    632  1.22        ad 
    633  1.22        ad bool
    634  1.22        ad callout_active(callout_t *cs)
    635  1.22        ad {
    636  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    637  1.36        ad 	kmutex_t *lock;
    638  1.22        ad 	bool rv;
    639  1.22        ad 
    640  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    641  1.22        ad 
    642  1.36        ad 	lock = callout_lock(c);
    643  1.22        ad 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    644  1.36        ad 	mutex_spin_exit(lock);
    645  1.22        ad 
    646  1.22        ad 	return rv;
    647  1.22        ad }
    648  1.22        ad 
    649  1.22        ad bool
    650  1.22        ad callout_pending(callout_t *cs)
    651  1.22        ad {
    652  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    653  1.36        ad 	kmutex_t *lock;
    654  1.22        ad 	bool rv;
    655  1.22        ad 
    656  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    657  1.22        ad 
    658  1.36        ad 	lock = callout_lock(c);
    659  1.22        ad 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    660  1.36        ad 	mutex_spin_exit(lock);
    661  1.22        ad 
    662  1.22        ad 	return rv;
    663  1.22        ad }
    664  1.22        ad 
    665  1.22        ad bool
    666  1.22        ad callout_invoking(callout_t *cs)
    667  1.22        ad {
    668  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    669  1.36        ad 	kmutex_t *lock;
    670  1.22        ad 	bool rv;
    671  1.22        ad 
    672  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    673  1.22        ad 
    674  1.36        ad 	lock = callout_lock(c);
    675  1.22        ad 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    676  1.36        ad 	mutex_spin_exit(lock);
    677  1.22        ad 
    678  1.22        ad 	return rv;
    679  1.22        ad }
    680  1.22        ad 
    681  1.22        ad void
    682  1.22        ad callout_ack(callout_t *cs)
    683  1.22        ad {
    684  1.22        ad 	callout_impl_t *c = (callout_impl_t *)cs;
    685  1.36        ad 	kmutex_t *lock;
    686  1.22        ad 
    687  1.22        ad 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    688  1.22        ad 
    689  1.36        ad 	lock = callout_lock(c);
    690  1.22        ad 	c->c_flags &= ~CALLOUT_INVOKING;
    691  1.36        ad 	mutex_spin_exit(lock);
    692   1.1   thorpej }
    693   1.1   thorpej 
    694   1.1   thorpej /*
    695  1.36        ad  * callout_hardclock:
    696  1.36        ad  *
    697  1.36        ad  *	Called from hardclock() once every tick.  We schedule a soft
    698  1.36        ad  *	interrupt if there is work to be done.
    699   1.1   thorpej  */
    700  1.22        ad void
    701   1.1   thorpej callout_hardclock(void)
    702   1.1   thorpej {
    703  1.36        ad 	struct callout_cpu *cc;
    704  1.36        ad 	int needsoftclock, ticks;
    705   1.1   thorpej 
    706  1.36        ad 	cc = curcpu()->ci_data.cpu_callout;
    707  1.44        ad 	mutex_spin_enter(cc->cc_lock);
    708   1.1   thorpej 
    709  1.36        ad 	ticks = ++cc->cc_ticks;
    710  1.36        ad 
    711  1.36        ad 	MOVEBUCKET(cc, 0, ticks);
    712  1.36        ad 	if (MASKWHEEL(0, ticks) == 0) {
    713  1.36        ad 		MOVEBUCKET(cc, 1, ticks);
    714  1.36        ad 		if (MASKWHEEL(1, ticks) == 0) {
    715  1.36        ad 			MOVEBUCKET(cc, 2, ticks);
    716  1.36        ad 			if (MASKWHEEL(2, ticks) == 0)
    717  1.36        ad 				MOVEBUCKET(cc, 3, ticks);
    718   1.1   thorpej 		}
    719   1.1   thorpej 	}
    720   1.1   thorpej 
    721  1.36        ad 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    722  1.44        ad 	mutex_spin_exit(cc->cc_lock);
    723   1.1   thorpej 
    724  1.22        ad 	if (needsoftclock)
    725  1.36        ad 		softint_schedule(callout_sih);
    726   1.1   thorpej }
    727   1.1   thorpej 
    728  1.36        ad /*
    729  1.36        ad  * callout_softclock:
    730  1.36        ad  *
    731  1.36        ad  *	Soft interrupt handler, scheduled above if there is work to
    732  1.36        ad  * 	be done.  Callouts are made in soft interrupt context.
    733  1.36        ad  */
    734  1.22        ad static void
    735  1.22        ad callout_softclock(void *v)
    736   1.1   thorpej {
    737  1.22        ad 	callout_impl_t *c;
    738  1.36        ad 	struct callout_cpu *cc;
    739   1.1   thorpej 	void (*func)(void *);
    740   1.1   thorpej 	void *arg;
    741  1.36        ad 	int mpsafe, count, ticks, delta;
    742  1.22        ad 	lwp_t *l;
    743   1.1   thorpej 
    744  1.22        ad 	l = curlwp;
    745  1.36        ad 	KASSERT(l->l_cpu == curcpu());
    746  1.36        ad 	cc = l->l_cpu->ci_data.cpu_callout;
    747   1.1   thorpej 
    748  1.44        ad 	mutex_spin_enter(cc->cc_lock);
    749  1.36        ad 	cc->cc_lwp = l;
    750  1.36        ad 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    751  1.36        ad 		c = CIRCQ_FIRST(&cc->cc_todo);
    752  1.22        ad 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    753  1.22        ad 		KASSERT(c->c_func != NULL);
    754  1.36        ad 		KASSERT(c->c_cpu == cc);
    755  1.26        ad 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    756  1.26        ad 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    757   1.1   thorpej 		CIRCQ_REMOVE(&c->c_list);
    758   1.1   thorpej 
    759   1.1   thorpej 		/* If due run it, otherwise insert it into the right bucket. */
    760  1.36        ad 		ticks = cc->cc_ticks;
    761  1.56       kre 		delta = (int)((unsigned)c->c_time - (unsigned)ticks);
    762  1.56       kre 		if (delta > 0) {
    763  1.36        ad 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    764  1.36        ad 			continue;
    765  1.36        ad 		}
    766  1.56       kre 		if (delta < 0)
    767  1.36        ad 			cc->cc_ev_late.ev_count++;
    768  1.36        ad 
    769  1.43        ad 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    770  1.43        ad 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    771  1.36        ad 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    772  1.36        ad 		func = c->c_func;
    773  1.36        ad 		arg = c->c_arg;
    774  1.36        ad 		cc->cc_active = c;
    775  1.36        ad 
    776  1.44        ad 		mutex_spin_exit(cc->cc_lock);
    777  1.42     rmind 		KASSERT(func != NULL);
    778  1.44        ad 		if (__predict_false(!mpsafe)) {
    779  1.36        ad 			KERNEL_LOCK(1, NULL);
    780  1.36        ad 			(*func)(arg);
    781  1.36        ad 			KERNEL_UNLOCK_ONE(NULL);
    782  1.36        ad 		} else
    783  1.36        ad 			(*func)(arg);
    784  1.44        ad 		mutex_spin_enter(cc->cc_lock);
    785  1.36        ad 
    786  1.36        ad 		/*
    787  1.36        ad 		 * We can't touch 'c' here because it might be
    788  1.36        ad 		 * freed already.  If LWPs waiting for callout
    789  1.36        ad 		 * to complete, awaken them.
    790  1.36        ad 		 */
    791  1.36        ad 		cc->cc_active = NULL;
    792  1.36        ad 		if ((count = cc->cc_nwait) != 0) {
    793  1.36        ad 			cc->cc_nwait = 0;
    794  1.36        ad 			/* sleepq_wake() drops the lock. */
    795  1.44        ad 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    796  1.44        ad 			mutex_spin_enter(cc->cc_lock);
    797   1.1   thorpej 		}
    798   1.1   thorpej 	}
    799  1.36        ad 	cc->cc_lwp = NULL;
    800  1.44        ad 	mutex_spin_exit(cc->cc_lock);
    801   1.1   thorpej }
    802  1.63       rin #endif /* !CRASH */
    803   1.1   thorpej 
    804   1.1   thorpej #ifdef DDB
    805   1.1   thorpej static void
    806  1.51  christos db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
    807  1.51  christos     struct callout_circq *bucket)
    808   1.1   thorpej {
    809  1.49  christos 	callout_impl_t *c, ci;
    810   1.1   thorpej 	db_expr_t offset;
    811  1.15  christos 	const char *name;
    812  1.15  christos 	static char question[] = "?";
    813  1.36        ad 	int b;
    814   1.1   thorpej 
    815  1.51  christos 	if (CIRCQ_LAST(bucket, kbucket))
    816  1.11       scw 		return;
    817  1.11       scw 
    818  1.51  christos 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    819  1.49  christos 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
    820  1.49  christos 		c = &ci;
    821  1.10       scw 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    822  1.10       scw 		    &offset);
    823  1.15  christos 		name = name ? name : question;
    824  1.36        ad 		b = (bucket - cc->cc_wheel);
    825  1.36        ad 		if (b < 0)
    826  1.36        ad 			b = -WHEELSIZE;
    827  1.36        ad 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    828  1.36        ad 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    829  1.36        ad 		    (u_long)c->c_arg, name);
    830  1.51  christos 		if (CIRCQ_LAST(&c->c_list, kbucket))
    831  1.11       scw 			break;
    832   1.1   thorpej 	}
    833   1.1   thorpej }
    834   1.1   thorpej 
    835   1.1   thorpej void
    836  1.21      matt db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    837   1.1   thorpej {
    838  1.62       rin 	struct callout_cpu *cc, *ccp;
    839  1.62       rin 	struct cpu_info *ci, *cip;
    840  1.62       rin 	const size_t ccs = sizeof(*cc), cis = sizeof(*ci);
    841   1.1   thorpej 	int b;
    842   1.1   thorpej 
    843  1.49  christos #ifndef CRASH
    844  1.60      maxv 	db_printf("hardclock_ticks now: %d\n", getticks());
    845  1.49  christos #endif
    846   1.1   thorpej 	db_printf("    ticks  wheel               arg  func\n");
    847   1.1   thorpej 
    848  1.63       rin 	ccp = db_alloc(ccs);
    849  1.62       rin 	if (ccp == NULL) {
    850  1.62       rin 		db_printf("%s: cannot allocate callout_cpu\n", __func__);
    851  1.62       rin 		return;
    852  1.62       rin 	}
    853  1.63       rin 	cip = db_alloc(cis);
    854  1.62       rin 	if (cip == NULL) {
    855  1.63       rin 		db_free(ccp, ccs);
    856  1.62       rin 		db_printf("%s: cannot allocate cpu_info\n", __func__);
    857  1.62       rin 		return;
    858  1.62       rin 	}
    859  1.62       rin 
    860   1.1   thorpej 	/*
    861   1.1   thorpej 	 * Don't lock the callwheel; all the other CPUs are paused
    862   1.1   thorpej 	 * anyhow, and we might be called in a circumstance where
    863   1.1   thorpej 	 * some other CPU was paused while holding the lock.
    864   1.1   thorpej 	 */
    865  1.49  christos 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    866  1.62       rin 		db_read_bytes((db_addr_t)ci, cis, (char *)cip);
    867  1.62       rin 		cc = cip->ci_data.cpu_callout;
    868  1.62       rin 		db_read_bytes((db_addr_t)cc, ccs, (char *)ccp);
    869  1.62       rin 		db_show_callout_bucket(ccp, &cc->cc_todo, &ccp->cc_todo);
    870  1.36        ad 	}
    871  1.36        ad 	for (b = 0; b < BUCKETS; b++) {
    872  1.49  christos 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    873  1.62       rin 			db_read_bytes((db_addr_t)ci, cis, (char *)cip);
    874  1.62       rin 			cc = cip->ci_data.cpu_callout;
    875  1.62       rin 			db_read_bytes((db_addr_t)cc, ccs, (char *)ccp);
    876  1.62       rin 			db_show_callout_bucket(ccp, &cc->cc_wheel[b],
    877  1.62       rin 			    &ccp->cc_wheel[b]);
    878  1.36        ad 		}
    879  1.36        ad 	}
    880  1.62       rin 
    881  1.63       rin 	db_free(ccp, ccs);
    882  1.63       rin 	db_free(cip, cis);
    883   1.1   thorpej }
    884   1.1   thorpej #endif /* DDB */
    885