kern_timeout.c revision 1.77 1 1.77 ad /* $NetBSD: kern_timeout.c,v 1.77 2023/09/23 18:48:04 ad Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*-
4 1.57 ad * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.22 ad * by Jason R. Thorpe, and by Andrew Doran.
9 1.1 thorpej *
10 1.1 thorpej * Redistribution and use in source and binary forms, with or without
11 1.1 thorpej * modification, are permitted provided that the following conditions
12 1.1 thorpej * are met:
13 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.1 thorpej * notice, this list of conditions and the following disclaimer.
15 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.1 thorpej * documentation and/or other materials provided with the distribution.
18 1.1 thorpej *
19 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.1 thorpej */
31 1.1 thorpej
32 1.1 thorpej /*
33 1.1 thorpej * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
34 1.1 thorpej * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
35 1.14 perry * All rights reserved.
36 1.14 perry *
37 1.14 perry * Redistribution and use in source and binary forms, with or without
38 1.14 perry * modification, are permitted provided that the following conditions
39 1.14 perry * are met:
40 1.1 thorpej *
41 1.14 perry * 1. Redistributions of source code must retain the above copyright
42 1.14 perry * notice, this list of conditions and the following disclaimer.
43 1.14 perry * 2. Redistributions in binary form must reproduce the above copyright
44 1.14 perry * notice, this list of conditions and the following disclaimer in the
45 1.14 perry * documentation and/or other materials provided with the distribution.
46 1.1 thorpej * 3. The name of the author may not be used to endorse or promote products
47 1.14 perry * derived from this software without specific prior written permission.
48 1.1 thorpej *
49 1.1 thorpej * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50 1.1 thorpej * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51 1.1 thorpej * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52 1.1 thorpej * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53 1.1 thorpej * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 1.1 thorpej * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 1.1 thorpej * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 1.1 thorpej * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 1.1 thorpej * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 1.14 perry * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 1.1 thorpej */
60 1.7 lukem
61 1.7 lukem #include <sys/cdefs.h>
62 1.77 ad __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.77 2023/09/23 18:48:04 ad Exp $");
63 1.1 thorpej
64 1.1 thorpej /*
65 1.22 ad * Timeouts are kept in a hierarchical timing wheel. The c_time is the
66 1.36 ad * value of c_cpu->cc_ticks when the timeout should be called. There are
67 1.36 ad * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68 1.36 ad * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69 1.36 ad * a Timer Facility" by George Varghese and Tony Lauck.
70 1.22 ad *
71 1.22 ad * Some of the "math" in here is a bit tricky. We have to beware of
72 1.22 ad * wrapping ints.
73 1.22 ad *
74 1.22 ad * We use the fact that any element added to the queue must be added with
75 1.22 ad * a positive time. That means that any element `to' on the queue cannot
76 1.22 ad * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77 1.71 riastrad * be positive or negative so comparing it with anything is dangerous.
78 1.22 ad * The only way we can use the c->c_time value in any predictable way is
79 1.22 ad * when we calculate how far in the future `to' will timeout - "c->c_time
80 1.36 ad * - c->c_cpu->cc_ticks". The result will always be positive for future
81 1.22 ad * timeouts and 0 or negative for due timeouts.
82 1.1 thorpej */
83 1.1 thorpej
84 1.24 ad #define _CALLOUT_PRIVATE
85 1.24 ad
86 1.1 thorpej #include <sys/param.h>
87 1.1 thorpej #include <sys/systm.h>
88 1.1 thorpej #include <sys/kernel.h>
89 1.1 thorpej #include <sys/callout.h>
90 1.45 rmind #include <sys/lwp.h>
91 1.20 ad #include <sys/mutex.h>
92 1.22 ad #include <sys/proc.h>
93 1.22 ad #include <sys/sleepq.h>
94 1.22 ad #include <sys/syncobj.h>
95 1.22 ad #include <sys/evcnt.h>
96 1.27 ad #include <sys/intr.h>
97 1.33 ad #include <sys/cpu.h>
98 1.36 ad #include <sys/kmem.h>
99 1.72 riastrad #include <sys/sdt.h>
100 1.1 thorpej
101 1.1 thorpej #ifdef DDB
102 1.1 thorpej #include <machine/db_machdep.h>
103 1.1 thorpej #include <ddb/db_interface.h>
104 1.1 thorpej #include <ddb/db_access.h>
105 1.49 christos #include <ddb/db_cpu.h>
106 1.1 thorpej #include <ddb/db_sym.h>
107 1.1 thorpej #include <ddb/db_output.h>
108 1.1 thorpej #endif
109 1.1 thorpej
110 1.22 ad #define BUCKETS 1024
111 1.22 ad #define WHEELSIZE 256
112 1.22 ad #define WHEELMASK 255
113 1.22 ad #define WHEELBITS 8
114 1.22 ad
115 1.1 thorpej #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
116 1.1 thorpej
117 1.36 ad #define BUCKET(cc, rel, abs) \
118 1.1 thorpej (((rel) <= (1 << (2*WHEELBITS))) \
119 1.1 thorpej ? ((rel) <= (1 << WHEELBITS)) \
120 1.36 ad ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
121 1.36 ad : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
122 1.1 thorpej : ((rel) <= (1 << (3*WHEELBITS))) \
123 1.36 ad ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
124 1.36 ad : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
125 1.1 thorpej
126 1.36 ad #define MOVEBUCKET(cc, wheel, time) \
127 1.36 ad CIRCQ_APPEND(&(cc)->cc_todo, \
128 1.36 ad &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
129 1.1 thorpej
130 1.1 thorpej /*
131 1.1 thorpej * Circular queue definitions.
132 1.1 thorpej */
133 1.1 thorpej
134 1.11 scw #define CIRCQ_INIT(list) \
135 1.1 thorpej do { \
136 1.11 scw (list)->cq_next_l = (list); \
137 1.11 scw (list)->cq_prev_l = (list); \
138 1.1 thorpej } while (/*CONSTCOND*/0)
139 1.1 thorpej
140 1.1 thorpej #define CIRCQ_INSERT(elem, list) \
141 1.1 thorpej do { \
142 1.11 scw (elem)->cq_prev_e = (list)->cq_prev_e; \
143 1.11 scw (elem)->cq_next_l = (list); \
144 1.11 scw (list)->cq_prev_l->cq_next_l = (elem); \
145 1.11 scw (list)->cq_prev_l = (elem); \
146 1.1 thorpej } while (/*CONSTCOND*/0)
147 1.1 thorpej
148 1.1 thorpej #define CIRCQ_APPEND(fst, snd) \
149 1.1 thorpej do { \
150 1.1 thorpej if (!CIRCQ_EMPTY(snd)) { \
151 1.11 scw (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
152 1.11 scw (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
153 1.11 scw (snd)->cq_prev_l->cq_next_l = (fst); \
154 1.11 scw (fst)->cq_prev_l = (snd)->cq_prev_l; \
155 1.1 thorpej CIRCQ_INIT(snd); \
156 1.1 thorpej } \
157 1.1 thorpej } while (/*CONSTCOND*/0)
158 1.1 thorpej
159 1.1 thorpej #define CIRCQ_REMOVE(elem) \
160 1.1 thorpej do { \
161 1.11 scw (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
162 1.11 scw (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
163 1.1 thorpej } while (/*CONSTCOND*/0)
164 1.1 thorpej
165 1.11 scw #define CIRCQ_FIRST(list) ((list)->cq_next_e)
166 1.11 scw #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
167 1.11 scw #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
168 1.11 scw #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
169 1.1 thorpej
170 1.36 ad struct callout_cpu {
171 1.44 ad kmutex_t *cc_lock;
172 1.36 ad sleepq_t cc_sleepq;
173 1.36 ad u_int cc_nwait;
174 1.36 ad u_int cc_ticks;
175 1.36 ad lwp_t *cc_lwp;
176 1.36 ad callout_impl_t *cc_active;
177 1.36 ad struct evcnt cc_ev_late;
178 1.36 ad struct evcnt cc_ev_block;
179 1.36 ad struct callout_circq cc_todo; /* Worklist */
180 1.36 ad struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
181 1.36 ad char cc_name1[12];
182 1.36 ad char cc_name2[12];
183 1.72 riastrad struct cpu_info *cc_cpu;
184 1.36 ad };
185 1.36 ad
186 1.65 rin #ifdef DDB
187 1.65 rin static struct callout_cpu ccb;
188 1.65 rin #endif
189 1.49 christos
190 1.65 rin #ifndef CRASH /* _KERNEL */
191 1.49 christos static void callout_softclock(void *);
192 1.57 ad static void callout_wait(callout_impl_t *, void *, kmutex_t *);
193 1.57 ad
194 1.57 ad static struct callout_cpu callout_cpu0 __cacheline_aligned;
195 1.57 ad static void *callout_sih __read_mostly;
196 1.36 ad
197 1.72 riastrad SDT_PROBE_DEFINE2(sdt, kernel, callout, init,
198 1.72 riastrad "struct callout *"/*ch*/,
199 1.72 riastrad "unsigned"/*flags*/);
200 1.72 riastrad SDT_PROBE_DEFINE1(sdt, kernel, callout, destroy,
201 1.72 riastrad "struct callout *"/*ch*/);
202 1.72 riastrad SDT_PROBE_DEFINE4(sdt, kernel, callout, setfunc,
203 1.72 riastrad "struct callout *"/*ch*/,
204 1.72 riastrad "void (*)(void *)"/*func*/,
205 1.72 riastrad "void *"/*arg*/,
206 1.72 riastrad "unsigned"/*flags*/);
207 1.72 riastrad SDT_PROBE_DEFINE5(sdt, kernel, callout, schedule,
208 1.72 riastrad "struct callout *"/*ch*/,
209 1.72 riastrad "void (*)(void *)"/*func*/,
210 1.72 riastrad "void *"/*arg*/,
211 1.72 riastrad "unsigned"/*flags*/,
212 1.72 riastrad "int"/*ticks*/);
213 1.72 riastrad SDT_PROBE_DEFINE6(sdt, kernel, callout, migrate,
214 1.72 riastrad "struct callout *"/*ch*/,
215 1.72 riastrad "void (*)(void *)"/*func*/,
216 1.72 riastrad "void *"/*arg*/,
217 1.72 riastrad "unsigned"/*flags*/,
218 1.72 riastrad "struct cpu_info *"/*ocpu*/,
219 1.72 riastrad "struct cpu_info *"/*ncpu*/);
220 1.72 riastrad SDT_PROBE_DEFINE4(sdt, kernel, callout, entry,
221 1.72 riastrad "struct callout *"/*ch*/,
222 1.72 riastrad "void (*)(void *)"/*func*/,
223 1.72 riastrad "void *"/*arg*/,
224 1.72 riastrad "unsigned"/*flags*/);
225 1.72 riastrad SDT_PROBE_DEFINE4(sdt, kernel, callout, return,
226 1.72 riastrad "struct callout *"/*ch*/,
227 1.72 riastrad "void (*)(void *)"/*func*/,
228 1.72 riastrad "void *"/*arg*/,
229 1.72 riastrad "unsigned"/*flags*/);
230 1.72 riastrad SDT_PROBE_DEFINE5(sdt, kernel, callout, stop,
231 1.72 riastrad "struct callout *"/*ch*/,
232 1.72 riastrad "void (*)(void *)"/*func*/,
233 1.72 riastrad "void *"/*arg*/,
234 1.72 riastrad "unsigned"/*flags*/,
235 1.72 riastrad "bool"/*expired*/);
236 1.72 riastrad SDT_PROBE_DEFINE4(sdt, kernel, callout, halt,
237 1.72 riastrad "struct callout *"/*ch*/,
238 1.72 riastrad "void (*)(void *)"/*func*/,
239 1.72 riastrad "void *"/*arg*/,
240 1.72 riastrad "unsigned"/*flags*/);
241 1.72 riastrad SDT_PROBE_DEFINE5(sdt, kernel, callout, halt__done,
242 1.72 riastrad "struct callout *"/*ch*/,
243 1.72 riastrad "void (*)(void *)"/*func*/,
244 1.72 riastrad "void *"/*arg*/,
245 1.72 riastrad "unsigned"/*flags*/,
246 1.72 riastrad "bool"/*expired*/);
247 1.72 riastrad
248 1.36 ad static inline kmutex_t *
249 1.36 ad callout_lock(callout_impl_t *c)
250 1.36 ad {
251 1.44 ad struct callout_cpu *cc;
252 1.36 ad kmutex_t *lock;
253 1.36 ad
254 1.36 ad for (;;) {
255 1.44 ad cc = c->c_cpu;
256 1.44 ad lock = cc->cc_lock;
257 1.36 ad mutex_spin_enter(lock);
258 1.44 ad if (__predict_true(cc == c->c_cpu))
259 1.36 ad return lock;
260 1.36 ad mutex_spin_exit(lock);
261 1.36 ad }
262 1.36 ad }
263 1.5 thorpej
264 1.1 thorpej /*
265 1.75 pho * Check if the callout is currently running on an LWP that isn't curlwp.
266 1.75 pho */
267 1.75 pho static inline bool
268 1.75 pho callout_running_somewhere_else(callout_impl_t *c, struct callout_cpu *cc)
269 1.75 pho {
270 1.75 pho KASSERT(c->c_cpu == cc);
271 1.75 pho
272 1.75 pho return cc->cc_active == c && cc->cc_lwp != curlwp;
273 1.75 pho }
274 1.75 pho
275 1.75 pho /*
276 1.1 thorpej * callout_startup:
277 1.1 thorpej *
278 1.1 thorpej * Initialize the callout facility, called at system startup time.
279 1.36 ad * Do just enough to allow callouts to be safely registered.
280 1.1 thorpej */
281 1.1 thorpej void
282 1.1 thorpej callout_startup(void)
283 1.1 thorpej {
284 1.36 ad struct callout_cpu *cc;
285 1.1 thorpej int b;
286 1.1 thorpej
287 1.36 ad KASSERT(curcpu()->ci_data.cpu_callout == NULL);
288 1.22 ad
289 1.36 ad cc = &callout_cpu0;
290 1.44 ad cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
291 1.36 ad CIRCQ_INIT(&cc->cc_todo);
292 1.1 thorpej for (b = 0; b < BUCKETS; b++)
293 1.36 ad CIRCQ_INIT(&cc->cc_wheel[b]);
294 1.36 ad curcpu()->ci_data.cpu_callout = cc;
295 1.22 ad }
296 1.22 ad
297 1.22 ad /*
298 1.36 ad * callout_init_cpu:
299 1.22 ad *
300 1.36 ad * Per-CPU initialization.
301 1.22 ad */
302 1.47 martin CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
303 1.47 martin
304 1.22 ad void
305 1.36 ad callout_init_cpu(struct cpu_info *ci)
306 1.22 ad {
307 1.36 ad struct callout_cpu *cc;
308 1.36 ad int b;
309 1.22 ad
310 1.36 ad if ((cc = ci->ci_data.cpu_callout) == NULL) {
311 1.36 ad cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
312 1.44 ad cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
313 1.36 ad CIRCQ_INIT(&cc->cc_todo);
314 1.36 ad for (b = 0; b < BUCKETS; b++)
315 1.36 ad CIRCQ_INIT(&cc->cc_wheel[b]);
316 1.36 ad } else {
317 1.36 ad /* Boot CPU, one time only. */
318 1.36 ad callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
319 1.36 ad callout_softclock, NULL);
320 1.36 ad if (callout_sih == NULL)
321 1.36 ad panic("callout_init_cpu (2)");
322 1.36 ad }
323 1.36 ad
324 1.40 ad sleepq_init(&cc->cc_sleepq);
325 1.36 ad
326 1.36 ad snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
327 1.36 ad cpu_index(ci));
328 1.36 ad evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
329 1.36 ad NULL, "callout", cc->cc_name1);
330 1.36 ad
331 1.36 ad snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
332 1.36 ad cpu_index(ci));
333 1.36 ad evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
334 1.36 ad NULL, "callout", cc->cc_name2);
335 1.36 ad
336 1.72 riastrad cc->cc_cpu = ci;
337 1.36 ad ci->ci_data.cpu_callout = cc;
338 1.1 thorpej }
339 1.1 thorpej
340 1.1 thorpej /*
341 1.1 thorpej * callout_init:
342 1.1 thorpej *
343 1.36 ad * Initialize a callout structure. This must be quick, so we fill
344 1.36 ad * only the minimum number of fields.
345 1.1 thorpej */
346 1.1 thorpej void
347 1.22 ad callout_init(callout_t *cs, u_int flags)
348 1.1 thorpej {
349 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
350 1.36 ad struct callout_cpu *cc;
351 1.22 ad
352 1.22 ad KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
353 1.1 thorpej
354 1.72 riastrad SDT_PROBE2(sdt, kernel, callout, init, cs, flags);
355 1.72 riastrad
356 1.36 ad cc = curcpu()->ci_data.cpu_callout;
357 1.36 ad c->c_func = NULL;
358 1.22 ad c->c_magic = CALLOUT_MAGIC;
359 1.36 ad if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
360 1.36 ad c->c_flags = flags;
361 1.36 ad c->c_cpu = cc;
362 1.36 ad return;
363 1.36 ad }
364 1.36 ad c->c_flags = flags | CALLOUT_BOUND;
365 1.36 ad c->c_cpu = &callout_cpu0;
366 1.22 ad }
367 1.22 ad
368 1.22 ad /*
369 1.22 ad * callout_destroy:
370 1.22 ad *
371 1.22 ad * Destroy a callout structure. The callout must be stopped.
372 1.22 ad */
373 1.22 ad void
374 1.22 ad callout_destroy(callout_t *cs)
375 1.22 ad {
376 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
377 1.22 ad
378 1.72 riastrad SDT_PROBE1(sdt, kernel, callout, destroy, cs);
379 1.72 riastrad
380 1.53 christos KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
381 1.53 christos "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
382 1.53 christos c, c->c_magic, CALLOUT_MAGIC);
383 1.22 ad /*
384 1.22 ad * It's not necessary to lock in order to see the correct value
385 1.22 ad * of c->c_flags. If the callout could potentially have been
386 1.22 ad * running, the current thread should have stopped it.
387 1.22 ad */
388 1.48 martin KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
389 1.59 ad "pending callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
390 1.59 ad c, c->c_func, c->c_flags, __builtin_return_address(0));
391 1.75 pho KASSERTMSG(!callout_running_somewhere_else(c, c->c_cpu),
392 1.59 ad "running callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
393 1.48 martin c, c->c_func, c->c_flags, __builtin_return_address(0));
394 1.22 ad c->c_magic = 0;
395 1.1 thorpej }
396 1.1 thorpej
397 1.1 thorpej /*
398 1.29 joerg * callout_schedule_locked:
399 1.1 thorpej *
400 1.29 joerg * Schedule a callout to run. The function and argument must
401 1.29 joerg * already be set in the callout structure. Must be called with
402 1.29 joerg * callout_lock.
403 1.1 thorpej */
404 1.29 joerg static void
405 1.36 ad callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
406 1.1 thorpej {
407 1.36 ad struct callout_cpu *cc, *occ;
408 1.20 ad int old_time;
409 1.1 thorpej
410 1.72 riastrad SDT_PROBE5(sdt, kernel, callout, schedule,
411 1.72 riastrad c, c->c_func, c->c_arg, c->c_flags, to_ticks);
412 1.72 riastrad
413 1.1 thorpej KASSERT(to_ticks >= 0);
414 1.29 joerg KASSERT(c->c_func != NULL);
415 1.1 thorpej
416 1.1 thorpej /* Initialize the time here, it won't change. */
417 1.36 ad occ = c->c_cpu;
418 1.43 ad c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
419 1.1 thorpej
420 1.1 thorpej /*
421 1.1 thorpej * If this timeout is already scheduled and now is moved
422 1.36 ad * earlier, reschedule it now. Otherwise leave it in place
423 1.1 thorpej * and let it be rescheduled later.
424 1.1 thorpej */
425 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0) {
426 1.36 ad /* Leave on existing CPU. */
427 1.36 ad old_time = c->c_time;
428 1.36 ad c->c_time = to_ticks + occ->cc_ticks;
429 1.4 yamt if (c->c_time - old_time < 0) {
430 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
431 1.36 ad CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
432 1.1 thorpej }
433 1.36 ad mutex_spin_exit(lock);
434 1.36 ad return;
435 1.36 ad }
436 1.36 ad
437 1.36 ad cc = curcpu()->ci_data.cpu_callout;
438 1.36 ad if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
439 1.44 ad !mutex_tryenter(cc->cc_lock)) {
440 1.36 ad /* Leave on existing CPU. */
441 1.36 ad c->c_time = to_ticks + occ->cc_ticks;
442 1.36 ad c->c_flags |= CALLOUT_PENDING;
443 1.36 ad CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
444 1.1 thorpej } else {
445 1.36 ad /* Move to this CPU. */
446 1.36 ad c->c_cpu = cc;
447 1.36 ad c->c_time = to_ticks + cc->cc_ticks;
448 1.1 thorpej c->c_flags |= CALLOUT_PENDING;
449 1.36 ad CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
450 1.44 ad mutex_spin_exit(cc->cc_lock);
451 1.72 riastrad SDT_PROBE6(sdt, kernel, callout, migrate,
452 1.72 riastrad c, c->c_func, c->c_arg, c->c_flags,
453 1.72 riastrad occ->cc_cpu, cc->cc_cpu);
454 1.1 thorpej }
455 1.36 ad mutex_spin_exit(lock);
456 1.29 joerg }
457 1.29 joerg
458 1.29 joerg /*
459 1.29 joerg * callout_reset:
460 1.29 joerg *
461 1.29 joerg * Reset a callout structure with a new function and argument, and
462 1.29 joerg * schedule it to run.
463 1.29 joerg */
464 1.29 joerg void
465 1.29 joerg callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
466 1.29 joerg {
467 1.29 joerg callout_impl_t *c = (callout_impl_t *)cs;
468 1.36 ad kmutex_t *lock;
469 1.29 joerg
470 1.29 joerg KASSERT(c->c_magic == CALLOUT_MAGIC);
471 1.42 rmind KASSERT(func != NULL);
472 1.29 joerg
473 1.36 ad lock = callout_lock(c);
474 1.72 riastrad SDT_PROBE4(sdt, kernel, callout, setfunc, cs, func, arg, c->c_flags);
475 1.29 joerg c->c_func = func;
476 1.29 joerg c->c_arg = arg;
477 1.36 ad callout_schedule_locked(c, lock, to_ticks);
478 1.1 thorpej }
479 1.1 thorpej
480 1.1 thorpej /*
481 1.1 thorpej * callout_schedule:
482 1.1 thorpej *
483 1.1 thorpej * Schedule a callout to run. The function and argument must
484 1.1 thorpej * already be set in the callout structure.
485 1.1 thorpej */
486 1.1 thorpej void
487 1.22 ad callout_schedule(callout_t *cs, int to_ticks)
488 1.1 thorpej {
489 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
490 1.36 ad kmutex_t *lock;
491 1.1 thorpej
492 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
493 1.1 thorpej
494 1.36 ad lock = callout_lock(c);
495 1.36 ad callout_schedule_locked(c, lock, to_ticks);
496 1.1 thorpej }
497 1.1 thorpej
498 1.1 thorpej /*
499 1.1 thorpej * callout_stop:
500 1.1 thorpej *
501 1.36 ad * Try to cancel a pending callout. It may be too late: the callout
502 1.36 ad * could be running on another CPU. If called from interrupt context,
503 1.36 ad * the callout could already be in progress at a lower priority.
504 1.1 thorpej */
505 1.22 ad bool
506 1.22 ad callout_stop(callout_t *cs)
507 1.1 thorpej {
508 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
509 1.36 ad kmutex_t *lock;
510 1.22 ad bool expired;
511 1.22 ad
512 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
513 1.1 thorpej
514 1.36 ad lock = callout_lock(c);
515 1.20 ad
516 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
517 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
518 1.32 ad expired = ((c->c_flags & CALLOUT_FIRED) != 0);
519 1.32 ad c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
520 1.32 ad
521 1.72 riastrad SDT_PROBE5(sdt, kernel, callout, stop,
522 1.72 riastrad c, c->c_func, c->c_arg, c->c_flags, expired);
523 1.72 riastrad
524 1.36 ad mutex_spin_exit(lock);
525 1.32 ad
526 1.32 ad return expired;
527 1.32 ad }
528 1.32 ad
529 1.32 ad /*
530 1.32 ad * callout_halt:
531 1.32 ad *
532 1.32 ad * Cancel a pending callout. If in-flight, block until it completes.
533 1.36 ad * May not be called from a hard interrupt handler. If the callout
534 1.36 ad * can take locks, the caller of callout_halt() must not hold any of
535 1.37 ad * those locks, otherwise the two could deadlock. If 'interlock' is
536 1.37 ad * non-NULL and we must wait for the callout to complete, it will be
537 1.37 ad * released and re-acquired before returning.
538 1.32 ad */
539 1.32 ad bool
540 1.38 ad callout_halt(callout_t *cs, void *interlock)
541 1.32 ad {
542 1.32 ad callout_impl_t *c = (callout_impl_t *)cs;
543 1.57 ad kmutex_t *lock;
544 1.32 ad
545 1.32 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
546 1.32 ad KASSERT(!cpu_intr_p());
547 1.54 ozaki KASSERT(interlock == NULL || mutex_owned(interlock));
548 1.32 ad
549 1.57 ad /* Fast path. */
550 1.36 ad lock = callout_lock(c);
551 1.72 riastrad SDT_PROBE4(sdt, kernel, callout, halt,
552 1.72 riastrad c, c->c_func, c->c_arg, c->c_flags);
553 1.74 pho if ((c->c_flags & CALLOUT_PENDING) != 0)
554 1.57 ad CIRCQ_REMOVE(&c->c_list);
555 1.74 pho c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
556 1.75 pho if (__predict_false(callout_running_somewhere_else(c, c->c_cpu))) {
557 1.57 ad callout_wait(c, interlock, lock);
558 1.57 ad return true;
559 1.57 ad }
560 1.72 riastrad SDT_PROBE5(sdt, kernel, callout, halt__done,
561 1.72 riastrad c, c->c_func, c->c_arg, c->c_flags, /*expired*/false);
562 1.57 ad mutex_spin_exit(lock);
563 1.57 ad return false;
564 1.57 ad }
565 1.1 thorpej
566 1.57 ad /*
567 1.57 ad * callout_wait:
568 1.57 ad *
569 1.57 ad * Slow path for callout_halt(). Deliberately marked __noinline to
570 1.57 ad * prevent unneeded overhead in the caller.
571 1.57 ad */
572 1.57 ad static void __noinline
573 1.57 ad callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
574 1.57 ad {
575 1.57 ad struct callout_cpu *cc;
576 1.57 ad struct lwp *l;
577 1.57 ad kmutex_t *relock;
578 1.1 thorpej
579 1.32 ad l = curlwp;
580 1.57 ad relock = NULL;
581 1.36 ad for (;;) {
582 1.58 ad /*
583 1.58 ad * At this point we know the callout is not pending, but it
584 1.58 ad * could be running on a CPU somewhere. That can be curcpu
585 1.58 ad * in a few cases:
586 1.58 ad *
587 1.58 ad * - curlwp is a higher priority soft interrupt
588 1.58 ad * - the callout blocked on a lock and is currently asleep
589 1.58 ad * - the callout itself has called callout_halt() (nice!)
590 1.58 ad */
591 1.36 ad cc = c->c_cpu;
592 1.75 pho if (__predict_true(!callout_running_somewhere_else(c, cc)))
593 1.36 ad break;
594 1.58 ad
595 1.58 ad /* It's running - need to wait for it to complete. */
596 1.37 ad if (interlock != NULL) {
597 1.37 ad /*
598 1.37 ad * Avoid potential scheduler lock order problems by
599 1.37 ad * dropping the interlock without the callout lock
600 1.58 ad * held; then retry.
601 1.37 ad */
602 1.37 ad mutex_spin_exit(lock);
603 1.37 ad mutex_exit(interlock);
604 1.37 ad relock = interlock;
605 1.37 ad interlock = NULL;
606 1.37 ad } else {
607 1.37 ad /* XXX Better to do priority inheritance. */
608 1.37 ad KASSERT(l->l_wchan == NULL);
609 1.37 ad cc->cc_nwait++;
610 1.37 ad cc->cc_ev_block.ev_count++;
611 1.44 ad sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
612 1.37 ad sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
613 1.61 ad &sleep_syncobj, false);
614 1.70 riastrad sleepq_block(0, false, &sleep_syncobj);
615 1.37 ad }
616 1.58 ad
617 1.58 ad /*
618 1.71 riastrad * Re-lock the callout and check the state of play again.
619 1.58 ad * It's a common design pattern for callouts to re-schedule
620 1.58 ad * themselves so put a stop to it again if needed.
621 1.58 ad */
622 1.36 ad lock = callout_lock(c);
623 1.58 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
624 1.58 ad CIRCQ_REMOVE(&c->c_list);
625 1.58 ad c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
626 1.32 ad }
627 1.32 ad
628 1.72 riastrad SDT_PROBE5(sdt, kernel, callout, halt__done,
629 1.72 riastrad c, c->c_func, c->c_arg, c->c_flags, /*expired*/true);
630 1.72 riastrad
631 1.36 ad mutex_spin_exit(lock);
632 1.37 ad if (__predict_false(relock != NULL))
633 1.37 ad mutex_enter(relock);
634 1.22 ad }
635 1.22 ad
636 1.36 ad #ifdef notyet
637 1.36 ad /*
638 1.36 ad * callout_bind:
639 1.36 ad *
640 1.36 ad * Bind a callout so that it will only execute on one CPU.
641 1.36 ad * The callout must be stopped, and must be MPSAFE.
642 1.36 ad *
643 1.36 ad * XXX Disabled for now until it is decided how to handle
644 1.36 ad * offlined CPUs. We may want weak+strong binding.
645 1.36 ad */
646 1.36 ad void
647 1.36 ad callout_bind(callout_t *cs, struct cpu_info *ci)
648 1.36 ad {
649 1.36 ad callout_impl_t *c = (callout_impl_t *)cs;
650 1.36 ad struct callout_cpu *cc;
651 1.36 ad kmutex_t *lock;
652 1.36 ad
653 1.36 ad KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
654 1.36 ad KASSERT(c->c_cpu->cc_active != c);
655 1.36 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
656 1.36 ad KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
657 1.36 ad
658 1.36 ad lock = callout_lock(c);
659 1.36 ad cc = ci->ci_data.cpu_callout;
660 1.36 ad c->c_flags |= CALLOUT_BOUND;
661 1.36 ad if (c->c_cpu != cc) {
662 1.36 ad /*
663 1.36 ad * Assigning c_cpu effectively unlocks the callout
664 1.36 ad * structure, as we don't hold the new CPU's lock.
665 1.36 ad * Issue memory barrier to prevent accesses being
666 1.36 ad * reordered.
667 1.36 ad */
668 1.36 ad membar_exit();
669 1.36 ad c->c_cpu = cc;
670 1.36 ad }
671 1.36 ad mutex_spin_exit(lock);
672 1.36 ad }
673 1.36 ad #endif
674 1.36 ad
675 1.22 ad void
676 1.22 ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
677 1.22 ad {
678 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
679 1.36 ad kmutex_t *lock;
680 1.22 ad
681 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
682 1.42 rmind KASSERT(func != NULL);
683 1.22 ad
684 1.36 ad lock = callout_lock(c);
685 1.72 riastrad SDT_PROBE4(sdt, kernel, callout, setfunc, cs, func, arg, c->c_flags);
686 1.22 ad c->c_func = func;
687 1.22 ad c->c_arg = arg;
688 1.36 ad mutex_spin_exit(lock);
689 1.22 ad }
690 1.22 ad
691 1.22 ad bool
692 1.22 ad callout_expired(callout_t *cs)
693 1.22 ad {
694 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
695 1.36 ad kmutex_t *lock;
696 1.22 ad bool rv;
697 1.22 ad
698 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
699 1.22 ad
700 1.36 ad lock = callout_lock(c);
701 1.22 ad rv = ((c->c_flags & CALLOUT_FIRED) != 0);
702 1.36 ad mutex_spin_exit(lock);
703 1.22 ad
704 1.22 ad return rv;
705 1.22 ad }
706 1.22 ad
707 1.22 ad bool
708 1.22 ad callout_active(callout_t *cs)
709 1.22 ad {
710 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
711 1.36 ad kmutex_t *lock;
712 1.22 ad bool rv;
713 1.22 ad
714 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
715 1.22 ad
716 1.36 ad lock = callout_lock(c);
717 1.22 ad rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
718 1.36 ad mutex_spin_exit(lock);
719 1.22 ad
720 1.22 ad return rv;
721 1.22 ad }
722 1.22 ad
723 1.22 ad bool
724 1.22 ad callout_pending(callout_t *cs)
725 1.22 ad {
726 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
727 1.36 ad kmutex_t *lock;
728 1.22 ad bool rv;
729 1.22 ad
730 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
731 1.22 ad
732 1.36 ad lock = callout_lock(c);
733 1.22 ad rv = ((c->c_flags & CALLOUT_PENDING) != 0);
734 1.36 ad mutex_spin_exit(lock);
735 1.22 ad
736 1.22 ad return rv;
737 1.22 ad }
738 1.22 ad
739 1.22 ad bool
740 1.22 ad callout_invoking(callout_t *cs)
741 1.22 ad {
742 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
743 1.36 ad kmutex_t *lock;
744 1.22 ad bool rv;
745 1.22 ad
746 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
747 1.22 ad
748 1.36 ad lock = callout_lock(c);
749 1.22 ad rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
750 1.36 ad mutex_spin_exit(lock);
751 1.22 ad
752 1.22 ad return rv;
753 1.22 ad }
754 1.22 ad
755 1.22 ad void
756 1.22 ad callout_ack(callout_t *cs)
757 1.22 ad {
758 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
759 1.36 ad kmutex_t *lock;
760 1.22 ad
761 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
762 1.22 ad
763 1.36 ad lock = callout_lock(c);
764 1.22 ad c->c_flags &= ~CALLOUT_INVOKING;
765 1.36 ad mutex_spin_exit(lock);
766 1.1 thorpej }
767 1.1 thorpej
768 1.1 thorpej /*
769 1.36 ad * callout_hardclock:
770 1.36 ad *
771 1.36 ad * Called from hardclock() once every tick. We schedule a soft
772 1.36 ad * interrupt if there is work to be done.
773 1.1 thorpej */
774 1.22 ad void
775 1.1 thorpej callout_hardclock(void)
776 1.1 thorpej {
777 1.36 ad struct callout_cpu *cc;
778 1.36 ad int needsoftclock, ticks;
779 1.1 thorpej
780 1.36 ad cc = curcpu()->ci_data.cpu_callout;
781 1.44 ad mutex_spin_enter(cc->cc_lock);
782 1.1 thorpej
783 1.36 ad ticks = ++cc->cc_ticks;
784 1.36 ad
785 1.36 ad MOVEBUCKET(cc, 0, ticks);
786 1.36 ad if (MASKWHEEL(0, ticks) == 0) {
787 1.36 ad MOVEBUCKET(cc, 1, ticks);
788 1.36 ad if (MASKWHEEL(1, ticks) == 0) {
789 1.36 ad MOVEBUCKET(cc, 2, ticks);
790 1.36 ad if (MASKWHEEL(2, ticks) == 0)
791 1.36 ad MOVEBUCKET(cc, 3, ticks);
792 1.1 thorpej }
793 1.1 thorpej }
794 1.1 thorpej
795 1.36 ad needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
796 1.44 ad mutex_spin_exit(cc->cc_lock);
797 1.1 thorpej
798 1.22 ad if (needsoftclock)
799 1.36 ad softint_schedule(callout_sih);
800 1.1 thorpej }
801 1.1 thorpej
802 1.36 ad /*
803 1.36 ad * callout_softclock:
804 1.36 ad *
805 1.36 ad * Soft interrupt handler, scheduled above if there is work to
806 1.36 ad * be done. Callouts are made in soft interrupt context.
807 1.36 ad */
808 1.22 ad static void
809 1.22 ad callout_softclock(void *v)
810 1.1 thorpej {
811 1.22 ad callout_impl_t *c;
812 1.36 ad struct callout_cpu *cc;
813 1.1 thorpej void (*func)(void *);
814 1.1 thorpej void *arg;
815 1.68 riastrad int mpsafe, count, ticks, delta;
816 1.73 riastrad u_int flags __unused;
817 1.22 ad lwp_t *l;
818 1.1 thorpej
819 1.22 ad l = curlwp;
820 1.36 ad KASSERT(l->l_cpu == curcpu());
821 1.36 ad cc = l->l_cpu->ci_data.cpu_callout;
822 1.1 thorpej
823 1.44 ad mutex_spin_enter(cc->cc_lock);
824 1.36 ad cc->cc_lwp = l;
825 1.36 ad while (!CIRCQ_EMPTY(&cc->cc_todo)) {
826 1.36 ad c = CIRCQ_FIRST(&cc->cc_todo);
827 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
828 1.22 ad KASSERT(c->c_func != NULL);
829 1.36 ad KASSERT(c->c_cpu == cc);
830 1.26 ad KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
831 1.26 ad KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
832 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
833 1.1 thorpej
834 1.1 thorpej /* If due run it, otherwise insert it into the right bucket. */
835 1.36 ad ticks = cc->cc_ticks;
836 1.56 kre delta = (int)((unsigned)c->c_time - (unsigned)ticks);
837 1.56 kre if (delta > 0) {
838 1.36 ad CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
839 1.36 ad continue;
840 1.36 ad }
841 1.56 kre if (delta < 0)
842 1.36 ad cc->cc_ev_late.ev_count++;
843 1.36 ad
844 1.43 ad c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
845 1.43 ad (CALLOUT_FIRED | CALLOUT_INVOKING);
846 1.36 ad mpsafe = (c->c_flags & CALLOUT_MPSAFE);
847 1.36 ad func = c->c_func;
848 1.36 ad arg = c->c_arg;
849 1.36 ad cc->cc_active = c;
850 1.72 riastrad flags = c->c_flags;
851 1.36 ad
852 1.44 ad mutex_spin_exit(cc->cc_lock);
853 1.42 rmind KASSERT(func != NULL);
854 1.72 riastrad SDT_PROBE4(sdt, kernel, callout, entry, c, func, arg, flags);
855 1.44 ad if (__predict_false(!mpsafe)) {
856 1.36 ad KERNEL_LOCK(1, NULL);
857 1.36 ad (*func)(arg);
858 1.36 ad KERNEL_UNLOCK_ONE(NULL);
859 1.36 ad } else
860 1.36 ad (*func)(arg);
861 1.72 riastrad SDT_PROBE4(sdt, kernel, callout, return, c, func, arg, flags);
862 1.69 riastrad KASSERTMSG(l->l_blcnt == 0,
863 1.69 riastrad "callout %p func %p leaked %d biglocks",
864 1.69 riastrad c, func, l->l_blcnt);
865 1.44 ad mutex_spin_enter(cc->cc_lock);
866 1.36 ad
867 1.36 ad /*
868 1.36 ad * We can't touch 'c' here because it might be
869 1.36 ad * freed already. If LWPs waiting for callout
870 1.36 ad * to complete, awaken them.
871 1.36 ad */
872 1.36 ad cc->cc_active = NULL;
873 1.36 ad if ((count = cc->cc_nwait) != 0) {
874 1.36 ad cc->cc_nwait = 0;
875 1.36 ad /* sleepq_wake() drops the lock. */
876 1.44 ad sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
877 1.44 ad mutex_spin_enter(cc->cc_lock);
878 1.1 thorpej }
879 1.1 thorpej }
880 1.36 ad cc->cc_lwp = NULL;
881 1.44 ad mutex_spin_exit(cc->cc_lock);
882 1.1 thorpej }
883 1.63 rin #endif /* !CRASH */
884 1.1 thorpej
885 1.1 thorpej #ifdef DDB
886 1.1 thorpej static void
887 1.51 christos db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
888 1.51 christos struct callout_circq *bucket)
889 1.1 thorpej {
890 1.49 christos callout_impl_t *c, ci;
891 1.1 thorpej db_expr_t offset;
892 1.15 christos const char *name;
893 1.15 christos static char question[] = "?";
894 1.36 ad int b;
895 1.1 thorpej
896 1.51 christos if (CIRCQ_LAST(bucket, kbucket))
897 1.11 scw return;
898 1.11 scw
899 1.51 christos for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
900 1.49 christos db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
901 1.49 christos c = &ci;
902 1.10 scw db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
903 1.10 scw &offset);
904 1.15 christos name = name ? name : question;
905 1.36 ad b = (bucket - cc->cc_wheel);
906 1.36 ad if (b < 0)
907 1.36 ad b = -WHEELSIZE;
908 1.36 ad db_printf("%9d %2d/%-4d %16lx %s\n",
909 1.36 ad c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
910 1.36 ad (u_long)c->c_arg, name);
911 1.51 christos if (CIRCQ_LAST(&c->c_list, kbucket))
912 1.11 scw break;
913 1.1 thorpej }
914 1.1 thorpej }
915 1.1 thorpej
916 1.1 thorpej void
917 1.21 matt db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
918 1.1 thorpej {
919 1.64 rin struct callout_cpu *cc;
920 1.64 rin struct cpu_info *ci;
921 1.1 thorpej int b;
922 1.1 thorpej
923 1.49 christos #ifndef CRASH
924 1.60 maxv db_printf("hardclock_ticks now: %d\n", getticks());
925 1.49 christos #endif
926 1.1 thorpej db_printf(" ticks wheel arg func\n");
927 1.1 thorpej
928 1.1 thorpej /*
929 1.1 thorpej * Don't lock the callwheel; all the other CPUs are paused
930 1.1 thorpej * anyhow, and we might be called in a circumstance where
931 1.1 thorpej * some other CPU was paused while holding the lock.
932 1.1 thorpej */
933 1.49 christos for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
934 1.66 rin db_read_bytes((db_addr_t)ci +
935 1.66 rin offsetof(struct cpu_info, ci_data.cpu_callout),
936 1.66 rin sizeof(cc), (char *)&cc);
937 1.64 rin db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
938 1.64 rin db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
939 1.36 ad }
940 1.36 ad for (b = 0; b < BUCKETS; b++) {
941 1.49 christos for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
942 1.66 rin db_read_bytes((db_addr_t)ci +
943 1.66 rin offsetof(struct cpu_info, ci_data.cpu_callout),
944 1.66 rin sizeof(cc), (char *)&cc);
945 1.64 rin db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
946 1.64 rin db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
947 1.64 rin &ccb.cc_wheel[b]);
948 1.36 ad }
949 1.36 ad }
950 1.1 thorpej }
951 1.1 thorpej #endif /* DDB */
952