kern_timeout.c revision 1.79 1 1.79 ad /* $NetBSD: kern_timeout.c,v 1.79 2023/10/08 13:23:05 ad Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*-
4 1.78 ad * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019, 2023
5 1.78 ad * The NetBSD Foundation, Inc.
6 1.1 thorpej * All rights reserved.
7 1.1 thorpej *
8 1.1 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.22 ad * by Jason R. Thorpe, and by Andrew Doran.
10 1.1 thorpej *
11 1.1 thorpej * Redistribution and use in source and binary forms, with or without
12 1.1 thorpej * modification, are permitted provided that the following conditions
13 1.1 thorpej * are met:
14 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.1 thorpej * notice, this list of conditions and the following disclaimer.
16 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.1 thorpej * documentation and/or other materials provided with the distribution.
19 1.1 thorpej *
20 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.1 thorpej */
32 1.1 thorpej
33 1.1 thorpej /*
34 1.1 thorpej * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
35 1.1 thorpej * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
36 1.14 perry * All rights reserved.
37 1.14 perry *
38 1.14 perry * Redistribution and use in source and binary forms, with or without
39 1.14 perry * modification, are permitted provided that the following conditions
40 1.14 perry * are met:
41 1.1 thorpej *
42 1.14 perry * 1. Redistributions of source code must retain the above copyright
43 1.14 perry * notice, this list of conditions and the following disclaimer.
44 1.14 perry * 2. Redistributions in binary form must reproduce the above copyright
45 1.14 perry * notice, this list of conditions and the following disclaimer in the
46 1.14 perry * documentation and/or other materials provided with the distribution.
47 1.1 thorpej * 3. The name of the author may not be used to endorse or promote products
48 1.14 perry * derived from this software without specific prior written permission.
49 1.1 thorpej *
50 1.1 thorpej * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
51 1.1 thorpej * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
52 1.1 thorpej * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
53 1.1 thorpej * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
54 1.1 thorpej * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
55 1.1 thorpej * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
56 1.1 thorpej * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
57 1.1 thorpej * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
58 1.1 thorpej * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
59 1.14 perry * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
60 1.1 thorpej */
61 1.7 lukem
62 1.7 lukem #include <sys/cdefs.h>
63 1.79 ad __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.79 2023/10/08 13:23:05 ad Exp $");
64 1.1 thorpej
65 1.1 thorpej /*
66 1.22 ad * Timeouts are kept in a hierarchical timing wheel. The c_time is the
67 1.36 ad * value of c_cpu->cc_ticks when the timeout should be called. There are
68 1.36 ad * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
69 1.36 ad * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
70 1.36 ad * a Timer Facility" by George Varghese and Tony Lauck.
71 1.22 ad *
72 1.22 ad * Some of the "math" in here is a bit tricky. We have to beware of
73 1.22 ad * wrapping ints.
74 1.22 ad *
75 1.22 ad * We use the fact that any element added to the queue must be added with
76 1.22 ad * a positive time. That means that any element `to' on the queue cannot
77 1.22 ad * be scheduled to timeout further in time than INT_MAX, but c->c_time can
78 1.71 riastrad * be positive or negative so comparing it with anything is dangerous.
79 1.22 ad * The only way we can use the c->c_time value in any predictable way is
80 1.22 ad * when we calculate how far in the future `to' will timeout - "c->c_time
81 1.36 ad * - c->c_cpu->cc_ticks". The result will always be positive for future
82 1.22 ad * timeouts and 0 or negative for due timeouts.
83 1.1 thorpej */
84 1.1 thorpej
85 1.24 ad #define _CALLOUT_PRIVATE
86 1.24 ad
87 1.1 thorpej #include <sys/param.h>
88 1.1 thorpej #include <sys/systm.h>
89 1.1 thorpej #include <sys/kernel.h>
90 1.1 thorpej #include <sys/callout.h>
91 1.45 rmind #include <sys/lwp.h>
92 1.20 ad #include <sys/mutex.h>
93 1.22 ad #include <sys/proc.h>
94 1.22 ad #include <sys/sleepq.h>
95 1.22 ad #include <sys/syncobj.h>
96 1.22 ad #include <sys/evcnt.h>
97 1.27 ad #include <sys/intr.h>
98 1.33 ad #include <sys/cpu.h>
99 1.36 ad #include <sys/kmem.h>
100 1.72 riastrad #include <sys/sdt.h>
101 1.1 thorpej
102 1.1 thorpej #ifdef DDB
103 1.1 thorpej #include <machine/db_machdep.h>
104 1.1 thorpej #include <ddb/db_interface.h>
105 1.1 thorpej #include <ddb/db_access.h>
106 1.49 christos #include <ddb/db_cpu.h>
107 1.1 thorpej #include <ddb/db_sym.h>
108 1.1 thorpej #include <ddb/db_output.h>
109 1.1 thorpej #endif
110 1.1 thorpej
111 1.22 ad #define BUCKETS 1024
112 1.22 ad #define WHEELSIZE 256
113 1.22 ad #define WHEELMASK 255
114 1.22 ad #define WHEELBITS 8
115 1.22 ad
116 1.1 thorpej #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
117 1.1 thorpej
118 1.36 ad #define BUCKET(cc, rel, abs) \
119 1.1 thorpej (((rel) <= (1 << (2*WHEELBITS))) \
120 1.1 thorpej ? ((rel) <= (1 << WHEELBITS)) \
121 1.36 ad ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
122 1.36 ad : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
123 1.1 thorpej : ((rel) <= (1 << (3*WHEELBITS))) \
124 1.36 ad ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
125 1.36 ad : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
126 1.1 thorpej
127 1.36 ad #define MOVEBUCKET(cc, wheel, time) \
128 1.36 ad CIRCQ_APPEND(&(cc)->cc_todo, \
129 1.36 ad &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
130 1.1 thorpej
131 1.1 thorpej /*
132 1.1 thorpej * Circular queue definitions.
133 1.1 thorpej */
134 1.1 thorpej
135 1.11 scw #define CIRCQ_INIT(list) \
136 1.1 thorpej do { \
137 1.11 scw (list)->cq_next_l = (list); \
138 1.11 scw (list)->cq_prev_l = (list); \
139 1.1 thorpej } while (/*CONSTCOND*/0)
140 1.1 thorpej
141 1.1 thorpej #define CIRCQ_INSERT(elem, list) \
142 1.1 thorpej do { \
143 1.11 scw (elem)->cq_prev_e = (list)->cq_prev_e; \
144 1.11 scw (elem)->cq_next_l = (list); \
145 1.11 scw (list)->cq_prev_l->cq_next_l = (elem); \
146 1.11 scw (list)->cq_prev_l = (elem); \
147 1.1 thorpej } while (/*CONSTCOND*/0)
148 1.1 thorpej
149 1.1 thorpej #define CIRCQ_APPEND(fst, snd) \
150 1.1 thorpej do { \
151 1.1 thorpej if (!CIRCQ_EMPTY(snd)) { \
152 1.11 scw (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
153 1.11 scw (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
154 1.11 scw (snd)->cq_prev_l->cq_next_l = (fst); \
155 1.11 scw (fst)->cq_prev_l = (snd)->cq_prev_l; \
156 1.1 thorpej CIRCQ_INIT(snd); \
157 1.1 thorpej } \
158 1.1 thorpej } while (/*CONSTCOND*/0)
159 1.1 thorpej
160 1.1 thorpej #define CIRCQ_REMOVE(elem) \
161 1.1 thorpej do { \
162 1.11 scw (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
163 1.11 scw (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
164 1.1 thorpej } while (/*CONSTCOND*/0)
165 1.1 thorpej
166 1.11 scw #define CIRCQ_FIRST(list) ((list)->cq_next_e)
167 1.11 scw #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
168 1.11 scw #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
169 1.11 scw #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
170 1.1 thorpej
171 1.36 ad struct callout_cpu {
172 1.44 ad kmutex_t *cc_lock;
173 1.36 ad sleepq_t cc_sleepq;
174 1.36 ad u_int cc_nwait;
175 1.36 ad u_int cc_ticks;
176 1.36 ad lwp_t *cc_lwp;
177 1.36 ad callout_impl_t *cc_active;
178 1.36 ad struct evcnt cc_ev_late;
179 1.36 ad struct evcnt cc_ev_block;
180 1.36 ad struct callout_circq cc_todo; /* Worklist */
181 1.36 ad struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
182 1.36 ad char cc_name1[12];
183 1.36 ad char cc_name2[12];
184 1.72 riastrad struct cpu_info *cc_cpu;
185 1.36 ad };
186 1.36 ad
187 1.65 rin #ifdef DDB
188 1.65 rin static struct callout_cpu ccb;
189 1.65 rin #endif
190 1.49 christos
191 1.65 rin #ifndef CRASH /* _KERNEL */
192 1.49 christos static void callout_softclock(void *);
193 1.57 ad static void callout_wait(callout_impl_t *, void *, kmutex_t *);
194 1.57 ad
195 1.57 ad static struct callout_cpu callout_cpu0 __cacheline_aligned;
196 1.57 ad static void *callout_sih __read_mostly;
197 1.36 ad
198 1.72 riastrad SDT_PROBE_DEFINE2(sdt, kernel, callout, init,
199 1.72 riastrad "struct callout *"/*ch*/,
200 1.72 riastrad "unsigned"/*flags*/);
201 1.72 riastrad SDT_PROBE_DEFINE1(sdt, kernel, callout, destroy,
202 1.72 riastrad "struct callout *"/*ch*/);
203 1.72 riastrad SDT_PROBE_DEFINE4(sdt, kernel, callout, setfunc,
204 1.72 riastrad "struct callout *"/*ch*/,
205 1.72 riastrad "void (*)(void *)"/*func*/,
206 1.72 riastrad "void *"/*arg*/,
207 1.72 riastrad "unsigned"/*flags*/);
208 1.72 riastrad SDT_PROBE_DEFINE5(sdt, kernel, callout, schedule,
209 1.72 riastrad "struct callout *"/*ch*/,
210 1.72 riastrad "void (*)(void *)"/*func*/,
211 1.72 riastrad "void *"/*arg*/,
212 1.72 riastrad "unsigned"/*flags*/,
213 1.72 riastrad "int"/*ticks*/);
214 1.72 riastrad SDT_PROBE_DEFINE6(sdt, kernel, callout, migrate,
215 1.72 riastrad "struct callout *"/*ch*/,
216 1.72 riastrad "void (*)(void *)"/*func*/,
217 1.72 riastrad "void *"/*arg*/,
218 1.72 riastrad "unsigned"/*flags*/,
219 1.72 riastrad "struct cpu_info *"/*ocpu*/,
220 1.72 riastrad "struct cpu_info *"/*ncpu*/);
221 1.72 riastrad SDT_PROBE_DEFINE4(sdt, kernel, callout, entry,
222 1.72 riastrad "struct callout *"/*ch*/,
223 1.72 riastrad "void (*)(void *)"/*func*/,
224 1.72 riastrad "void *"/*arg*/,
225 1.72 riastrad "unsigned"/*flags*/);
226 1.72 riastrad SDT_PROBE_DEFINE4(sdt, kernel, callout, return,
227 1.72 riastrad "struct callout *"/*ch*/,
228 1.72 riastrad "void (*)(void *)"/*func*/,
229 1.72 riastrad "void *"/*arg*/,
230 1.72 riastrad "unsigned"/*flags*/);
231 1.72 riastrad SDT_PROBE_DEFINE5(sdt, kernel, callout, stop,
232 1.72 riastrad "struct callout *"/*ch*/,
233 1.72 riastrad "void (*)(void *)"/*func*/,
234 1.72 riastrad "void *"/*arg*/,
235 1.72 riastrad "unsigned"/*flags*/,
236 1.72 riastrad "bool"/*expired*/);
237 1.72 riastrad SDT_PROBE_DEFINE4(sdt, kernel, callout, halt,
238 1.72 riastrad "struct callout *"/*ch*/,
239 1.72 riastrad "void (*)(void *)"/*func*/,
240 1.72 riastrad "void *"/*arg*/,
241 1.72 riastrad "unsigned"/*flags*/);
242 1.72 riastrad SDT_PROBE_DEFINE5(sdt, kernel, callout, halt__done,
243 1.72 riastrad "struct callout *"/*ch*/,
244 1.72 riastrad "void (*)(void *)"/*func*/,
245 1.72 riastrad "void *"/*arg*/,
246 1.72 riastrad "unsigned"/*flags*/,
247 1.72 riastrad "bool"/*expired*/);
248 1.72 riastrad
249 1.79 ad syncobj_t callout_syncobj = {
250 1.79 ad .sobj_name = "callout",
251 1.79 ad .sobj_flag = SOBJ_SLEEPQ_SORTED,
252 1.79 ad .sobj_boostpri = PRI_KERNEL,
253 1.79 ad .sobj_unsleep = sleepq_unsleep,
254 1.79 ad .sobj_changepri = sleepq_changepri,
255 1.79 ad .sobj_lendpri = sleepq_lendpri,
256 1.79 ad .sobj_owner = syncobj_noowner,
257 1.79 ad };
258 1.79 ad
259 1.36 ad static inline kmutex_t *
260 1.36 ad callout_lock(callout_impl_t *c)
261 1.36 ad {
262 1.44 ad struct callout_cpu *cc;
263 1.36 ad kmutex_t *lock;
264 1.36 ad
265 1.36 ad for (;;) {
266 1.44 ad cc = c->c_cpu;
267 1.44 ad lock = cc->cc_lock;
268 1.36 ad mutex_spin_enter(lock);
269 1.44 ad if (__predict_true(cc == c->c_cpu))
270 1.36 ad return lock;
271 1.36 ad mutex_spin_exit(lock);
272 1.36 ad }
273 1.36 ad }
274 1.5 thorpej
275 1.1 thorpej /*
276 1.75 pho * Check if the callout is currently running on an LWP that isn't curlwp.
277 1.75 pho */
278 1.75 pho static inline bool
279 1.75 pho callout_running_somewhere_else(callout_impl_t *c, struct callout_cpu *cc)
280 1.75 pho {
281 1.75 pho KASSERT(c->c_cpu == cc);
282 1.75 pho
283 1.75 pho return cc->cc_active == c && cc->cc_lwp != curlwp;
284 1.75 pho }
285 1.75 pho
286 1.75 pho /*
287 1.1 thorpej * callout_startup:
288 1.1 thorpej *
289 1.1 thorpej * Initialize the callout facility, called at system startup time.
290 1.36 ad * Do just enough to allow callouts to be safely registered.
291 1.1 thorpej */
292 1.1 thorpej void
293 1.1 thorpej callout_startup(void)
294 1.1 thorpej {
295 1.36 ad struct callout_cpu *cc;
296 1.1 thorpej int b;
297 1.1 thorpej
298 1.36 ad KASSERT(curcpu()->ci_data.cpu_callout == NULL);
299 1.22 ad
300 1.36 ad cc = &callout_cpu0;
301 1.44 ad cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
302 1.36 ad CIRCQ_INIT(&cc->cc_todo);
303 1.1 thorpej for (b = 0; b < BUCKETS; b++)
304 1.36 ad CIRCQ_INIT(&cc->cc_wheel[b]);
305 1.36 ad curcpu()->ci_data.cpu_callout = cc;
306 1.22 ad }
307 1.22 ad
308 1.22 ad /*
309 1.36 ad * callout_init_cpu:
310 1.22 ad *
311 1.36 ad * Per-CPU initialization.
312 1.22 ad */
313 1.47 martin CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
314 1.47 martin
315 1.22 ad void
316 1.36 ad callout_init_cpu(struct cpu_info *ci)
317 1.22 ad {
318 1.36 ad struct callout_cpu *cc;
319 1.36 ad int b;
320 1.22 ad
321 1.36 ad if ((cc = ci->ci_data.cpu_callout) == NULL) {
322 1.36 ad cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
323 1.44 ad cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
324 1.36 ad CIRCQ_INIT(&cc->cc_todo);
325 1.36 ad for (b = 0; b < BUCKETS; b++)
326 1.36 ad CIRCQ_INIT(&cc->cc_wheel[b]);
327 1.36 ad } else {
328 1.36 ad /* Boot CPU, one time only. */
329 1.36 ad callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
330 1.36 ad callout_softclock, NULL);
331 1.36 ad if (callout_sih == NULL)
332 1.36 ad panic("callout_init_cpu (2)");
333 1.36 ad }
334 1.36 ad
335 1.40 ad sleepq_init(&cc->cc_sleepq);
336 1.36 ad
337 1.36 ad snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
338 1.36 ad cpu_index(ci));
339 1.36 ad evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
340 1.36 ad NULL, "callout", cc->cc_name1);
341 1.36 ad
342 1.36 ad snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
343 1.36 ad cpu_index(ci));
344 1.36 ad evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
345 1.36 ad NULL, "callout", cc->cc_name2);
346 1.36 ad
347 1.72 riastrad cc->cc_cpu = ci;
348 1.36 ad ci->ci_data.cpu_callout = cc;
349 1.1 thorpej }
350 1.1 thorpej
351 1.1 thorpej /*
352 1.1 thorpej * callout_init:
353 1.1 thorpej *
354 1.36 ad * Initialize a callout structure. This must be quick, so we fill
355 1.36 ad * only the minimum number of fields.
356 1.1 thorpej */
357 1.1 thorpej void
358 1.22 ad callout_init(callout_t *cs, u_int flags)
359 1.1 thorpej {
360 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
361 1.36 ad struct callout_cpu *cc;
362 1.22 ad
363 1.22 ad KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
364 1.1 thorpej
365 1.72 riastrad SDT_PROBE2(sdt, kernel, callout, init, cs, flags);
366 1.72 riastrad
367 1.36 ad cc = curcpu()->ci_data.cpu_callout;
368 1.36 ad c->c_func = NULL;
369 1.22 ad c->c_magic = CALLOUT_MAGIC;
370 1.36 ad if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
371 1.36 ad c->c_flags = flags;
372 1.36 ad c->c_cpu = cc;
373 1.36 ad return;
374 1.36 ad }
375 1.36 ad c->c_flags = flags | CALLOUT_BOUND;
376 1.36 ad c->c_cpu = &callout_cpu0;
377 1.22 ad }
378 1.22 ad
379 1.22 ad /*
380 1.22 ad * callout_destroy:
381 1.22 ad *
382 1.22 ad * Destroy a callout structure. The callout must be stopped.
383 1.22 ad */
384 1.22 ad void
385 1.22 ad callout_destroy(callout_t *cs)
386 1.22 ad {
387 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
388 1.22 ad
389 1.72 riastrad SDT_PROBE1(sdt, kernel, callout, destroy, cs);
390 1.72 riastrad
391 1.53 christos KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
392 1.53 christos "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
393 1.53 christos c, c->c_magic, CALLOUT_MAGIC);
394 1.22 ad /*
395 1.22 ad * It's not necessary to lock in order to see the correct value
396 1.22 ad * of c->c_flags. If the callout could potentially have been
397 1.22 ad * running, the current thread should have stopped it.
398 1.22 ad */
399 1.48 martin KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
400 1.59 ad "pending callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
401 1.59 ad c, c->c_func, c->c_flags, __builtin_return_address(0));
402 1.75 pho KASSERTMSG(!callout_running_somewhere_else(c, c->c_cpu),
403 1.59 ad "running callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
404 1.48 martin c, c->c_func, c->c_flags, __builtin_return_address(0));
405 1.22 ad c->c_magic = 0;
406 1.1 thorpej }
407 1.1 thorpej
408 1.1 thorpej /*
409 1.29 joerg * callout_schedule_locked:
410 1.1 thorpej *
411 1.29 joerg * Schedule a callout to run. The function and argument must
412 1.29 joerg * already be set in the callout structure. Must be called with
413 1.29 joerg * callout_lock.
414 1.1 thorpej */
415 1.29 joerg static void
416 1.36 ad callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
417 1.1 thorpej {
418 1.36 ad struct callout_cpu *cc, *occ;
419 1.20 ad int old_time;
420 1.1 thorpej
421 1.72 riastrad SDT_PROBE5(sdt, kernel, callout, schedule,
422 1.72 riastrad c, c->c_func, c->c_arg, c->c_flags, to_ticks);
423 1.72 riastrad
424 1.1 thorpej KASSERT(to_ticks >= 0);
425 1.29 joerg KASSERT(c->c_func != NULL);
426 1.1 thorpej
427 1.1 thorpej /* Initialize the time here, it won't change. */
428 1.36 ad occ = c->c_cpu;
429 1.43 ad c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
430 1.1 thorpej
431 1.1 thorpej /*
432 1.1 thorpej * If this timeout is already scheduled and now is moved
433 1.36 ad * earlier, reschedule it now. Otherwise leave it in place
434 1.1 thorpej * and let it be rescheduled later.
435 1.1 thorpej */
436 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0) {
437 1.36 ad /* Leave on existing CPU. */
438 1.36 ad old_time = c->c_time;
439 1.36 ad c->c_time = to_ticks + occ->cc_ticks;
440 1.4 yamt if (c->c_time - old_time < 0) {
441 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
442 1.36 ad CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
443 1.1 thorpej }
444 1.36 ad mutex_spin_exit(lock);
445 1.36 ad return;
446 1.36 ad }
447 1.36 ad
448 1.36 ad cc = curcpu()->ci_data.cpu_callout;
449 1.36 ad if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
450 1.44 ad !mutex_tryenter(cc->cc_lock)) {
451 1.36 ad /* Leave on existing CPU. */
452 1.36 ad c->c_time = to_ticks + occ->cc_ticks;
453 1.36 ad c->c_flags |= CALLOUT_PENDING;
454 1.36 ad CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
455 1.1 thorpej } else {
456 1.36 ad /* Move to this CPU. */
457 1.36 ad c->c_cpu = cc;
458 1.36 ad c->c_time = to_ticks + cc->cc_ticks;
459 1.1 thorpej c->c_flags |= CALLOUT_PENDING;
460 1.36 ad CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
461 1.44 ad mutex_spin_exit(cc->cc_lock);
462 1.72 riastrad SDT_PROBE6(sdt, kernel, callout, migrate,
463 1.72 riastrad c, c->c_func, c->c_arg, c->c_flags,
464 1.72 riastrad occ->cc_cpu, cc->cc_cpu);
465 1.1 thorpej }
466 1.36 ad mutex_spin_exit(lock);
467 1.29 joerg }
468 1.29 joerg
469 1.29 joerg /*
470 1.29 joerg * callout_reset:
471 1.29 joerg *
472 1.29 joerg * Reset a callout structure with a new function and argument, and
473 1.29 joerg * schedule it to run.
474 1.29 joerg */
475 1.29 joerg void
476 1.29 joerg callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
477 1.29 joerg {
478 1.29 joerg callout_impl_t *c = (callout_impl_t *)cs;
479 1.36 ad kmutex_t *lock;
480 1.29 joerg
481 1.29 joerg KASSERT(c->c_magic == CALLOUT_MAGIC);
482 1.42 rmind KASSERT(func != NULL);
483 1.29 joerg
484 1.36 ad lock = callout_lock(c);
485 1.72 riastrad SDT_PROBE4(sdt, kernel, callout, setfunc, cs, func, arg, c->c_flags);
486 1.29 joerg c->c_func = func;
487 1.29 joerg c->c_arg = arg;
488 1.36 ad callout_schedule_locked(c, lock, to_ticks);
489 1.1 thorpej }
490 1.1 thorpej
491 1.1 thorpej /*
492 1.1 thorpej * callout_schedule:
493 1.1 thorpej *
494 1.1 thorpej * Schedule a callout to run. The function and argument must
495 1.1 thorpej * already be set in the callout structure.
496 1.1 thorpej */
497 1.1 thorpej void
498 1.22 ad callout_schedule(callout_t *cs, int to_ticks)
499 1.1 thorpej {
500 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
501 1.36 ad kmutex_t *lock;
502 1.1 thorpej
503 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
504 1.1 thorpej
505 1.36 ad lock = callout_lock(c);
506 1.36 ad callout_schedule_locked(c, lock, to_ticks);
507 1.1 thorpej }
508 1.1 thorpej
509 1.1 thorpej /*
510 1.1 thorpej * callout_stop:
511 1.1 thorpej *
512 1.36 ad * Try to cancel a pending callout. It may be too late: the callout
513 1.36 ad * could be running on another CPU. If called from interrupt context,
514 1.36 ad * the callout could already be in progress at a lower priority.
515 1.1 thorpej */
516 1.22 ad bool
517 1.22 ad callout_stop(callout_t *cs)
518 1.1 thorpej {
519 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
520 1.36 ad kmutex_t *lock;
521 1.22 ad bool expired;
522 1.22 ad
523 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
524 1.1 thorpej
525 1.36 ad lock = callout_lock(c);
526 1.20 ad
527 1.22 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
528 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
529 1.32 ad expired = ((c->c_flags & CALLOUT_FIRED) != 0);
530 1.32 ad c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
531 1.32 ad
532 1.72 riastrad SDT_PROBE5(sdt, kernel, callout, stop,
533 1.72 riastrad c, c->c_func, c->c_arg, c->c_flags, expired);
534 1.72 riastrad
535 1.36 ad mutex_spin_exit(lock);
536 1.32 ad
537 1.32 ad return expired;
538 1.32 ad }
539 1.32 ad
540 1.32 ad /*
541 1.32 ad * callout_halt:
542 1.32 ad *
543 1.32 ad * Cancel a pending callout. If in-flight, block until it completes.
544 1.36 ad * May not be called from a hard interrupt handler. If the callout
545 1.36 ad * can take locks, the caller of callout_halt() must not hold any of
546 1.37 ad * those locks, otherwise the two could deadlock. If 'interlock' is
547 1.37 ad * non-NULL and we must wait for the callout to complete, it will be
548 1.37 ad * released and re-acquired before returning.
549 1.32 ad */
550 1.32 ad bool
551 1.38 ad callout_halt(callout_t *cs, void *interlock)
552 1.32 ad {
553 1.32 ad callout_impl_t *c = (callout_impl_t *)cs;
554 1.57 ad kmutex_t *lock;
555 1.32 ad
556 1.32 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
557 1.32 ad KASSERT(!cpu_intr_p());
558 1.54 ozaki KASSERT(interlock == NULL || mutex_owned(interlock));
559 1.32 ad
560 1.57 ad /* Fast path. */
561 1.36 ad lock = callout_lock(c);
562 1.72 riastrad SDT_PROBE4(sdt, kernel, callout, halt,
563 1.72 riastrad c, c->c_func, c->c_arg, c->c_flags);
564 1.74 pho if ((c->c_flags & CALLOUT_PENDING) != 0)
565 1.57 ad CIRCQ_REMOVE(&c->c_list);
566 1.74 pho c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
567 1.75 pho if (__predict_false(callout_running_somewhere_else(c, c->c_cpu))) {
568 1.57 ad callout_wait(c, interlock, lock);
569 1.57 ad return true;
570 1.57 ad }
571 1.72 riastrad SDT_PROBE5(sdt, kernel, callout, halt__done,
572 1.72 riastrad c, c->c_func, c->c_arg, c->c_flags, /*expired*/false);
573 1.57 ad mutex_spin_exit(lock);
574 1.57 ad return false;
575 1.57 ad }
576 1.1 thorpej
577 1.57 ad /*
578 1.57 ad * callout_wait:
579 1.57 ad *
580 1.57 ad * Slow path for callout_halt(). Deliberately marked __noinline to
581 1.57 ad * prevent unneeded overhead in the caller.
582 1.57 ad */
583 1.57 ad static void __noinline
584 1.57 ad callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
585 1.57 ad {
586 1.57 ad struct callout_cpu *cc;
587 1.57 ad struct lwp *l;
588 1.57 ad kmutex_t *relock;
589 1.78 ad int nlocks;
590 1.1 thorpej
591 1.32 ad l = curlwp;
592 1.57 ad relock = NULL;
593 1.36 ad for (;;) {
594 1.58 ad /*
595 1.58 ad * At this point we know the callout is not pending, but it
596 1.58 ad * could be running on a CPU somewhere. That can be curcpu
597 1.58 ad * in a few cases:
598 1.58 ad *
599 1.58 ad * - curlwp is a higher priority soft interrupt
600 1.58 ad * - the callout blocked on a lock and is currently asleep
601 1.58 ad * - the callout itself has called callout_halt() (nice!)
602 1.58 ad */
603 1.36 ad cc = c->c_cpu;
604 1.75 pho if (__predict_true(!callout_running_somewhere_else(c, cc)))
605 1.36 ad break;
606 1.58 ad
607 1.58 ad /* It's running - need to wait for it to complete. */
608 1.37 ad if (interlock != NULL) {
609 1.37 ad /*
610 1.37 ad * Avoid potential scheduler lock order problems by
611 1.37 ad * dropping the interlock without the callout lock
612 1.58 ad * held; then retry.
613 1.37 ad */
614 1.37 ad mutex_spin_exit(lock);
615 1.37 ad mutex_exit(interlock);
616 1.37 ad relock = interlock;
617 1.37 ad interlock = NULL;
618 1.37 ad } else {
619 1.37 ad /* XXX Better to do priority inheritance. */
620 1.37 ad KASSERT(l->l_wchan == NULL);
621 1.37 ad cc->cc_nwait++;
622 1.37 ad cc->cc_ev_block.ev_count++;
623 1.78 ad nlocks = sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
624 1.37 ad sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
625 1.79 ad &callout_syncobj, false);
626 1.79 ad sleepq_block(0, false, &callout_syncobj, nlocks);
627 1.37 ad }
628 1.58 ad
629 1.58 ad /*
630 1.71 riastrad * Re-lock the callout and check the state of play again.
631 1.58 ad * It's a common design pattern for callouts to re-schedule
632 1.58 ad * themselves so put a stop to it again if needed.
633 1.58 ad */
634 1.36 ad lock = callout_lock(c);
635 1.58 ad if ((c->c_flags & CALLOUT_PENDING) != 0)
636 1.58 ad CIRCQ_REMOVE(&c->c_list);
637 1.58 ad c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
638 1.32 ad }
639 1.32 ad
640 1.72 riastrad SDT_PROBE5(sdt, kernel, callout, halt__done,
641 1.72 riastrad c, c->c_func, c->c_arg, c->c_flags, /*expired*/true);
642 1.72 riastrad
643 1.36 ad mutex_spin_exit(lock);
644 1.37 ad if (__predict_false(relock != NULL))
645 1.37 ad mutex_enter(relock);
646 1.22 ad }
647 1.22 ad
648 1.36 ad #ifdef notyet
649 1.36 ad /*
650 1.36 ad * callout_bind:
651 1.36 ad *
652 1.36 ad * Bind a callout so that it will only execute on one CPU.
653 1.36 ad * The callout must be stopped, and must be MPSAFE.
654 1.36 ad *
655 1.36 ad * XXX Disabled for now until it is decided how to handle
656 1.36 ad * offlined CPUs. We may want weak+strong binding.
657 1.36 ad */
658 1.36 ad void
659 1.36 ad callout_bind(callout_t *cs, struct cpu_info *ci)
660 1.36 ad {
661 1.36 ad callout_impl_t *c = (callout_impl_t *)cs;
662 1.36 ad struct callout_cpu *cc;
663 1.36 ad kmutex_t *lock;
664 1.36 ad
665 1.36 ad KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
666 1.36 ad KASSERT(c->c_cpu->cc_active != c);
667 1.36 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
668 1.36 ad KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
669 1.36 ad
670 1.36 ad lock = callout_lock(c);
671 1.36 ad cc = ci->ci_data.cpu_callout;
672 1.36 ad c->c_flags |= CALLOUT_BOUND;
673 1.36 ad if (c->c_cpu != cc) {
674 1.36 ad /*
675 1.36 ad * Assigning c_cpu effectively unlocks the callout
676 1.36 ad * structure, as we don't hold the new CPU's lock.
677 1.36 ad * Issue memory barrier to prevent accesses being
678 1.36 ad * reordered.
679 1.36 ad */
680 1.36 ad membar_exit();
681 1.36 ad c->c_cpu = cc;
682 1.36 ad }
683 1.36 ad mutex_spin_exit(lock);
684 1.36 ad }
685 1.36 ad #endif
686 1.36 ad
687 1.22 ad void
688 1.22 ad callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
689 1.22 ad {
690 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
691 1.36 ad kmutex_t *lock;
692 1.22 ad
693 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
694 1.42 rmind KASSERT(func != NULL);
695 1.22 ad
696 1.36 ad lock = callout_lock(c);
697 1.72 riastrad SDT_PROBE4(sdt, kernel, callout, setfunc, cs, func, arg, c->c_flags);
698 1.22 ad c->c_func = func;
699 1.22 ad c->c_arg = arg;
700 1.36 ad mutex_spin_exit(lock);
701 1.22 ad }
702 1.22 ad
703 1.22 ad bool
704 1.22 ad callout_expired(callout_t *cs)
705 1.22 ad {
706 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
707 1.36 ad kmutex_t *lock;
708 1.22 ad bool rv;
709 1.22 ad
710 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
711 1.22 ad
712 1.36 ad lock = callout_lock(c);
713 1.22 ad rv = ((c->c_flags & CALLOUT_FIRED) != 0);
714 1.36 ad mutex_spin_exit(lock);
715 1.22 ad
716 1.22 ad return rv;
717 1.22 ad }
718 1.22 ad
719 1.22 ad bool
720 1.22 ad callout_active(callout_t *cs)
721 1.22 ad {
722 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
723 1.36 ad kmutex_t *lock;
724 1.22 ad bool rv;
725 1.22 ad
726 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
727 1.22 ad
728 1.36 ad lock = callout_lock(c);
729 1.22 ad rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
730 1.36 ad mutex_spin_exit(lock);
731 1.22 ad
732 1.22 ad return rv;
733 1.22 ad }
734 1.22 ad
735 1.22 ad bool
736 1.22 ad callout_pending(callout_t *cs)
737 1.22 ad {
738 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
739 1.36 ad kmutex_t *lock;
740 1.22 ad bool rv;
741 1.22 ad
742 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
743 1.22 ad
744 1.36 ad lock = callout_lock(c);
745 1.22 ad rv = ((c->c_flags & CALLOUT_PENDING) != 0);
746 1.36 ad mutex_spin_exit(lock);
747 1.22 ad
748 1.22 ad return rv;
749 1.22 ad }
750 1.22 ad
751 1.22 ad bool
752 1.22 ad callout_invoking(callout_t *cs)
753 1.22 ad {
754 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
755 1.36 ad kmutex_t *lock;
756 1.22 ad bool rv;
757 1.22 ad
758 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
759 1.22 ad
760 1.36 ad lock = callout_lock(c);
761 1.22 ad rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
762 1.36 ad mutex_spin_exit(lock);
763 1.22 ad
764 1.22 ad return rv;
765 1.22 ad }
766 1.22 ad
767 1.22 ad void
768 1.22 ad callout_ack(callout_t *cs)
769 1.22 ad {
770 1.22 ad callout_impl_t *c = (callout_impl_t *)cs;
771 1.36 ad kmutex_t *lock;
772 1.22 ad
773 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
774 1.22 ad
775 1.36 ad lock = callout_lock(c);
776 1.22 ad c->c_flags &= ~CALLOUT_INVOKING;
777 1.36 ad mutex_spin_exit(lock);
778 1.1 thorpej }
779 1.1 thorpej
780 1.1 thorpej /*
781 1.36 ad * callout_hardclock:
782 1.36 ad *
783 1.36 ad * Called from hardclock() once every tick. We schedule a soft
784 1.36 ad * interrupt if there is work to be done.
785 1.1 thorpej */
786 1.22 ad void
787 1.1 thorpej callout_hardclock(void)
788 1.1 thorpej {
789 1.36 ad struct callout_cpu *cc;
790 1.36 ad int needsoftclock, ticks;
791 1.1 thorpej
792 1.36 ad cc = curcpu()->ci_data.cpu_callout;
793 1.44 ad mutex_spin_enter(cc->cc_lock);
794 1.1 thorpej
795 1.36 ad ticks = ++cc->cc_ticks;
796 1.36 ad
797 1.36 ad MOVEBUCKET(cc, 0, ticks);
798 1.36 ad if (MASKWHEEL(0, ticks) == 0) {
799 1.36 ad MOVEBUCKET(cc, 1, ticks);
800 1.36 ad if (MASKWHEEL(1, ticks) == 0) {
801 1.36 ad MOVEBUCKET(cc, 2, ticks);
802 1.36 ad if (MASKWHEEL(2, ticks) == 0)
803 1.36 ad MOVEBUCKET(cc, 3, ticks);
804 1.1 thorpej }
805 1.1 thorpej }
806 1.1 thorpej
807 1.36 ad needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
808 1.44 ad mutex_spin_exit(cc->cc_lock);
809 1.1 thorpej
810 1.22 ad if (needsoftclock)
811 1.36 ad softint_schedule(callout_sih);
812 1.1 thorpej }
813 1.1 thorpej
814 1.36 ad /*
815 1.36 ad * callout_softclock:
816 1.36 ad *
817 1.36 ad * Soft interrupt handler, scheduled above if there is work to
818 1.36 ad * be done. Callouts are made in soft interrupt context.
819 1.36 ad */
820 1.22 ad static void
821 1.22 ad callout_softclock(void *v)
822 1.1 thorpej {
823 1.22 ad callout_impl_t *c;
824 1.36 ad struct callout_cpu *cc;
825 1.1 thorpej void (*func)(void *);
826 1.1 thorpej void *arg;
827 1.68 riastrad int mpsafe, count, ticks, delta;
828 1.73 riastrad u_int flags __unused;
829 1.22 ad lwp_t *l;
830 1.1 thorpej
831 1.22 ad l = curlwp;
832 1.36 ad KASSERT(l->l_cpu == curcpu());
833 1.36 ad cc = l->l_cpu->ci_data.cpu_callout;
834 1.1 thorpej
835 1.44 ad mutex_spin_enter(cc->cc_lock);
836 1.36 ad cc->cc_lwp = l;
837 1.36 ad while (!CIRCQ_EMPTY(&cc->cc_todo)) {
838 1.36 ad c = CIRCQ_FIRST(&cc->cc_todo);
839 1.22 ad KASSERT(c->c_magic == CALLOUT_MAGIC);
840 1.22 ad KASSERT(c->c_func != NULL);
841 1.36 ad KASSERT(c->c_cpu == cc);
842 1.26 ad KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
843 1.26 ad KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
844 1.1 thorpej CIRCQ_REMOVE(&c->c_list);
845 1.1 thorpej
846 1.1 thorpej /* If due run it, otherwise insert it into the right bucket. */
847 1.36 ad ticks = cc->cc_ticks;
848 1.56 kre delta = (int)((unsigned)c->c_time - (unsigned)ticks);
849 1.56 kre if (delta > 0) {
850 1.36 ad CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
851 1.36 ad continue;
852 1.36 ad }
853 1.56 kre if (delta < 0)
854 1.36 ad cc->cc_ev_late.ev_count++;
855 1.36 ad
856 1.43 ad c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
857 1.43 ad (CALLOUT_FIRED | CALLOUT_INVOKING);
858 1.36 ad mpsafe = (c->c_flags & CALLOUT_MPSAFE);
859 1.36 ad func = c->c_func;
860 1.36 ad arg = c->c_arg;
861 1.36 ad cc->cc_active = c;
862 1.72 riastrad flags = c->c_flags;
863 1.36 ad
864 1.44 ad mutex_spin_exit(cc->cc_lock);
865 1.42 rmind KASSERT(func != NULL);
866 1.72 riastrad SDT_PROBE4(sdt, kernel, callout, entry, c, func, arg, flags);
867 1.44 ad if (__predict_false(!mpsafe)) {
868 1.36 ad KERNEL_LOCK(1, NULL);
869 1.36 ad (*func)(arg);
870 1.36 ad KERNEL_UNLOCK_ONE(NULL);
871 1.36 ad } else
872 1.36 ad (*func)(arg);
873 1.72 riastrad SDT_PROBE4(sdt, kernel, callout, return, c, func, arg, flags);
874 1.69 riastrad KASSERTMSG(l->l_blcnt == 0,
875 1.69 riastrad "callout %p func %p leaked %d biglocks",
876 1.69 riastrad c, func, l->l_blcnt);
877 1.44 ad mutex_spin_enter(cc->cc_lock);
878 1.36 ad
879 1.36 ad /*
880 1.36 ad * We can't touch 'c' here because it might be
881 1.36 ad * freed already. If LWPs waiting for callout
882 1.36 ad * to complete, awaken them.
883 1.36 ad */
884 1.36 ad cc->cc_active = NULL;
885 1.36 ad if ((count = cc->cc_nwait) != 0) {
886 1.36 ad cc->cc_nwait = 0;
887 1.36 ad /* sleepq_wake() drops the lock. */
888 1.44 ad sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
889 1.44 ad mutex_spin_enter(cc->cc_lock);
890 1.1 thorpej }
891 1.1 thorpej }
892 1.36 ad cc->cc_lwp = NULL;
893 1.44 ad mutex_spin_exit(cc->cc_lock);
894 1.1 thorpej }
895 1.63 rin #endif /* !CRASH */
896 1.1 thorpej
897 1.1 thorpej #ifdef DDB
898 1.1 thorpej static void
899 1.51 christos db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
900 1.51 christos struct callout_circq *bucket)
901 1.1 thorpej {
902 1.49 christos callout_impl_t *c, ci;
903 1.1 thorpej db_expr_t offset;
904 1.15 christos const char *name;
905 1.15 christos static char question[] = "?";
906 1.36 ad int b;
907 1.1 thorpej
908 1.51 christos if (CIRCQ_LAST(bucket, kbucket))
909 1.11 scw return;
910 1.11 scw
911 1.51 christos for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
912 1.49 christos db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
913 1.49 christos c = &ci;
914 1.10 scw db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
915 1.10 scw &offset);
916 1.15 christos name = name ? name : question;
917 1.36 ad b = (bucket - cc->cc_wheel);
918 1.36 ad if (b < 0)
919 1.36 ad b = -WHEELSIZE;
920 1.36 ad db_printf("%9d %2d/%-4d %16lx %s\n",
921 1.36 ad c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
922 1.36 ad (u_long)c->c_arg, name);
923 1.51 christos if (CIRCQ_LAST(&c->c_list, kbucket))
924 1.11 scw break;
925 1.1 thorpej }
926 1.1 thorpej }
927 1.1 thorpej
928 1.1 thorpej void
929 1.21 matt db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
930 1.1 thorpej {
931 1.64 rin struct callout_cpu *cc;
932 1.64 rin struct cpu_info *ci;
933 1.1 thorpej int b;
934 1.1 thorpej
935 1.49 christos #ifndef CRASH
936 1.60 maxv db_printf("hardclock_ticks now: %d\n", getticks());
937 1.49 christos #endif
938 1.1 thorpej db_printf(" ticks wheel arg func\n");
939 1.1 thorpej
940 1.1 thorpej /*
941 1.1 thorpej * Don't lock the callwheel; all the other CPUs are paused
942 1.1 thorpej * anyhow, and we might be called in a circumstance where
943 1.1 thorpej * some other CPU was paused while holding the lock.
944 1.1 thorpej */
945 1.49 christos for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
946 1.66 rin db_read_bytes((db_addr_t)ci +
947 1.66 rin offsetof(struct cpu_info, ci_data.cpu_callout),
948 1.66 rin sizeof(cc), (char *)&cc);
949 1.64 rin db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
950 1.64 rin db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
951 1.36 ad }
952 1.36 ad for (b = 0; b < BUCKETS; b++) {
953 1.49 christos for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
954 1.66 rin db_read_bytes((db_addr_t)ci +
955 1.66 rin offsetof(struct cpu_info, ci_data.cpu_callout),
956 1.66 rin sizeof(cc), (char *)&cc);
957 1.64 rin db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
958 1.64 rin db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
959 1.64 rin &ccb.cc_wheel[b]);
960 1.36 ad }
961 1.36 ad }
962 1.1 thorpej }
963 1.1 thorpej #endif /* DDB */
964