kern_timeout.c revision 1.16.2.2 1 /* $NetBSD: kern_timeout.c,v 1.16.2.2 2007/09/03 14:40:58 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
41 * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 *
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
57 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
58 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
59 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
60 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
61 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
62 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
63 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
64 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
65 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.16.2.2 2007/09/03 14:40:58 yamt Exp $");
70
71 /*
72 * Timeouts are kept in a hierarchical timing wheel. The c_time is the
73 * value of the global variable "hardclock_ticks" when the timeout should
74 * be called. There are four levels with 256 buckets each. See 'Scheme 7'
75 * in "Hashed and Hierarchical Timing Wheels: Efficient Data Structures
76 * for Implementing a Timer Facility" by George Varghese and Tony Lauck.
77 *
78 * Some of the "math" in here is a bit tricky. We have to beware of
79 * wrapping ints.
80 *
81 * We use the fact that any element added to the queue must be added with
82 * a positive time. That means that any element `to' on the queue cannot
83 * be scheduled to timeout further in time than INT_MAX, but c->c_time can
84 * be positive or negative so comparing it with anything is dangerous.
85 * The only way we can use the c->c_time value in any predictable way is
86 * when we calculate how far in the future `to' will timeout - "c->c_time
87 * - hardclock_ticks". The result will always be positive for future
88 * timeouts and 0 or negative for due timeouts.
89 */
90
91 #define _CALLOUT_PRIVATE
92
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/kernel.h>
96 #include <sys/lock.h>
97 #include <sys/callout.h>
98 #include <sys/mutex.h>
99 #include <sys/proc.h>
100 #include <sys/sleepq.h>
101 #include <sys/syncobj.h>
102 #include <sys/evcnt.h>
103
104 #include <machine/intr.h>
105
106 #ifdef DDB
107 #include <machine/db_machdep.h>
108 #include <ddb/db_interface.h>
109 #include <ddb/db_access.h>
110 #include <ddb/db_sym.h>
111 #include <ddb/db_output.h>
112 #endif
113
114 #define BUCKETS 1024
115 #define WHEELSIZE 256
116 #define WHEELMASK 255
117 #define WHEELBITS 8
118
119 static struct callout_circq timeout_wheel[BUCKETS]; /* Queues of timeouts */
120 static struct callout_circq timeout_todo; /* Worklist */
121
122 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
123
124 #define BUCKET(rel, abs) \
125 (((rel) <= (1 << (2*WHEELBITS))) \
126 ? ((rel) <= (1 << WHEELBITS)) \
127 ? &timeout_wheel[MASKWHEEL(0, (abs))] \
128 : &timeout_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
129 : ((rel) <= (1 << (3*WHEELBITS))) \
130 ? &timeout_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
131 : &timeout_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
132
133 #define MOVEBUCKET(wheel, time) \
134 CIRCQ_APPEND(&timeout_todo, \
135 &timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
136
137 /*
138 * Circular queue definitions.
139 */
140
141 #define CIRCQ_INIT(list) \
142 do { \
143 (list)->cq_next_l = (list); \
144 (list)->cq_prev_l = (list); \
145 } while (/*CONSTCOND*/0)
146
147 #define CIRCQ_INSERT(elem, list) \
148 do { \
149 (elem)->cq_prev_e = (list)->cq_prev_e; \
150 (elem)->cq_next_l = (list); \
151 (list)->cq_prev_l->cq_next_l = (elem); \
152 (list)->cq_prev_l = (elem); \
153 } while (/*CONSTCOND*/0)
154
155 #define CIRCQ_APPEND(fst, snd) \
156 do { \
157 if (!CIRCQ_EMPTY(snd)) { \
158 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
159 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
160 (snd)->cq_prev_l->cq_next_l = (fst); \
161 (fst)->cq_prev_l = (snd)->cq_prev_l; \
162 CIRCQ_INIT(snd); \
163 } \
164 } while (/*CONSTCOND*/0)
165
166 #define CIRCQ_REMOVE(elem) \
167 do { \
168 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
169 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
170 } while (/*CONSTCOND*/0)
171
172 #define CIRCQ_FIRST(list) ((list)->cq_next_e)
173 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
174 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
175 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
176
177 static void callout_softclock(void *);
178
179 /*
180 * All wheels are locked with the same lock (which must also block out
181 * all interrupts). Eventually this should become per-CPU.
182 */
183 kmutex_t callout_lock;
184 sleepq_t callout_sleepq;
185 void *callout_si;
186
187 static struct evcnt callout_ev_late;
188 static struct evcnt callout_ev_block;
189
190 /*
191 * callout_barrier:
192 *
193 * If the callout is already running, wait until it completes.
194 * XXX This should do priority inheritance.
195 */
196 static void
197 callout_barrier(callout_impl_t *c)
198 {
199 extern syncobj_t sleep_syncobj;
200 struct cpu_info *ci;
201 struct lwp *l;
202
203 l = curlwp;
204
205 if ((c->c_flags & CALLOUT_MPSAFE) == 0) {
206 /*
207 * Note: we must be called with the kernel lock held,
208 * as we use it to synchronize with callout_softclock().
209 */
210 ci = c->c_oncpu;
211 ci->ci_data.cpu_callout_cancel = c;
212 return;
213 }
214
215 while ((ci = c->c_oncpu) != NULL && ci->ci_data.cpu_callout == c) {
216 KASSERT(l->l_wchan == NULL);
217
218 ci->ci_data.cpu_callout_nwait++;
219 callout_ev_block.ev_count++;
220
221 sleepq_enter(&callout_sleepq, l);
222 sleepq_enqueue(&callout_sleepq, sched_kpri(l), ci,
223 "callout", &sleep_syncobj);
224 sleepq_block(0, false);
225 mutex_spin_enter(&callout_lock);
226 }
227 }
228
229 /*
230 * callout_running:
231 *
232 * Return non-zero if callout 'c' is currently executing.
233 */
234 static inline bool
235 callout_running(callout_impl_t *c)
236 {
237 struct cpu_info *ci;
238
239 if ((ci = c->c_oncpu) == NULL)
240 return false;
241 if (ci->ci_data.cpu_callout != c)
242 return false;
243 if (c->c_onlwp == curlwp)
244 return false;
245 return true;
246 }
247
248 /*
249 * callout_startup:
250 *
251 * Initialize the callout facility, called at system startup time.
252 */
253 void
254 callout_startup(void)
255 {
256 int b;
257
258 KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
259
260 CIRCQ_INIT(&timeout_todo);
261 for (b = 0; b < BUCKETS; b++)
262 CIRCQ_INIT(&timeout_wheel[b]);
263
264 mutex_init(&callout_lock, MUTEX_SPIN, IPL_SCHED);
265 sleepq_init(&callout_sleepq, &callout_lock);
266
267 evcnt_attach_dynamic(&callout_ev_late, EVCNT_TYPE_MISC,
268 NULL, "callout", "late");
269 evcnt_attach_dynamic(&callout_ev_block, EVCNT_TYPE_MISC,
270 NULL, "callout", "block waiting");
271 }
272
273 /*
274 * callout_startup2:
275 *
276 * Complete initialization once soft interrupts are available.
277 */
278 void
279 callout_startup2(void)
280 {
281
282 callout_si = softintr_establish(IPL_SOFTCLOCK,
283 callout_softclock, NULL);
284 if (callout_si == NULL)
285 panic("callout_startup2: unable to register softclock intr");
286 }
287
288 /*
289 * callout_init:
290 *
291 * Initialize a callout structure.
292 */
293 void
294 callout_init(callout_t *cs, u_int flags)
295 {
296 callout_impl_t *c = (callout_impl_t *)cs;
297
298 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
299
300 memset(c, 0, sizeof(*c));
301 c->c_flags = flags;
302 c->c_magic = CALLOUT_MAGIC;
303 }
304
305 /*
306 * callout_destroy:
307 *
308 * Destroy a callout structure. The callout must be stopped.
309 */
310 void
311 callout_destroy(callout_t *cs)
312 {
313 callout_impl_t *c = (callout_impl_t *)cs;
314
315 /*
316 * It's not necessary to lock in order to see the correct value
317 * of c->c_flags. If the callout could potentially have been
318 * running, the current thread should have stopped it.
319 */
320 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
321 if (c->c_oncpu != NULL) {
322 KASSERT(
323 ((struct cpu_info *)c->c_oncpu)->ci_data.cpu_callout != c);
324 }
325 KASSERT(c->c_magic == CALLOUT_MAGIC);
326
327 c->c_magic = 0;
328 }
329
330
331 /*
332 * callout_reset:
333 *
334 * Reset a callout structure with a new function and argument, and
335 * schedule it to run.
336 */
337 void
338 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
339 {
340 callout_impl_t *c = (callout_impl_t *)cs;
341 int old_time;
342
343 KASSERT(to_ticks >= 0);
344 KASSERT(c->c_magic == CALLOUT_MAGIC);
345 KASSERT(func != NULL);
346
347 mutex_spin_enter(&callout_lock);
348
349 /* Initialize the time here, it won't change. */
350 old_time = c->c_time;
351 c->c_time = to_ticks + hardclock_ticks;
352 c->c_flags &= ~CALLOUT_FIRED;
353
354 c->c_func = func;
355 c->c_arg = arg;
356
357 /*
358 * If this timeout is already scheduled and now is moved
359 * earlier, reschedule it now. Otherwise leave it in place
360 * and let it be rescheduled later.
361 */
362 if ((c->c_flags & CALLOUT_PENDING) != 0) {
363 if (c->c_time - old_time < 0) {
364 CIRCQ_REMOVE(&c->c_list);
365 CIRCQ_INSERT(&c->c_list, &timeout_todo);
366 }
367 } else {
368 c->c_flags |= CALLOUT_PENDING;
369 CIRCQ_INSERT(&c->c_list, &timeout_todo);
370 }
371
372 mutex_spin_exit(&callout_lock);
373 }
374
375 /*
376 * callout_schedule:
377 *
378 * Schedule a callout to run. The function and argument must
379 * already be set in the callout structure.
380 */
381 void
382 callout_schedule(callout_t *cs, int to_ticks)
383 {
384 callout_impl_t *c = (callout_impl_t *)cs;
385 int old_time;
386
387 KASSERT(to_ticks >= 0);
388 KASSERT(c->c_magic == CALLOUT_MAGIC);
389 KASSERT(c->c_func != NULL);
390
391 mutex_spin_enter(&callout_lock);
392
393 /* Initialize the time here, it won't change. */
394 old_time = c->c_time;
395 c->c_time = to_ticks + hardclock_ticks;
396 c->c_flags &= ~CALLOUT_FIRED;
397
398 /*
399 * If this timeout is already scheduled and now is moved
400 * earlier, reschedule it now. Otherwise leave it in place
401 * and let it be rescheduled later.
402 */
403 if ((c->c_flags & CALLOUT_PENDING) != 0) {
404 if (c->c_time - old_time < 0) {
405 CIRCQ_REMOVE(&c->c_list);
406 CIRCQ_INSERT(&c->c_list, &timeout_todo);
407 }
408 } else {
409 c->c_flags |= CALLOUT_PENDING;
410 CIRCQ_INSERT(&c->c_list, &timeout_todo);
411 }
412
413 mutex_spin_exit(&callout_lock);
414 }
415
416 /*
417 * callout_stop:
418 *
419 * Cancel a pending callout.
420 */
421 bool
422 callout_stop(callout_t *cs)
423 {
424 callout_impl_t *c = (callout_impl_t *)cs;
425 bool expired;
426
427 KASSERT(c->c_magic == CALLOUT_MAGIC);
428
429 mutex_spin_enter(&callout_lock);
430
431 if (callout_running(c))
432 callout_barrier(c);
433
434 if ((c->c_flags & CALLOUT_PENDING) != 0)
435 CIRCQ_REMOVE(&c->c_list);
436
437 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
438 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
439
440 mutex_spin_exit(&callout_lock);
441
442 return expired;
443 }
444
445 void
446 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
447 {
448 callout_impl_t *c = (callout_impl_t *)cs;
449
450 KASSERT(c->c_magic == CALLOUT_MAGIC);
451
452 mutex_spin_enter(&callout_lock);
453 c->c_func = func;
454 c->c_arg = arg;
455 mutex_spin_exit(&callout_lock);
456 }
457
458 bool
459 callout_expired(callout_t *cs)
460 {
461 callout_impl_t *c = (callout_impl_t *)cs;
462 bool rv;
463
464 KASSERT(c->c_magic == CALLOUT_MAGIC);
465
466 mutex_spin_enter(&callout_lock);
467 rv = ((c->c_flags & CALLOUT_FIRED) != 0);
468 mutex_spin_exit(&callout_lock);
469
470 return rv;
471 }
472
473 bool
474 callout_active(callout_t *cs)
475 {
476 callout_impl_t *c = (callout_impl_t *)cs;
477 bool rv;
478
479 KASSERT(c->c_magic == CALLOUT_MAGIC);
480
481 mutex_spin_enter(&callout_lock);
482 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
483 mutex_spin_exit(&callout_lock);
484
485 return rv;
486 }
487
488 bool
489 callout_pending(callout_t *cs)
490 {
491 callout_impl_t *c = (callout_impl_t *)cs;
492 bool rv;
493
494 KASSERT(c->c_magic == CALLOUT_MAGIC);
495
496 mutex_spin_enter(&callout_lock);
497 rv = ((c->c_flags & CALLOUT_PENDING) != 0);
498 mutex_spin_exit(&callout_lock);
499
500 return rv;
501 }
502
503 bool
504 callout_invoking(callout_t *cs)
505 {
506 callout_impl_t *c = (callout_impl_t *)cs;
507 bool rv;
508
509 KASSERT(c->c_magic == CALLOUT_MAGIC);
510
511 mutex_spin_enter(&callout_lock);
512 rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
513 mutex_spin_exit(&callout_lock);
514
515 return rv;
516 }
517
518 void
519 callout_ack(callout_t *cs)
520 {
521 callout_impl_t *c = (callout_impl_t *)cs;
522
523 KASSERT(c->c_magic == CALLOUT_MAGIC);
524
525 mutex_spin_enter(&callout_lock);
526 c->c_flags &= ~CALLOUT_INVOKING;
527 mutex_spin_exit(&callout_lock);
528 }
529
530 /*
531 * This is called from hardclock() once every tick.
532 * We schedule callout_softclock() if there is work
533 * to be done.
534 */
535 void
536 callout_hardclock(void)
537 {
538 int needsoftclock;
539
540 mutex_spin_enter(&callout_lock);
541
542 MOVEBUCKET(0, hardclock_ticks);
543 if (MASKWHEEL(0, hardclock_ticks) == 0) {
544 MOVEBUCKET(1, hardclock_ticks);
545 if (MASKWHEEL(1, hardclock_ticks) == 0) {
546 MOVEBUCKET(2, hardclock_ticks);
547 if (MASKWHEEL(2, hardclock_ticks) == 0)
548 MOVEBUCKET(3, hardclock_ticks);
549 }
550 }
551
552 needsoftclock = !CIRCQ_EMPTY(&timeout_todo);
553 mutex_spin_exit(&callout_lock);
554
555 if (needsoftclock)
556 softintr_schedule(callout_si);
557 }
558
559 /* ARGSUSED */
560 static void
561 callout_softclock(void *v)
562 {
563 callout_impl_t *c;
564 struct cpu_info *ci;
565 void (*func)(void *);
566 void *arg;
567 u_int mpsafe, count;
568 lwp_t *l;
569
570 l = curlwp;
571 ci = l->l_cpu;
572
573 mutex_spin_enter(&callout_lock);
574
575 while (!CIRCQ_EMPTY(&timeout_todo)) {
576 c = CIRCQ_FIRST(&timeout_todo);
577 KASSERT(c->c_magic == CALLOUT_MAGIC);
578 KASSERT(c->c_func != NULL);
579 KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
580 KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
581 CIRCQ_REMOVE(&c->c_list);
582
583 /* If due run it, otherwise insert it into the right bucket. */
584 if (c->c_time - hardclock_ticks > 0) {
585 CIRCQ_INSERT(&c->c_list,
586 BUCKET((c->c_time - hardclock_ticks), c->c_time));
587 } else {
588 if (c->c_time - hardclock_ticks < 0)
589 callout_ev_late.ev_count++;
590
591 c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
592 mpsafe = (c->c_flags & CALLOUT_MPSAFE);
593 func = c->c_func;
594 arg = c->c_arg;
595 c->c_oncpu = ci;
596 c->c_onlwp = l;
597
598 mutex_spin_exit(&callout_lock);
599 if (!mpsafe) {
600 KERNEL_LOCK(1, curlwp);
601 if (ci->ci_data.cpu_callout_cancel != c)
602 (*func)(arg);
603 KERNEL_UNLOCK_ONE(curlwp);
604 } else
605 (*func)(arg);
606 mutex_spin_enter(&callout_lock);
607
608 /*
609 * We can't touch 'c' here because it might be
610 * freed already. If LWPs waiting for callout
611 * to complete, awaken them.
612 */
613 ci->ci_data.cpu_callout_cancel = NULL;
614 ci->ci_data.cpu_callout = NULL;
615 if ((count = ci->ci_data.cpu_callout_nwait) != 0) {
616 ci->ci_data.cpu_callout_nwait = 0;
617 /* sleepq_wake() drops the lock. */
618 sleepq_wake(&callout_sleepq, ci, count);
619 mutex_spin_enter(&callout_lock);
620 }
621 }
622 }
623
624 mutex_spin_exit(&callout_lock);
625 }
626
627 #ifdef DDB
628 static void
629 db_show_callout_bucket(struct callout_circq *bucket)
630 {
631 callout_impl_t *c;
632 db_expr_t offset;
633 const char *name;
634 static char question[] = "?";
635
636 if (CIRCQ_EMPTY(bucket))
637 return;
638
639 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
640 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
641 &offset);
642 name = name ? name : question;
643 #ifdef _LP64
644 #define POINTER_WIDTH "%16lx"
645 #else
646 #define POINTER_WIDTH "%8lx"
647 #endif
648 db_printf("%9d %2d/%-4d " POINTER_WIDTH " %s\n",
649 c->c_time - hardclock_ticks,
650 (int)((bucket - timeout_wheel) / WHEELSIZE),
651 (int)(bucket - timeout_wheel), (u_long) c->c_arg, name);
652
653 if (CIRCQ_LAST(&c->c_list, bucket))
654 break;
655 }
656 }
657
658 void
659 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
660 {
661 int b;
662
663 db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
664 #ifdef _LP64
665 db_printf(" ticks wheel arg func\n");
666 #else
667 db_printf(" ticks wheel arg func\n");
668 #endif
669
670 /*
671 * Don't lock the callwheel; all the other CPUs are paused
672 * anyhow, and we might be called in a circumstance where
673 * some other CPU was paused while holding the lock.
674 */
675
676 db_show_callout_bucket(&timeout_todo);
677 for (b = 0; b < BUCKETS; b++)
678 db_show_callout_bucket(&timeout_wheel[b]);
679 }
680 #endif /* DDB */
681