kern_timeout.c revision 1.16.2.6 1 /* $NetBSD: kern_timeout.c,v 1.16.2.6 2008/01/21 09:46:15 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
41 * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 *
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
57 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
58 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
59 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
60 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
61 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
62 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
63 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
64 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
65 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.16.2.6 2008/01/21 09:46:15 yamt Exp $");
70
71 /*
72 * Timeouts are kept in a hierarchical timing wheel. The c_time is the
73 * value of the global variable "hardclock_ticks" when the timeout should
74 * be called. There are four levels with 256 buckets each. See 'Scheme 7'
75 * in "Hashed and Hierarchical Timing Wheels: Efficient Data Structures
76 * for Implementing a Timer Facility" by George Varghese and Tony Lauck.
77 *
78 * Some of the "math" in here is a bit tricky. We have to beware of
79 * wrapping ints.
80 *
81 * We use the fact that any element added to the queue must be added with
82 * a positive time. That means that any element `to' on the queue cannot
83 * be scheduled to timeout further in time than INT_MAX, but c->c_time can
84 * be positive or negative so comparing it with anything is dangerous.
85 * The only way we can use the c->c_time value in any predictable way is
86 * when we calculate how far in the future `to' will timeout - "c->c_time
87 * - hardclock_ticks". The result will always be positive for future
88 * timeouts and 0 or negative for due timeouts.
89 */
90
91 #define _CALLOUT_PRIVATE
92
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/kernel.h>
96 #include <sys/callout.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/sleepq.h>
100 #include <sys/syncobj.h>
101 #include <sys/evcnt.h>
102 #include <sys/intr.h>
103
104 #ifdef DDB
105 #include <machine/db_machdep.h>
106 #include <ddb/db_interface.h>
107 #include <ddb/db_access.h>
108 #include <ddb/db_sym.h>
109 #include <ddb/db_output.h>
110 #endif
111
112 #define BUCKETS 1024
113 #define WHEELSIZE 256
114 #define WHEELMASK 255
115 #define WHEELBITS 8
116
117 static struct callout_circq timeout_wheel[BUCKETS]; /* Queues of timeouts */
118 static struct callout_circq timeout_todo; /* Worklist */
119
120 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
121
122 #define BUCKET(rel, abs) \
123 (((rel) <= (1 << (2*WHEELBITS))) \
124 ? ((rel) <= (1 << WHEELBITS)) \
125 ? &timeout_wheel[MASKWHEEL(0, (abs))] \
126 : &timeout_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
127 : ((rel) <= (1 << (3*WHEELBITS))) \
128 ? &timeout_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
129 : &timeout_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
130
131 #define MOVEBUCKET(wheel, time) \
132 CIRCQ_APPEND(&timeout_todo, \
133 &timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
134
135 /*
136 * Circular queue definitions.
137 */
138
139 #define CIRCQ_INIT(list) \
140 do { \
141 (list)->cq_next_l = (list); \
142 (list)->cq_prev_l = (list); \
143 } while (/*CONSTCOND*/0)
144
145 #define CIRCQ_INSERT(elem, list) \
146 do { \
147 (elem)->cq_prev_e = (list)->cq_prev_e; \
148 (elem)->cq_next_l = (list); \
149 (list)->cq_prev_l->cq_next_l = (elem); \
150 (list)->cq_prev_l = (elem); \
151 } while (/*CONSTCOND*/0)
152
153 #define CIRCQ_APPEND(fst, snd) \
154 do { \
155 if (!CIRCQ_EMPTY(snd)) { \
156 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
157 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
158 (snd)->cq_prev_l->cq_next_l = (fst); \
159 (fst)->cq_prev_l = (snd)->cq_prev_l; \
160 CIRCQ_INIT(snd); \
161 } \
162 } while (/*CONSTCOND*/0)
163
164 #define CIRCQ_REMOVE(elem) \
165 do { \
166 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
167 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
168 } while (/*CONSTCOND*/0)
169
170 #define CIRCQ_FIRST(list) ((list)->cq_next_e)
171 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
172 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
173 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
174
175 static void callout_softclock(void *);
176
177 /*
178 * All wheels are locked with the same lock (which must also block out
179 * all interrupts). Eventually this should become per-CPU.
180 */
181 kmutex_t callout_lock;
182 sleepq_t callout_sleepq;
183 void *callout_si;
184
185 static struct evcnt callout_ev_late;
186 static struct evcnt callout_ev_block;
187
188 /*
189 * callout_barrier:
190 *
191 * If the callout is already running, wait until it completes.
192 * XXX This should do priority inheritance.
193 */
194 static void
195 callout_barrier(callout_impl_t *c)
196 {
197 extern syncobj_t sleep_syncobj;
198 struct cpu_info *ci;
199 struct lwp *l;
200
201 l = curlwp;
202
203 if ((c->c_flags & CALLOUT_MPSAFE) == 0) {
204 /*
205 * Note: we must be called with the kernel lock held,
206 * as we use it to synchronize with callout_softclock().
207 */
208 ci = c->c_oncpu;
209 ci->ci_data.cpu_callout_cancel = c;
210 return;
211 }
212
213 while ((ci = c->c_oncpu) != NULL && ci->ci_data.cpu_callout == c) {
214 KASSERT(l->l_wchan == NULL);
215
216 ci->ci_data.cpu_callout_nwait++;
217 callout_ev_block.ev_count++;
218
219 l->l_kpriority = true;
220 sleepq_enter(&callout_sleepq, l);
221 sleepq_enqueue(&callout_sleepq, ci, "callout", &sleep_syncobj);
222 sleepq_block(0, false);
223 mutex_spin_enter(&callout_lock);
224 }
225 }
226
227 /*
228 * callout_running:
229 *
230 * Return non-zero if callout 'c' is currently executing.
231 */
232 static inline bool
233 callout_running(callout_impl_t *c)
234 {
235 struct cpu_info *ci;
236
237 if ((ci = c->c_oncpu) == NULL)
238 return false;
239 if (ci->ci_data.cpu_callout != c)
240 return false;
241 if (c->c_onlwp == curlwp)
242 return false;
243 return true;
244 }
245
246 /*
247 * callout_startup:
248 *
249 * Initialize the callout facility, called at system startup time.
250 */
251 void
252 callout_startup(void)
253 {
254 int b;
255
256 KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
257
258 CIRCQ_INIT(&timeout_todo);
259 for (b = 0; b < BUCKETS; b++)
260 CIRCQ_INIT(&timeout_wheel[b]);
261
262 mutex_init(&callout_lock, MUTEX_DEFAULT, IPL_SCHED);
263 sleepq_init(&callout_sleepq, &callout_lock);
264
265 evcnt_attach_dynamic(&callout_ev_late, EVCNT_TYPE_MISC,
266 NULL, "callout", "late");
267 evcnt_attach_dynamic(&callout_ev_block, EVCNT_TYPE_MISC,
268 NULL, "callout", "block waiting");
269 }
270
271 /*
272 * callout_startup2:
273 *
274 * Complete initialization once soft interrupts are available.
275 */
276 void
277 callout_startup2(void)
278 {
279
280 callout_si = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
281 callout_softclock, NULL);
282 if (callout_si == NULL)
283 panic("callout_startup2: unable to register softclock intr");
284 }
285
286 /*
287 * callout_init:
288 *
289 * Initialize a callout structure.
290 */
291 void
292 callout_init(callout_t *cs, u_int flags)
293 {
294 callout_impl_t *c = (callout_impl_t *)cs;
295
296 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
297
298 memset(c, 0, sizeof(*c));
299 c->c_flags = flags;
300 c->c_magic = CALLOUT_MAGIC;
301 }
302
303 /*
304 * callout_destroy:
305 *
306 * Destroy a callout structure. The callout must be stopped.
307 */
308 void
309 callout_destroy(callout_t *cs)
310 {
311 callout_impl_t *c = (callout_impl_t *)cs;
312
313 /*
314 * It's not necessary to lock in order to see the correct value
315 * of c->c_flags. If the callout could potentially have been
316 * running, the current thread should have stopped it.
317 */
318 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
319 if (c->c_oncpu != NULL) {
320 KASSERT(
321 ((struct cpu_info *)c->c_oncpu)->ci_data.cpu_callout != c);
322 }
323 KASSERT(c->c_magic == CALLOUT_MAGIC);
324
325 c->c_magic = 0;
326 }
327
328 /*
329 * callout_schedule_locked:
330 *
331 * Schedule a callout to run. The function and argument must
332 * already be set in the callout structure. Must be called with
333 * callout_lock.
334 */
335 static void
336 callout_schedule_locked(callout_impl_t *c, int to_ticks)
337 {
338 int old_time;
339
340 KASSERT(to_ticks >= 0);
341 KASSERT(c->c_func != NULL);
342
343 /* Initialize the time here, it won't change. */
344 old_time = c->c_time;
345 c->c_time = to_ticks + hardclock_ticks;
346 c->c_flags &= ~CALLOUT_FIRED;
347
348 /*
349 * If this timeout is already scheduled and now is moved
350 * earlier, reschedule it now. Otherwise leave it in place
351 * and let it be rescheduled later.
352 */
353 if ((c->c_flags & CALLOUT_PENDING) != 0) {
354 if (c->c_time - old_time < 0) {
355 CIRCQ_REMOVE(&c->c_list);
356 CIRCQ_INSERT(&c->c_list, &timeout_todo);
357 }
358 } else {
359 c->c_flags |= CALLOUT_PENDING;
360 CIRCQ_INSERT(&c->c_list, &timeout_todo);
361 }
362 }
363
364 /*
365 * callout_reset:
366 *
367 * Reset a callout structure with a new function and argument, and
368 * schedule it to run.
369 */
370 void
371 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
372 {
373 callout_impl_t *c = (callout_impl_t *)cs;
374
375 KASSERT(c->c_magic == CALLOUT_MAGIC);
376
377 mutex_spin_enter(&callout_lock);
378
379 c->c_func = func;
380 c->c_arg = arg;
381
382 callout_schedule_locked(c, to_ticks);
383
384 mutex_spin_exit(&callout_lock);
385 }
386
387 /*
388 * callout_schedule:
389 *
390 * Schedule a callout to run. The function and argument must
391 * already be set in the callout structure.
392 */
393 void
394 callout_schedule(callout_t *cs, int to_ticks)
395 {
396 callout_impl_t *c = (callout_impl_t *)cs;
397
398 KASSERT(c->c_magic == CALLOUT_MAGIC);
399
400 mutex_spin_enter(&callout_lock);
401 callout_schedule_locked(c, to_ticks);
402 mutex_spin_exit(&callout_lock);
403 }
404
405 /*
406 * callout_stop:
407 *
408 * Cancel a pending callout.
409 */
410 bool
411 callout_stop(callout_t *cs)
412 {
413 callout_impl_t *c = (callout_impl_t *)cs;
414 bool expired;
415
416 KASSERT(c->c_magic == CALLOUT_MAGIC);
417
418 mutex_spin_enter(&callout_lock);
419
420 if (callout_running(c))
421 callout_barrier(c);
422
423 if ((c->c_flags & CALLOUT_PENDING) != 0)
424 CIRCQ_REMOVE(&c->c_list);
425
426 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
427 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
428
429 mutex_spin_exit(&callout_lock);
430
431 return expired;
432 }
433
434 void
435 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
436 {
437 callout_impl_t *c = (callout_impl_t *)cs;
438
439 KASSERT(c->c_magic == CALLOUT_MAGIC);
440
441 mutex_spin_enter(&callout_lock);
442 c->c_func = func;
443 c->c_arg = arg;
444 mutex_spin_exit(&callout_lock);
445 }
446
447 bool
448 callout_expired(callout_t *cs)
449 {
450 callout_impl_t *c = (callout_impl_t *)cs;
451 bool rv;
452
453 KASSERT(c->c_magic == CALLOUT_MAGIC);
454
455 mutex_spin_enter(&callout_lock);
456 rv = ((c->c_flags & CALLOUT_FIRED) != 0);
457 mutex_spin_exit(&callout_lock);
458
459 return rv;
460 }
461
462 bool
463 callout_active(callout_t *cs)
464 {
465 callout_impl_t *c = (callout_impl_t *)cs;
466 bool rv;
467
468 KASSERT(c->c_magic == CALLOUT_MAGIC);
469
470 mutex_spin_enter(&callout_lock);
471 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
472 mutex_spin_exit(&callout_lock);
473
474 return rv;
475 }
476
477 bool
478 callout_pending(callout_t *cs)
479 {
480 callout_impl_t *c = (callout_impl_t *)cs;
481 bool rv;
482
483 KASSERT(c->c_magic == CALLOUT_MAGIC);
484
485 mutex_spin_enter(&callout_lock);
486 rv = ((c->c_flags & CALLOUT_PENDING) != 0);
487 mutex_spin_exit(&callout_lock);
488
489 return rv;
490 }
491
492 bool
493 callout_invoking(callout_t *cs)
494 {
495 callout_impl_t *c = (callout_impl_t *)cs;
496 bool rv;
497
498 KASSERT(c->c_magic == CALLOUT_MAGIC);
499
500 mutex_spin_enter(&callout_lock);
501 rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
502 mutex_spin_exit(&callout_lock);
503
504 return rv;
505 }
506
507 void
508 callout_ack(callout_t *cs)
509 {
510 callout_impl_t *c = (callout_impl_t *)cs;
511
512 KASSERT(c->c_magic == CALLOUT_MAGIC);
513
514 mutex_spin_enter(&callout_lock);
515 c->c_flags &= ~CALLOUT_INVOKING;
516 mutex_spin_exit(&callout_lock);
517 }
518
519 /*
520 * This is called from hardclock() once every tick.
521 * We schedule callout_softclock() if there is work
522 * to be done.
523 */
524 void
525 callout_hardclock(void)
526 {
527 int needsoftclock;
528
529 mutex_spin_enter(&callout_lock);
530
531 MOVEBUCKET(0, hardclock_ticks);
532 if (MASKWHEEL(0, hardclock_ticks) == 0) {
533 MOVEBUCKET(1, hardclock_ticks);
534 if (MASKWHEEL(1, hardclock_ticks) == 0) {
535 MOVEBUCKET(2, hardclock_ticks);
536 if (MASKWHEEL(2, hardclock_ticks) == 0)
537 MOVEBUCKET(3, hardclock_ticks);
538 }
539 }
540
541 needsoftclock = !CIRCQ_EMPTY(&timeout_todo);
542 mutex_spin_exit(&callout_lock);
543
544 if (needsoftclock)
545 softint_schedule(callout_si);
546 }
547
548 /* ARGSUSED */
549 static void
550 callout_softclock(void *v)
551 {
552 callout_impl_t *c;
553 struct cpu_info *ci;
554 void (*func)(void *);
555 void *arg;
556 u_int mpsafe, count;
557 lwp_t *l;
558
559 l = curlwp;
560 ci = l->l_cpu;
561
562 mutex_spin_enter(&callout_lock);
563
564 while (!CIRCQ_EMPTY(&timeout_todo)) {
565 c = CIRCQ_FIRST(&timeout_todo);
566 KASSERT(c->c_magic == CALLOUT_MAGIC);
567 KASSERT(c->c_func != NULL);
568 KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
569 KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
570 CIRCQ_REMOVE(&c->c_list);
571
572 /* If due run it, otherwise insert it into the right bucket. */
573 if (c->c_time - hardclock_ticks > 0) {
574 CIRCQ_INSERT(&c->c_list,
575 BUCKET((c->c_time - hardclock_ticks), c->c_time));
576 } else {
577 if (c->c_time - hardclock_ticks < 0)
578 callout_ev_late.ev_count++;
579
580 c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
581 mpsafe = (c->c_flags & CALLOUT_MPSAFE);
582 func = c->c_func;
583 arg = c->c_arg;
584 c->c_oncpu = ci;
585 c->c_onlwp = l;
586
587 mutex_spin_exit(&callout_lock);
588 if (!mpsafe) {
589 KERNEL_LOCK(1, curlwp);
590 if (ci->ci_data.cpu_callout_cancel != c)
591 (*func)(arg);
592 KERNEL_UNLOCK_ONE(curlwp);
593 } else
594 (*func)(arg);
595 mutex_spin_enter(&callout_lock);
596
597 /*
598 * We can't touch 'c' here because it might be
599 * freed already. If LWPs waiting for callout
600 * to complete, awaken them.
601 */
602 ci->ci_data.cpu_callout_cancel = NULL;
603 ci->ci_data.cpu_callout = NULL;
604 if ((count = ci->ci_data.cpu_callout_nwait) != 0) {
605 ci->ci_data.cpu_callout_nwait = 0;
606 /* sleepq_wake() drops the lock. */
607 sleepq_wake(&callout_sleepq, ci, count);
608 mutex_spin_enter(&callout_lock);
609 }
610 }
611 }
612
613 mutex_spin_exit(&callout_lock);
614 }
615
616 #ifdef DDB
617 static void
618 db_show_callout_bucket(struct callout_circq *bucket)
619 {
620 callout_impl_t *c;
621 db_expr_t offset;
622 const char *name;
623 static char question[] = "?";
624
625 if (CIRCQ_EMPTY(bucket))
626 return;
627
628 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
629 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
630 &offset);
631 name = name ? name : question;
632 #ifdef _LP64
633 #define POINTER_WIDTH "%16lx"
634 #else
635 #define POINTER_WIDTH "%8lx"
636 #endif
637 db_printf("%9d %2d/%-4d " POINTER_WIDTH " %s\n",
638 c->c_time - hardclock_ticks,
639 (int)((bucket - timeout_wheel) / WHEELSIZE),
640 (int)(bucket - timeout_wheel), (u_long) c->c_arg, name);
641
642 if (CIRCQ_LAST(&c->c_list, bucket))
643 break;
644 }
645 }
646
647 void
648 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
649 {
650 int b;
651
652 db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
653 #ifdef _LP64
654 db_printf(" ticks wheel arg func\n");
655 #else
656 db_printf(" ticks wheel arg func\n");
657 #endif
658
659 /*
660 * Don't lock the callwheel; all the other CPUs are paused
661 * anyhow, and we might be called in a circumstance where
662 * some other CPU was paused while holding the lock.
663 */
664
665 db_show_callout_bucket(&timeout_todo);
666 for (b = 0; b < BUCKETS; b++)
667 db_show_callout_bucket(&timeout_wheel[b]);
668 }
669 #endif /* DDB */
670