kern_timeout.c revision 1.22 1 /* $NetBSD: kern_timeout.c,v 1.22 2007/07/09 21:10:54 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
41 * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 *
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
57 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
58 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
59 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
60 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
61 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
62 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
63 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
64 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
65 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.22 2007/07/09 21:10:54 ad Exp $");
70
71 /*
72 * Timeouts are kept in a hierarchical timing wheel. The c_time is the
73 * value of the global variable "hardclock_ticks" when the timeout should
74 * be called. There are four levels with 256 buckets each. See 'Scheme 7'
75 * in "Hashed and Hierarchical Timing Wheels: Efficient Data Structures
76 * for Implementing a Timer Facility" by George Varghese and Tony Lauck.
77 *
78 * Some of the "math" in here is a bit tricky. We have to beware of
79 * wrapping ints.
80 *
81 * We use the fact that any element added to the queue must be added with
82 * a positive time. That means that any element `to' on the queue cannot
83 * be scheduled to timeout further in time than INT_MAX, but c->c_time can
84 * be positive or negative so comparing it with anything is dangerous.
85 * The only way we can use the c->c_time value in any predictable way is
86 * when we calculate how far in the future `to' will timeout - "c->c_time
87 * - hardclock_ticks". The result will always be positive for future
88 * timeouts and 0 or negative for due timeouts.
89 */
90
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/lock.h>
95 #include <sys/callout.h>
96 #include <sys/mutex.h>
97 #include <sys/proc.h>
98 #include <sys/sleepq.h>
99 #include <sys/syncobj.h>
100 #include <sys/evcnt.h>
101
102 #include <machine/intr.h>
103
104 #ifdef DDB
105 #include <machine/db_machdep.h>
106 #include <ddb/db_interface.h>
107 #include <ddb/db_access.h>
108 #include <ddb/db_sym.h>
109 #include <ddb/db_output.h>
110 #endif
111
112 #define BUCKETS 1024
113 #define WHEELSIZE 256
114 #define WHEELMASK 255
115 #define WHEELBITS 8
116
117 /* The following funkyness is to appease gcc3's strict aliasing. */
118 struct callout_circq {
119 /* next element */
120 union {
121 struct callout_impl *elem;
122 struct callout_circq *list;
123 } cq_next;
124 /* previous element */
125 union {
126 struct callout_impl *elem;
127 struct callout_circq *list;
128 } cq_prev;
129 };
130 #define cq_next_e cq_next.elem
131 #define cq_prev_e cq_prev.elem
132 #define cq_next_l cq_next.list
133 #define cq_prev_l cq_prev.list
134
135 typedef struct callout_impl {
136 struct callout_circq c_list; /* linkage on queue */
137 void (*c_func)(void *); /* function to call */
138 void *c_arg; /* function argument */
139 void *c_oncpu; /* non-NULL while running */
140 void *c_onlwp; /* non-NULL while running */
141 int c_time; /* when callout fires */
142 u_int c_flags; /* state of this entry */
143 u_int c_runwait; /* number of waiters */
144 u_int c_magic; /* magic number */
145 } callout_impl_t;
146 #define CALLOUT_MAGIC 0x11deeba1
147
148 static struct callout_circq timeout_wheel[BUCKETS]; /* Queues of timeouts */
149 static struct callout_circq timeout_todo; /* Worklist */
150
151 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
152
153 #define BUCKET(rel, abs) \
154 (((rel) <= (1 << (2*WHEELBITS))) \
155 ? ((rel) <= (1 << WHEELBITS)) \
156 ? &timeout_wheel[MASKWHEEL(0, (abs))] \
157 : &timeout_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
158 : ((rel) <= (1 << (3*WHEELBITS))) \
159 ? &timeout_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
160 : &timeout_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
161
162 #define MOVEBUCKET(wheel, time) \
163 CIRCQ_APPEND(&timeout_todo, \
164 &timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
165
166 /*
167 * Circular queue definitions.
168 */
169
170 #define CIRCQ_INIT(list) \
171 do { \
172 (list)->cq_next_l = (list); \
173 (list)->cq_prev_l = (list); \
174 } while (/*CONSTCOND*/0)
175
176 #define CIRCQ_INSERT(elem, list) \
177 do { \
178 (elem)->cq_prev_e = (list)->cq_prev_e; \
179 (elem)->cq_next_l = (list); \
180 (list)->cq_prev_l->cq_next_l = (elem); \
181 (list)->cq_prev_l = (elem); \
182 } while (/*CONSTCOND*/0)
183
184 #define CIRCQ_APPEND(fst, snd) \
185 do { \
186 if (!CIRCQ_EMPTY(snd)) { \
187 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
188 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
189 (snd)->cq_prev_l->cq_next_l = (fst); \
190 (fst)->cq_prev_l = (snd)->cq_prev_l; \
191 CIRCQ_INIT(snd); \
192 } \
193 } while (/*CONSTCOND*/0)
194
195 #define CIRCQ_REMOVE(elem) \
196 do { \
197 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
198 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
199 } while (/*CONSTCOND*/0)
200
201 #define CIRCQ_FIRST(list) ((list)->cq_next_e)
202 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
203 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
204 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
205
206 static void callout_softclock(void *);
207
208 /*
209 * All wheels are locked with the same lock (which must also block out
210 * all interrupts). Eventually this should become per-CPU.
211 */
212 kmutex_t callout_lock;
213 sleepq_t callout_sleepq;
214 void *callout_si;
215
216 static struct evcnt callout_ev_late;
217 static struct evcnt callout_ev_block;
218
219 /*
220 * callout_barrier:
221 *
222 * If the callout is already running, wait until it completes.
223 * XXX This should do priority inheritance.
224 */
225 static void
226 callout_barrier(callout_impl_t *c)
227 {
228 extern syncobj_t sleep_syncobj;
229 struct cpu_info *ci;
230 struct lwp *l;
231
232 l = curlwp;
233
234 if ((c->c_flags & CALLOUT_MPSAFE) == 0) {
235 /*
236 * Note: we must be called with the kernel lock held,
237 * as we use it to synchronize with callout_softclock().
238 */
239 ci = c->c_oncpu;
240 ci->ci_data.cpu_callout_cancel = c;
241 return;
242 }
243
244 while ((ci = c->c_oncpu) != NULL && ci->ci_data.cpu_callout == c) {
245 KASSERT(l->l_wchan == NULL);
246
247 ci->ci_data.cpu_callout_nwait++;
248 callout_ev_block.ev_count++;
249
250 lwp_lock(l);
251 lwp_unlock_to(l, &callout_lock);
252 sleepq_enqueue(&callout_sleepq, sched_kpri(l), ci,
253 "callout", &sleep_syncobj);
254 sleepq_block(0, false);
255 mutex_spin_enter(&callout_lock);
256 }
257 }
258
259 /*
260 * callout_running:
261 *
262 * Return non-zero if callout 'c' is currently executing.
263 */
264 static inline bool
265 callout_running(callout_impl_t *c)
266 {
267 struct cpu_info *ci;
268
269 if ((ci = c->c_oncpu) == NULL)
270 return false;
271 if (ci->ci_data.cpu_callout != c)
272 return false;
273 if (c->c_onlwp == curlwp)
274 return false;
275 return true;
276 }
277
278 /*
279 * callout_startup:
280 *
281 * Initialize the callout facility, called at system startup time.
282 */
283 void
284 callout_startup(void)
285 {
286 int b;
287
288 KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
289
290 CIRCQ_INIT(&timeout_todo);
291 for (b = 0; b < BUCKETS; b++)
292 CIRCQ_INIT(&timeout_wheel[b]);
293
294 mutex_init(&callout_lock, MUTEX_SPIN, IPL_SCHED);
295 sleepq_init(&callout_sleepq, &callout_lock);
296
297 evcnt_attach_dynamic(&callout_ev_late, EVCNT_TYPE_MISC,
298 NULL, "callout", "late");
299 evcnt_attach_dynamic(&callout_ev_block, EVCNT_TYPE_MISC,
300 NULL, "callout", "block waiting");
301 }
302
303 /*
304 * callout_startup2:
305 *
306 * Complete initialization once soft interrupts are available.
307 */
308 void
309 callout_startup2(void)
310 {
311
312 callout_si = softintr_establish(IPL_SOFTCLOCK,
313 callout_softclock, NULL);
314 if (callout_si == NULL)
315 panic("callout_startup2: unable to register softclock intr");
316 }
317
318 /*
319 * callout_init:
320 *
321 * Initialize a callout structure.
322 */
323 void
324 callout_init(callout_t *cs, u_int flags)
325 {
326 callout_impl_t *c = (callout_impl_t *)cs;
327
328 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
329
330 memset(c, 0, sizeof(*c));
331 c->c_flags = flags;
332 c->c_magic = CALLOUT_MAGIC;
333 }
334
335 /*
336 * callout_destroy:
337 *
338 * Destroy a callout structure. The callout must be stopped.
339 */
340 void
341 callout_destroy(callout_t *cs)
342 {
343 callout_impl_t *c = (callout_impl_t *)cs;
344
345 /*
346 * It's not necessary to lock in order to see the correct value
347 * of c->c_flags. If the callout could potentially have been
348 * running, the current thread should have stopped it.
349 */
350 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
351 if (c->c_oncpu != NULL) {
352 KASSERT(
353 ((struct cpu_info *)c->c_oncpu)->ci_data.cpu_callout != c);
354 }
355 KASSERT(c->c_magic == CALLOUT_MAGIC);
356
357 c->c_magic = 0;
358 }
359
360
361 /*
362 * callout_reset:
363 *
364 * Reset a callout structure with a new function and argument, and
365 * schedule it to run.
366 */
367 void
368 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
369 {
370 callout_impl_t *c = (callout_impl_t *)cs;
371 int old_time;
372
373 KASSERT(to_ticks >= 0);
374 KASSERT(c->c_magic == CALLOUT_MAGIC);
375 KASSERT(func != NULL);
376
377 mutex_spin_enter(&callout_lock);
378
379 /* Initialize the time here, it won't change. */
380 old_time = c->c_time;
381 c->c_time = to_ticks + hardclock_ticks;
382 c->c_flags &= ~CALLOUT_FIRED;
383
384 c->c_func = func;
385 c->c_arg = arg;
386
387 /*
388 * If this timeout is already scheduled and now is moved
389 * earlier, reschedule it now. Otherwise leave it in place
390 * and let it be rescheduled later.
391 */
392 if ((c->c_flags & CALLOUT_PENDING) != 0) {
393 if (c->c_time - old_time < 0) {
394 CIRCQ_REMOVE(&c->c_list);
395 CIRCQ_INSERT(&c->c_list, &timeout_todo);
396 }
397 } else {
398 c->c_flags |= CALLOUT_PENDING;
399 CIRCQ_INSERT(&c->c_list, &timeout_todo);
400 }
401
402 mutex_spin_exit(&callout_lock);
403 }
404
405 /*
406 * callout_schedule:
407 *
408 * Schedule a callout to run. The function and argument must
409 * already be set in the callout structure.
410 */
411 void
412 callout_schedule(callout_t *cs, int to_ticks)
413 {
414 callout_impl_t *c = (callout_impl_t *)cs;
415 int old_time;
416
417 KASSERT(to_ticks >= 0);
418 KASSERT(c->c_magic == CALLOUT_MAGIC);
419 KASSERT(c->c_func != NULL);
420
421 mutex_spin_enter(&callout_lock);
422
423 /* Initialize the time here, it won't change. */
424 old_time = c->c_time;
425 c->c_time = to_ticks + hardclock_ticks;
426 c->c_flags &= ~CALLOUT_FIRED;
427
428 /*
429 * If this timeout is already scheduled and now is moved
430 * earlier, reschedule it now. Otherwise leave it in place
431 * and let it be rescheduled later.
432 */
433 if ((c->c_flags & CALLOUT_PENDING) != 0) {
434 if (c->c_time - old_time < 0) {
435 CIRCQ_REMOVE(&c->c_list);
436 CIRCQ_INSERT(&c->c_list, &timeout_todo);
437 }
438 } else {
439 c->c_flags |= CALLOUT_PENDING;
440 CIRCQ_INSERT(&c->c_list, &timeout_todo);
441 }
442
443 mutex_spin_exit(&callout_lock);
444 }
445
446 /*
447 * callout_stop:
448 *
449 * Cancel a pending callout.
450 */
451 bool
452 callout_stop(callout_t *cs)
453 {
454 callout_impl_t *c = (callout_impl_t *)cs;
455 bool expired;
456
457 KASSERT(c->c_magic == CALLOUT_MAGIC);
458
459 mutex_spin_enter(&callout_lock);
460
461 if (callout_running(c))
462 callout_barrier(c);
463
464 if ((c->c_flags & CALLOUT_PENDING) != 0)
465 CIRCQ_REMOVE(&c->c_list);
466
467 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
468 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
469
470 mutex_spin_exit(&callout_lock);
471
472 return expired;
473 }
474
475 void
476 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
477 {
478 callout_impl_t *c = (callout_impl_t *)cs;
479
480 KASSERT(c->c_magic == CALLOUT_MAGIC);
481
482 mutex_spin_enter(&callout_lock);
483 c->c_func = func;
484 c->c_arg = arg;
485 mutex_spin_exit(&callout_lock);
486 }
487
488 bool
489 callout_expired(callout_t *cs)
490 {
491 callout_impl_t *c = (callout_impl_t *)cs;
492 bool rv;
493
494 KASSERT(c->c_magic == CALLOUT_MAGIC);
495
496 mutex_spin_enter(&callout_lock);
497 rv = ((c->c_flags & CALLOUT_FIRED) != 0);
498 mutex_spin_exit(&callout_lock);
499
500 return rv;
501 }
502
503 bool
504 callout_active(callout_t *cs)
505 {
506 callout_impl_t *c = (callout_impl_t *)cs;
507 bool rv;
508
509 KASSERT(c->c_magic == CALLOUT_MAGIC);
510
511 mutex_spin_enter(&callout_lock);
512 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
513 mutex_spin_exit(&callout_lock);
514
515 return rv;
516 }
517
518 bool
519 callout_pending(callout_t *cs)
520 {
521 callout_impl_t *c = (callout_impl_t *)cs;
522 bool rv;
523
524 KASSERT(c->c_magic == CALLOUT_MAGIC);
525
526 mutex_spin_enter(&callout_lock);
527 rv = ((c->c_flags & CALLOUT_PENDING) != 0);
528 mutex_spin_exit(&callout_lock);
529
530 return rv;
531 }
532
533 bool
534 callout_invoking(callout_t *cs)
535 {
536 callout_impl_t *c = (callout_impl_t *)cs;
537 bool rv;
538
539 KASSERT(c->c_magic == CALLOUT_MAGIC);
540
541 mutex_spin_enter(&callout_lock);
542 rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
543 mutex_spin_exit(&callout_lock);
544
545 return rv;
546 }
547
548 void
549 callout_ack(callout_t *cs)
550 {
551 callout_impl_t *c = (callout_impl_t *)cs;
552
553 KASSERT(c->c_magic == CALLOUT_MAGIC);
554
555 mutex_spin_enter(&callout_lock);
556 c->c_flags &= ~CALLOUT_INVOKING;
557 mutex_spin_exit(&callout_lock);
558 }
559
560 /*
561 * This is called from hardclock() once every tick.
562 * We schedule callout_softclock() if there is work
563 * to be done.
564 */
565 void
566 callout_hardclock(void)
567 {
568 int needsoftclock;
569
570 mutex_spin_enter(&callout_lock);
571
572 MOVEBUCKET(0, hardclock_ticks);
573 if (MASKWHEEL(0, hardclock_ticks) == 0) {
574 MOVEBUCKET(1, hardclock_ticks);
575 if (MASKWHEEL(1, hardclock_ticks) == 0) {
576 MOVEBUCKET(2, hardclock_ticks);
577 if (MASKWHEEL(2, hardclock_ticks) == 0)
578 MOVEBUCKET(3, hardclock_ticks);
579 }
580 }
581
582 needsoftclock = !CIRCQ_EMPTY(&timeout_todo);
583 mutex_spin_exit(&callout_lock);
584
585 if (needsoftclock)
586 softintr_schedule(callout_si);
587 }
588
589 /* ARGSUSED */
590 static void
591 callout_softclock(void *v)
592 {
593 callout_impl_t *c;
594 struct cpu_info *ci;
595 void (*func)(void *);
596 void *arg;
597 u_int mpsafe, count;
598 lwp_t *l;
599
600 l = curlwp;
601 ci = l->l_cpu;
602
603 mutex_spin_enter(&callout_lock);
604
605 while (!CIRCQ_EMPTY(&timeout_todo)) {
606 c = CIRCQ_FIRST(&timeout_todo);
607 KASSERT(c->c_magic == CALLOUT_MAGIC);
608 KASSERT(c->c_func != NULL);
609 CIRCQ_REMOVE(&c->c_list);
610
611 /* If due run it, otherwise insert it into the right bucket. */
612 if (c->c_time - hardclock_ticks > 0) {
613 CIRCQ_INSERT(&c->c_list,
614 BUCKET((c->c_time - hardclock_ticks), c->c_time));
615 } else {
616 if (c->c_time - hardclock_ticks < 0)
617 callout_ev_late.ev_count++;
618
619 c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
620 mpsafe = (c->c_flags & CALLOUT_MPSAFE);
621 func = c->c_func;
622 arg = c->c_arg;
623 c->c_oncpu = ci;
624 c->c_onlwp = l;
625
626 mutex_spin_exit(&callout_lock);
627 if (!mpsafe) {
628 KERNEL_LOCK(1, curlwp);
629 if (ci->ci_data.cpu_callout_cancel != c)
630 (*func)(arg);
631 KERNEL_UNLOCK_ONE(curlwp);
632 } else
633 (*func)(arg);
634 mutex_spin_enter(&callout_lock);
635
636 /*
637 * We can't touch 'c' here because it might be
638 * freed already. If LWPs waiting for callout
639 * to complete, awaken them.
640 */
641 ci->ci_data.cpu_callout_cancel = NULL;
642 ci->ci_data.cpu_callout = NULL;
643 if ((count = ci->ci_data.cpu_callout_nwait) != 0) {
644 ci->ci_data.cpu_callout_nwait = 0;
645 /* sleepq_wake() drops the lock. */
646 sleepq_wake(&callout_sleepq, ci, count);
647 mutex_spin_enter(&callout_lock);
648 }
649 }
650 }
651
652 mutex_spin_exit(&callout_lock);
653 }
654
655 #ifdef DDB
656 static void
657 db_show_callout_bucket(struct callout_circq *bucket)
658 {
659 callout_impl_t *c;
660 db_expr_t offset;
661 const char *name;
662 static char question[] = "?";
663
664 if (CIRCQ_EMPTY(bucket))
665 return;
666
667 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
668 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
669 &offset);
670 name = name ? name : question;
671 #ifdef _LP64
672 #define POINTER_WIDTH "%16lx"
673 #else
674 #define POINTER_WIDTH "%8lx"
675 #endif
676 db_printf("%9d %2d/%-4d " POINTER_WIDTH " %s\n",
677 c->c_time - hardclock_ticks,
678 (int)((bucket - timeout_wheel) / WHEELSIZE),
679 (int)(bucket - timeout_wheel), (u_long) c->c_arg, name);
680
681 if (CIRCQ_LAST(&c->c_list, bucket))
682 break;
683 }
684 }
685
686 void
687 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
688 {
689 int b;
690
691 db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
692 #ifdef _LP64
693 db_printf(" ticks wheel arg func\n");
694 #else
695 db_printf(" ticks wheel arg func\n");
696 #endif
697
698 /*
699 * Don't lock the callwheel; all the other CPUs are paused
700 * anyhow, and we might be called in a circumstance where
701 * some other CPU was paused while holding the lock.
702 */
703
704 db_show_callout_bucket(&timeout_todo);
705 for (b = 0; b < BUCKETS; b++)
706 db_show_callout_bucket(&timeout_wheel[b]);
707 }
708 #endif /* DDB */
709