kern_timeout.c revision 1.24 1 /* $NetBSD: kern_timeout.c,v 1.24 2007/07/10 21:26:00 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
41 * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 *
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
57 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
58 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
59 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
60 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
61 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
62 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
63 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
64 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
65 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.24 2007/07/10 21:26:00 ad Exp $");
70
71 /*
72 * Timeouts are kept in a hierarchical timing wheel. The c_time is the
73 * value of the global variable "hardclock_ticks" when the timeout should
74 * be called. There are four levels with 256 buckets each. See 'Scheme 7'
75 * in "Hashed and Hierarchical Timing Wheels: Efficient Data Structures
76 * for Implementing a Timer Facility" by George Varghese and Tony Lauck.
77 *
78 * Some of the "math" in here is a bit tricky. We have to beware of
79 * wrapping ints.
80 *
81 * We use the fact that any element added to the queue must be added with
82 * a positive time. That means that any element `to' on the queue cannot
83 * be scheduled to timeout further in time than INT_MAX, but c->c_time can
84 * be positive or negative so comparing it with anything is dangerous.
85 * The only way we can use the c->c_time value in any predictable way is
86 * when we calculate how far in the future `to' will timeout - "c->c_time
87 * - hardclock_ticks". The result will always be positive for future
88 * timeouts and 0 or negative for due timeouts.
89 */
90
91 #define _CALLOUT_PRIVATE
92
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/kernel.h>
96 #include <sys/lock.h>
97 #include <sys/callout.h>
98 #include <sys/mutex.h>
99 #include <sys/proc.h>
100 #include <sys/sleepq.h>
101 #include <sys/syncobj.h>
102 #include <sys/evcnt.h>
103
104 #include <machine/intr.h>
105
106 #ifdef DDB
107 #include <machine/db_machdep.h>
108 #include <ddb/db_interface.h>
109 #include <ddb/db_access.h>
110 #include <ddb/db_sym.h>
111 #include <ddb/db_output.h>
112 #endif
113
114 #define BUCKETS 1024
115 #define WHEELSIZE 256
116 #define WHEELMASK 255
117 #define WHEELBITS 8
118
119 static struct callout_circq timeout_wheel[BUCKETS]; /* Queues of timeouts */
120 static struct callout_circq timeout_todo; /* Worklist */
121
122 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
123
124 #define BUCKET(rel, abs) \
125 (((rel) <= (1 << (2*WHEELBITS))) \
126 ? ((rel) <= (1 << WHEELBITS)) \
127 ? &timeout_wheel[MASKWHEEL(0, (abs))] \
128 : &timeout_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
129 : ((rel) <= (1 << (3*WHEELBITS))) \
130 ? &timeout_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
131 : &timeout_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
132
133 #define MOVEBUCKET(wheel, time) \
134 CIRCQ_APPEND(&timeout_todo, \
135 &timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
136
137 /*
138 * Circular queue definitions.
139 */
140
141 #define CIRCQ_INIT(list) \
142 do { \
143 (list)->cq_next_l = (list); \
144 (list)->cq_prev_l = (list); \
145 } while (/*CONSTCOND*/0)
146
147 #define CIRCQ_INSERT(elem, list) \
148 do { \
149 (elem)->cq_prev_e = (list)->cq_prev_e; \
150 (elem)->cq_next_l = (list); \
151 (list)->cq_prev_l->cq_next_l = (elem); \
152 (list)->cq_prev_l = (elem); \
153 } while (/*CONSTCOND*/0)
154
155 #define CIRCQ_APPEND(fst, snd) \
156 do { \
157 if (!CIRCQ_EMPTY(snd)) { \
158 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
159 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
160 (snd)->cq_prev_l->cq_next_l = (fst); \
161 (fst)->cq_prev_l = (snd)->cq_prev_l; \
162 CIRCQ_INIT(snd); \
163 } \
164 } while (/*CONSTCOND*/0)
165
166 #define CIRCQ_REMOVE(elem) \
167 do { \
168 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
169 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
170 } while (/*CONSTCOND*/0)
171
172 #define CIRCQ_FIRST(list) ((list)->cq_next_e)
173 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
174 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
175 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
176
177 static void callout_softclock(void *);
178
179 /*
180 * All wheels are locked with the same lock (which must also block out
181 * all interrupts). Eventually this should become per-CPU.
182 */
183 kmutex_t callout_lock;
184 sleepq_t callout_sleepq;
185 void *callout_si;
186
187 static struct evcnt callout_ev_late;
188 static struct evcnt callout_ev_block;
189
190 /*
191 * callout_barrier:
192 *
193 * If the callout is already running, wait until it completes.
194 * XXX This should do priority inheritance.
195 */
196 static void
197 callout_barrier(callout_impl_t *c)
198 {
199 extern syncobj_t sleep_syncobj;
200 struct cpu_info *ci;
201 struct lwp *l;
202
203 l = curlwp;
204
205 if ((c->c_flags & CALLOUT_MPSAFE) == 0) {
206 /*
207 * Note: we must be called with the kernel lock held,
208 * as we use it to synchronize with callout_softclock().
209 */
210 ci = c->c_oncpu;
211 ci->ci_data.cpu_callout_cancel = c;
212 return;
213 }
214
215 while ((ci = c->c_oncpu) != NULL && ci->ci_data.cpu_callout == c) {
216 KASSERT(l->l_wchan == NULL);
217
218 ci->ci_data.cpu_callout_nwait++;
219 callout_ev_block.ev_count++;
220
221 lwp_lock(l);
222 lwp_unlock_to(l, &callout_lock);
223 sleepq_enqueue(&callout_sleepq, sched_kpri(l), ci,
224 "callout", &sleep_syncobj);
225 sleepq_block(0, false);
226 mutex_spin_enter(&callout_lock);
227 }
228 }
229
230 /*
231 * callout_running:
232 *
233 * Return non-zero if callout 'c' is currently executing.
234 */
235 static inline bool
236 callout_running(callout_impl_t *c)
237 {
238 struct cpu_info *ci;
239
240 if ((ci = c->c_oncpu) == NULL)
241 return false;
242 if (ci->ci_data.cpu_callout != c)
243 return false;
244 if (c->c_onlwp == curlwp)
245 return false;
246 return true;
247 }
248
249 /*
250 * callout_startup:
251 *
252 * Initialize the callout facility, called at system startup time.
253 */
254 void
255 callout_startup(void)
256 {
257 int b;
258
259 KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
260
261 CIRCQ_INIT(&timeout_todo);
262 for (b = 0; b < BUCKETS; b++)
263 CIRCQ_INIT(&timeout_wheel[b]);
264
265 mutex_init(&callout_lock, MUTEX_SPIN, IPL_SCHED);
266 sleepq_init(&callout_sleepq, &callout_lock);
267
268 evcnt_attach_dynamic(&callout_ev_late, EVCNT_TYPE_MISC,
269 NULL, "callout", "late");
270 evcnt_attach_dynamic(&callout_ev_block, EVCNT_TYPE_MISC,
271 NULL, "callout", "block waiting");
272 }
273
274 /*
275 * callout_startup2:
276 *
277 * Complete initialization once soft interrupts are available.
278 */
279 void
280 callout_startup2(void)
281 {
282
283 callout_si = softintr_establish(IPL_SOFTCLOCK,
284 callout_softclock, NULL);
285 if (callout_si == NULL)
286 panic("callout_startup2: unable to register softclock intr");
287 }
288
289 /*
290 * callout_init:
291 *
292 * Initialize a callout structure.
293 */
294 void
295 callout_init(callout_t *cs, u_int flags)
296 {
297 callout_impl_t *c = (callout_impl_t *)cs;
298
299 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
300
301 memset(c, 0, sizeof(*c));
302 c->c_flags = flags;
303 c->c_magic = CALLOUT_MAGIC;
304 }
305
306 /*
307 * callout_destroy:
308 *
309 * Destroy a callout structure. The callout must be stopped.
310 */
311 void
312 callout_destroy(callout_t *cs)
313 {
314 callout_impl_t *c = (callout_impl_t *)cs;
315
316 /*
317 * It's not necessary to lock in order to see the correct value
318 * of c->c_flags. If the callout could potentially have been
319 * running, the current thread should have stopped it.
320 */
321 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
322 if (c->c_oncpu != NULL) {
323 KASSERT(
324 ((struct cpu_info *)c->c_oncpu)->ci_data.cpu_callout != c);
325 }
326 KASSERT(c->c_magic == CALLOUT_MAGIC);
327
328 c->c_magic = 0;
329 }
330
331
332 /*
333 * callout_reset:
334 *
335 * Reset a callout structure with a new function and argument, and
336 * schedule it to run.
337 */
338 void
339 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
340 {
341 callout_impl_t *c = (callout_impl_t *)cs;
342 int old_time;
343
344 KASSERT(to_ticks >= 0);
345 KASSERT(c->c_magic == CALLOUT_MAGIC);
346 KASSERT(func != NULL);
347
348 mutex_spin_enter(&callout_lock);
349
350 /* Initialize the time here, it won't change. */
351 old_time = c->c_time;
352 c->c_time = to_ticks + hardclock_ticks;
353 c->c_flags &= ~CALLOUT_FIRED;
354
355 c->c_func = func;
356 c->c_arg = arg;
357
358 /*
359 * If this timeout is already scheduled and now is moved
360 * earlier, reschedule it now. Otherwise leave it in place
361 * and let it be rescheduled later.
362 */
363 if ((c->c_flags & CALLOUT_PENDING) != 0) {
364 if (c->c_time - old_time < 0) {
365 CIRCQ_REMOVE(&c->c_list);
366 CIRCQ_INSERT(&c->c_list, &timeout_todo);
367 }
368 } else {
369 c->c_flags |= CALLOUT_PENDING;
370 CIRCQ_INSERT(&c->c_list, &timeout_todo);
371 }
372
373 mutex_spin_exit(&callout_lock);
374 }
375
376 /*
377 * callout_schedule:
378 *
379 * Schedule a callout to run. The function and argument must
380 * already be set in the callout structure.
381 */
382 void
383 callout_schedule(callout_t *cs, int to_ticks)
384 {
385 callout_impl_t *c = (callout_impl_t *)cs;
386 int old_time;
387
388 KASSERT(to_ticks >= 0);
389 KASSERT(c->c_magic == CALLOUT_MAGIC);
390 KASSERT(c->c_func != NULL);
391
392 mutex_spin_enter(&callout_lock);
393
394 /* Initialize the time here, it won't change. */
395 old_time = c->c_time;
396 c->c_time = to_ticks + hardclock_ticks;
397 c->c_flags &= ~CALLOUT_FIRED;
398
399 /*
400 * If this timeout is already scheduled and now is moved
401 * earlier, reschedule it now. Otherwise leave it in place
402 * and let it be rescheduled later.
403 */
404 if ((c->c_flags & CALLOUT_PENDING) != 0) {
405 if (c->c_time - old_time < 0) {
406 CIRCQ_REMOVE(&c->c_list);
407 CIRCQ_INSERT(&c->c_list, &timeout_todo);
408 }
409 } else {
410 c->c_flags |= CALLOUT_PENDING;
411 CIRCQ_INSERT(&c->c_list, &timeout_todo);
412 }
413
414 mutex_spin_exit(&callout_lock);
415 }
416
417 /*
418 * callout_stop:
419 *
420 * Cancel a pending callout.
421 */
422 bool
423 callout_stop(callout_t *cs)
424 {
425 callout_impl_t *c = (callout_impl_t *)cs;
426 bool expired;
427
428 KASSERT(c->c_magic == CALLOUT_MAGIC);
429
430 mutex_spin_enter(&callout_lock);
431
432 if (callout_running(c))
433 callout_barrier(c);
434
435 if ((c->c_flags & CALLOUT_PENDING) != 0)
436 CIRCQ_REMOVE(&c->c_list);
437
438 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
439 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
440
441 mutex_spin_exit(&callout_lock);
442
443 return expired;
444 }
445
446 void
447 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
448 {
449 callout_impl_t *c = (callout_impl_t *)cs;
450
451 KASSERT(c->c_magic == CALLOUT_MAGIC);
452
453 mutex_spin_enter(&callout_lock);
454 c->c_func = func;
455 c->c_arg = arg;
456 mutex_spin_exit(&callout_lock);
457 }
458
459 bool
460 callout_expired(callout_t *cs)
461 {
462 callout_impl_t *c = (callout_impl_t *)cs;
463 bool rv;
464
465 KASSERT(c->c_magic == CALLOUT_MAGIC);
466
467 mutex_spin_enter(&callout_lock);
468 rv = ((c->c_flags & CALLOUT_FIRED) != 0);
469 mutex_spin_exit(&callout_lock);
470
471 return rv;
472 }
473
474 bool
475 callout_active(callout_t *cs)
476 {
477 callout_impl_t *c = (callout_impl_t *)cs;
478 bool rv;
479
480 KASSERT(c->c_magic == CALLOUT_MAGIC);
481
482 mutex_spin_enter(&callout_lock);
483 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
484 mutex_spin_exit(&callout_lock);
485
486 return rv;
487 }
488
489 bool
490 callout_pending(callout_t *cs)
491 {
492 callout_impl_t *c = (callout_impl_t *)cs;
493 bool rv;
494
495 KASSERT(c->c_magic == CALLOUT_MAGIC);
496
497 mutex_spin_enter(&callout_lock);
498 rv = ((c->c_flags & CALLOUT_PENDING) != 0);
499 mutex_spin_exit(&callout_lock);
500
501 return rv;
502 }
503
504 bool
505 callout_invoking(callout_t *cs)
506 {
507 callout_impl_t *c = (callout_impl_t *)cs;
508 bool rv;
509
510 KASSERT(c->c_magic == CALLOUT_MAGIC);
511
512 mutex_spin_enter(&callout_lock);
513 rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
514 mutex_spin_exit(&callout_lock);
515
516 return rv;
517 }
518
519 void
520 callout_ack(callout_t *cs)
521 {
522 callout_impl_t *c = (callout_impl_t *)cs;
523
524 KASSERT(c->c_magic == CALLOUT_MAGIC);
525
526 mutex_spin_enter(&callout_lock);
527 c->c_flags &= ~CALLOUT_INVOKING;
528 mutex_spin_exit(&callout_lock);
529 }
530
531 /*
532 * This is called from hardclock() once every tick.
533 * We schedule callout_softclock() if there is work
534 * to be done.
535 */
536 void
537 callout_hardclock(void)
538 {
539 int needsoftclock;
540
541 mutex_spin_enter(&callout_lock);
542
543 MOVEBUCKET(0, hardclock_ticks);
544 if (MASKWHEEL(0, hardclock_ticks) == 0) {
545 MOVEBUCKET(1, hardclock_ticks);
546 if (MASKWHEEL(1, hardclock_ticks) == 0) {
547 MOVEBUCKET(2, hardclock_ticks);
548 if (MASKWHEEL(2, hardclock_ticks) == 0)
549 MOVEBUCKET(3, hardclock_ticks);
550 }
551 }
552
553 needsoftclock = !CIRCQ_EMPTY(&timeout_todo);
554 mutex_spin_exit(&callout_lock);
555
556 if (needsoftclock)
557 softintr_schedule(callout_si);
558 }
559
560 /* ARGSUSED */
561 static void
562 callout_softclock(void *v)
563 {
564 callout_impl_t *c;
565 struct cpu_info *ci;
566 void (*func)(void *);
567 void *arg;
568 u_int mpsafe, count;
569 lwp_t *l;
570
571 l = curlwp;
572 ci = l->l_cpu;
573
574 mutex_spin_enter(&callout_lock);
575
576 while (!CIRCQ_EMPTY(&timeout_todo)) {
577 c = CIRCQ_FIRST(&timeout_todo);
578 KASSERT(c->c_magic == CALLOUT_MAGIC);
579 KASSERT(c->c_func != NULL);
580 CIRCQ_REMOVE(&c->c_list);
581
582 /* If due run it, otherwise insert it into the right bucket. */
583 if (c->c_time - hardclock_ticks > 0) {
584 CIRCQ_INSERT(&c->c_list,
585 BUCKET((c->c_time - hardclock_ticks), c->c_time));
586 } else {
587 if (c->c_time - hardclock_ticks < 0)
588 callout_ev_late.ev_count++;
589
590 c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
591 mpsafe = (c->c_flags & CALLOUT_MPSAFE);
592 func = c->c_func;
593 arg = c->c_arg;
594 c->c_oncpu = ci;
595 c->c_onlwp = l;
596
597 mutex_spin_exit(&callout_lock);
598 if (!mpsafe) {
599 KERNEL_LOCK(1, curlwp);
600 if (ci->ci_data.cpu_callout_cancel != c)
601 (*func)(arg);
602 KERNEL_UNLOCK_ONE(curlwp);
603 } else
604 (*func)(arg);
605 mutex_spin_enter(&callout_lock);
606
607 /*
608 * We can't touch 'c' here because it might be
609 * freed already. If LWPs waiting for callout
610 * to complete, awaken them.
611 */
612 ci->ci_data.cpu_callout_cancel = NULL;
613 ci->ci_data.cpu_callout = NULL;
614 if ((count = ci->ci_data.cpu_callout_nwait) != 0) {
615 ci->ci_data.cpu_callout_nwait = 0;
616 /* sleepq_wake() drops the lock. */
617 sleepq_wake(&callout_sleepq, ci, count);
618 mutex_spin_enter(&callout_lock);
619 }
620 }
621 }
622
623 mutex_spin_exit(&callout_lock);
624 }
625
626 #ifdef DDB
627 static void
628 db_show_callout_bucket(struct callout_circq *bucket)
629 {
630 callout_impl_t *c;
631 db_expr_t offset;
632 const char *name;
633 static char question[] = "?";
634
635 if (CIRCQ_EMPTY(bucket))
636 return;
637
638 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
639 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
640 &offset);
641 name = name ? name : question;
642 #ifdef _LP64
643 #define POINTER_WIDTH "%16lx"
644 #else
645 #define POINTER_WIDTH "%8lx"
646 #endif
647 db_printf("%9d %2d/%-4d " POINTER_WIDTH " %s\n",
648 c->c_time - hardclock_ticks,
649 (int)((bucket - timeout_wheel) / WHEELSIZE),
650 (int)(bucket - timeout_wheel), (u_long) c->c_arg, name);
651
652 if (CIRCQ_LAST(&c->c_list, bucket))
653 break;
654 }
655 }
656
657 void
658 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
659 {
660 int b;
661
662 db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
663 #ifdef _LP64
664 db_printf(" ticks wheel arg func\n");
665 #else
666 db_printf(" ticks wheel arg func\n");
667 #endif
668
669 /*
670 * Don't lock the callwheel; all the other CPUs are paused
671 * anyhow, and we might be called in a circumstance where
672 * some other CPU was paused while holding the lock.
673 */
674
675 db_show_callout_bucket(&timeout_todo);
676 for (b = 0; b < BUCKETS; b++)
677 db_show_callout_bucket(&timeout_wheel[b]);
678 }
679 #endif /* DDB */
680