Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.24.2.1
      1 /*	$NetBSD: kern_timeout.c,v 1.24.2.1 2007/08/15 13:49:11 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     41  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  *
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. The name of the author may not be used to endorse or promote products
     54  *    derived from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     57  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     58  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     59  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     60  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     61  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     62  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     63  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     64  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     65  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.24.2.1 2007/08/15 13:49:11 skrll Exp $");
     70 
     71 /*
     72  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     73  * value of the global variable "hardclock_ticks" when the timeout should
     74  * be called.  There are four levels with 256 buckets each. See 'Scheme 7'
     75  * in "Hashed and Hierarchical Timing Wheels: Efficient Data Structures
     76  * for Implementing a Timer Facility" by George Varghese and Tony Lauck.
     77  *
     78  * Some of the "math" in here is a bit tricky.  We have to beware of
     79  * wrapping ints.
     80  *
     81  * We use the fact that any element added to the queue must be added with
     82  * a positive time.  That means that any element `to' on the queue cannot
     83  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     84  * be positive or negative so comparing it with anything is dangerous.
     85  * The only way we can use the c->c_time value in any predictable way is
     86  * when we calculate how far in the future `to' will timeout - "c->c_time
     87  * - hardclock_ticks".  The result will always be positive for future
     88  * timeouts and 0 or negative for due timeouts.
     89  */
     90 
     91 #define	_CALLOUT_PRIVATE
     92 
     93 #include <sys/param.h>
     94 #include <sys/systm.h>
     95 #include <sys/kernel.h>
     96 #include <sys/lock.h>
     97 #include <sys/callout.h>
     98 #include <sys/mutex.h>
     99 #include <sys/proc.h>
    100 #include <sys/sleepq.h>
    101 #include <sys/syncobj.h>
    102 #include <sys/evcnt.h>
    103 
    104 #include <machine/intr.h>
    105 
    106 #ifdef DDB
    107 #include <machine/db_machdep.h>
    108 #include <ddb/db_interface.h>
    109 #include <ddb/db_access.h>
    110 #include <ddb/db_sym.h>
    111 #include <ddb/db_output.h>
    112 #endif
    113 
    114 #define BUCKETS		1024
    115 #define WHEELSIZE	256
    116 #define WHEELMASK	255
    117 #define WHEELBITS	8
    118 
    119 static struct callout_circq timeout_wheel[BUCKETS];	/* Queues of timeouts */
    120 static struct callout_circq timeout_todo;		/* Worklist */
    121 
    122 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    123 
    124 #define BUCKET(rel, abs)						\
    125     (((rel) <= (1 << (2*WHEELBITS)))					\
    126     	? ((rel) <= (1 << WHEELBITS))					\
    127             ? &timeout_wheel[MASKWHEEL(0, (abs))]			\
    128             : &timeout_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    129         : ((rel) <= (1 << (3*WHEELBITS)))				\
    130             ? &timeout_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]		\
    131             : &timeout_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    132 
    133 #define MOVEBUCKET(wheel, time)						\
    134     CIRCQ_APPEND(&timeout_todo,						\
    135         &timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    136 
    137 /*
    138  * Circular queue definitions.
    139  */
    140 
    141 #define CIRCQ_INIT(list)						\
    142 do {									\
    143         (list)->cq_next_l = (list);					\
    144         (list)->cq_prev_l = (list);					\
    145 } while (/*CONSTCOND*/0)
    146 
    147 #define CIRCQ_INSERT(elem, list)					\
    148 do {									\
    149         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    150         (elem)->cq_next_l = (list);					\
    151         (list)->cq_prev_l->cq_next_l = (elem);				\
    152         (list)->cq_prev_l = (elem);					\
    153 } while (/*CONSTCOND*/0)
    154 
    155 #define CIRCQ_APPEND(fst, snd)						\
    156 do {									\
    157         if (!CIRCQ_EMPTY(snd)) {					\
    158                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    159                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    160                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    161                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    162                 CIRCQ_INIT(snd);					\
    163         }								\
    164 } while (/*CONSTCOND*/0)
    165 
    166 #define CIRCQ_REMOVE(elem)						\
    167 do {									\
    168         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    169         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    170 } while (/*CONSTCOND*/0)
    171 
    172 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    173 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    174 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    175 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    176 
    177 static void	callout_softclock(void *);
    178 
    179 /*
    180  * All wheels are locked with the same lock (which must also block out
    181  * all interrupts).  Eventually this should become per-CPU.
    182  */
    183 kmutex_t callout_lock;
    184 sleepq_t callout_sleepq;
    185 void	*callout_si;
    186 
    187 static struct evcnt callout_ev_late;
    188 static struct evcnt callout_ev_block;
    189 
    190 /*
    191  * callout_barrier:
    192  *
    193  *	If the callout is already running, wait until it completes.
    194  *	XXX This should do priority inheritance.
    195  */
    196 static void
    197 callout_barrier(callout_impl_t *c)
    198 {
    199 	extern syncobj_t sleep_syncobj;
    200 	struct cpu_info *ci;
    201 	struct lwp *l;
    202 
    203 	l = curlwp;
    204 
    205 	if ((c->c_flags & CALLOUT_MPSAFE) == 0) {
    206 		/*
    207 		 * Note: we must be called with the kernel lock held,
    208 		 * as we use it to synchronize with callout_softclock().
    209 		 */
    210 		ci = c->c_oncpu;
    211 		ci->ci_data.cpu_callout_cancel = c;
    212 		return;
    213 	}
    214 
    215 	while ((ci = c->c_oncpu) != NULL && ci->ci_data.cpu_callout == c) {
    216 		KASSERT(l->l_wchan == NULL);
    217 
    218 		ci->ci_data.cpu_callout_nwait++;
    219 		callout_ev_block.ev_count++;
    220 
    221 		sleepq_enter(&callout_sleepq, l);
    222 		sleepq_enqueue(&callout_sleepq, sched_kpri(l), ci,
    223 		    "callout", &sleep_syncobj);
    224 		sleepq_block(0, false);
    225 		mutex_spin_enter(&callout_lock);
    226 	}
    227 }
    228 
    229 /*
    230  * callout_running:
    231  *
    232  *	Return non-zero if callout 'c' is currently executing.
    233  */
    234 static inline bool
    235 callout_running(callout_impl_t *c)
    236 {
    237 	struct cpu_info *ci;
    238 
    239 	if ((ci = c->c_oncpu) == NULL)
    240 		return false;
    241 	if (ci->ci_data.cpu_callout != c)
    242 		return false;
    243 	if (c->c_onlwp == curlwp)
    244 		return false;
    245 	return true;
    246 }
    247 
    248 /*
    249  * callout_startup:
    250  *
    251  *	Initialize the callout facility, called at system startup time.
    252  */
    253 void
    254 callout_startup(void)
    255 {
    256 	int b;
    257 
    258 	KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    259 
    260 	CIRCQ_INIT(&timeout_todo);
    261 	for (b = 0; b < BUCKETS; b++)
    262 		CIRCQ_INIT(&timeout_wheel[b]);
    263 
    264 	mutex_init(&callout_lock, MUTEX_SPIN, IPL_SCHED);
    265 	sleepq_init(&callout_sleepq, &callout_lock);
    266 
    267 	evcnt_attach_dynamic(&callout_ev_late, EVCNT_TYPE_MISC,
    268 	    NULL, "callout", "late");
    269 	evcnt_attach_dynamic(&callout_ev_block, EVCNT_TYPE_MISC,
    270 	    NULL, "callout", "block waiting");
    271 }
    272 
    273 /*
    274  * callout_startup2:
    275  *
    276  *	Complete initialization once soft interrupts are available.
    277  */
    278 void
    279 callout_startup2(void)
    280 {
    281 
    282 	callout_si = softintr_establish(IPL_SOFTCLOCK,
    283 	    callout_softclock, NULL);
    284 	if (callout_si == NULL)
    285 		panic("callout_startup2: unable to register softclock intr");
    286 }
    287 
    288 /*
    289  * callout_init:
    290  *
    291  *	Initialize a callout structure.
    292  */
    293 void
    294 callout_init(callout_t *cs, u_int flags)
    295 {
    296 	callout_impl_t *c = (callout_impl_t *)cs;
    297 
    298 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    299 
    300 	memset(c, 0, sizeof(*c));
    301 	c->c_flags = flags;
    302 	c->c_magic = CALLOUT_MAGIC;
    303 }
    304 
    305 /*
    306  * callout_destroy:
    307  *
    308  *	Destroy a callout structure.  The callout must be stopped.
    309  */
    310 void
    311 callout_destroy(callout_t *cs)
    312 {
    313 	callout_impl_t *c = (callout_impl_t *)cs;
    314 
    315 	/*
    316 	 * It's not necessary to lock in order to see the correct value
    317 	 * of c->c_flags.  If the callout could potentially have been
    318 	 * running, the current thread should have stopped it.
    319 	 */
    320 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    321 	if (c->c_oncpu != NULL) {
    322 		KASSERT(
    323 		    ((struct cpu_info *)c->c_oncpu)->ci_data.cpu_callout != c);
    324 	}
    325 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    326 
    327 	c->c_magic = 0;
    328 }
    329 
    330 
    331 /*
    332  * callout_reset:
    333  *
    334  *	Reset a callout structure with a new function and argument, and
    335  *	schedule it to run.
    336  */
    337 void
    338 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    339 {
    340 	callout_impl_t *c = (callout_impl_t *)cs;
    341 	int old_time;
    342 
    343 	KASSERT(to_ticks >= 0);
    344 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    345 	KASSERT(func != NULL);
    346 
    347 	mutex_spin_enter(&callout_lock);
    348 
    349 	/* Initialize the time here, it won't change. */
    350 	old_time = c->c_time;
    351 	c->c_time = to_ticks + hardclock_ticks;
    352 	c->c_flags &= ~CALLOUT_FIRED;
    353 
    354 	c->c_func = func;
    355 	c->c_arg = arg;
    356 
    357 	/*
    358 	 * If this timeout is already scheduled and now is moved
    359 	 * earlier, reschedule it now. Otherwise leave it in place
    360 	 * and let it be rescheduled later.
    361 	 */
    362 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    363 		if (c->c_time - old_time < 0) {
    364 			CIRCQ_REMOVE(&c->c_list);
    365 			CIRCQ_INSERT(&c->c_list, &timeout_todo);
    366 		}
    367 	} else {
    368 		c->c_flags |= CALLOUT_PENDING;
    369 		CIRCQ_INSERT(&c->c_list, &timeout_todo);
    370 	}
    371 
    372 	mutex_spin_exit(&callout_lock);
    373 }
    374 
    375 /*
    376  * callout_schedule:
    377  *
    378  *	Schedule a callout to run.  The function and argument must
    379  *	already be set in the callout structure.
    380  */
    381 void
    382 callout_schedule(callout_t *cs, int to_ticks)
    383 {
    384 	callout_impl_t *c = (callout_impl_t *)cs;
    385 	int old_time;
    386 
    387 	KASSERT(to_ticks >= 0);
    388 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    389 	KASSERT(c->c_func != NULL);
    390 
    391 	mutex_spin_enter(&callout_lock);
    392 
    393 	/* Initialize the time here, it won't change. */
    394 	old_time = c->c_time;
    395 	c->c_time = to_ticks + hardclock_ticks;
    396 	c->c_flags &= ~CALLOUT_FIRED;
    397 
    398 	/*
    399 	 * If this timeout is already scheduled and now is moved
    400 	 * earlier, reschedule it now. Otherwise leave it in place
    401 	 * and let it be rescheduled later.
    402 	 */
    403 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    404 		if (c->c_time - old_time < 0) {
    405 			CIRCQ_REMOVE(&c->c_list);
    406 			CIRCQ_INSERT(&c->c_list, &timeout_todo);
    407 		}
    408 	} else {
    409 		c->c_flags |= CALLOUT_PENDING;
    410 		CIRCQ_INSERT(&c->c_list, &timeout_todo);
    411 	}
    412 
    413 	mutex_spin_exit(&callout_lock);
    414 }
    415 
    416 /*
    417  * callout_stop:
    418  *
    419  *	Cancel a pending callout.
    420  */
    421 bool
    422 callout_stop(callout_t *cs)
    423 {
    424 	callout_impl_t *c = (callout_impl_t *)cs;
    425 	bool expired;
    426 
    427 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    428 
    429 	mutex_spin_enter(&callout_lock);
    430 
    431 	if (callout_running(c))
    432 		callout_barrier(c);
    433 
    434 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    435 		CIRCQ_REMOVE(&c->c_list);
    436 
    437 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    438 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    439 
    440 	mutex_spin_exit(&callout_lock);
    441 
    442 	return expired;
    443 }
    444 
    445 void
    446 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    447 {
    448 	callout_impl_t *c = (callout_impl_t *)cs;
    449 
    450 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    451 
    452 	mutex_spin_enter(&callout_lock);
    453 	c->c_func = func;
    454 	c->c_arg = arg;
    455 	mutex_spin_exit(&callout_lock);
    456 }
    457 
    458 bool
    459 callout_expired(callout_t *cs)
    460 {
    461 	callout_impl_t *c = (callout_impl_t *)cs;
    462 	bool rv;
    463 
    464 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    465 
    466 	mutex_spin_enter(&callout_lock);
    467 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    468 	mutex_spin_exit(&callout_lock);
    469 
    470 	return rv;
    471 }
    472 
    473 bool
    474 callout_active(callout_t *cs)
    475 {
    476 	callout_impl_t *c = (callout_impl_t *)cs;
    477 	bool rv;
    478 
    479 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    480 
    481 	mutex_spin_enter(&callout_lock);
    482 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    483 	mutex_spin_exit(&callout_lock);
    484 
    485 	return rv;
    486 }
    487 
    488 bool
    489 callout_pending(callout_t *cs)
    490 {
    491 	callout_impl_t *c = (callout_impl_t *)cs;
    492 	bool rv;
    493 
    494 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    495 
    496 	mutex_spin_enter(&callout_lock);
    497 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    498 	mutex_spin_exit(&callout_lock);
    499 
    500 	return rv;
    501 }
    502 
    503 bool
    504 callout_invoking(callout_t *cs)
    505 {
    506 	callout_impl_t *c = (callout_impl_t *)cs;
    507 	bool rv;
    508 
    509 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    510 
    511 	mutex_spin_enter(&callout_lock);
    512 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    513 	mutex_spin_exit(&callout_lock);
    514 
    515 	return rv;
    516 }
    517 
    518 void
    519 callout_ack(callout_t *cs)
    520 {
    521 	callout_impl_t *c = (callout_impl_t *)cs;
    522 
    523 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    524 
    525 	mutex_spin_enter(&callout_lock);
    526 	c->c_flags &= ~CALLOUT_INVOKING;
    527 	mutex_spin_exit(&callout_lock);
    528 }
    529 
    530 /*
    531  * This is called from hardclock() once every tick.
    532  * We schedule callout_softclock() if there is work
    533  * to be done.
    534  */
    535 void
    536 callout_hardclock(void)
    537 {
    538 	int needsoftclock;
    539 
    540 	mutex_spin_enter(&callout_lock);
    541 
    542 	MOVEBUCKET(0, hardclock_ticks);
    543 	if (MASKWHEEL(0, hardclock_ticks) == 0) {
    544 		MOVEBUCKET(1, hardclock_ticks);
    545 		if (MASKWHEEL(1, hardclock_ticks) == 0) {
    546 			MOVEBUCKET(2, hardclock_ticks);
    547 			if (MASKWHEEL(2, hardclock_ticks) == 0)
    548 				MOVEBUCKET(3, hardclock_ticks);
    549 		}
    550 	}
    551 
    552 	needsoftclock = !CIRCQ_EMPTY(&timeout_todo);
    553 	mutex_spin_exit(&callout_lock);
    554 
    555 	if (needsoftclock)
    556 		softintr_schedule(callout_si);
    557 }
    558 
    559 /* ARGSUSED */
    560 static void
    561 callout_softclock(void *v)
    562 {
    563 	callout_impl_t *c;
    564 	struct cpu_info *ci;
    565 	void (*func)(void *);
    566 	void *arg;
    567 	u_int mpsafe, count;
    568 	lwp_t *l;
    569 
    570 	l = curlwp;
    571 	ci = l->l_cpu;
    572 
    573 	mutex_spin_enter(&callout_lock);
    574 
    575 	while (!CIRCQ_EMPTY(&timeout_todo)) {
    576 		c = CIRCQ_FIRST(&timeout_todo);
    577 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    578 		KASSERT(c->c_func != NULL);
    579 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    580 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    581 		CIRCQ_REMOVE(&c->c_list);
    582 
    583 		/* If due run it, otherwise insert it into the right bucket. */
    584 		if (c->c_time - hardclock_ticks > 0) {
    585 			CIRCQ_INSERT(&c->c_list,
    586 			    BUCKET((c->c_time - hardclock_ticks), c->c_time));
    587 		} else {
    588 			if (c->c_time - hardclock_ticks < 0)
    589 				callout_ev_late.ev_count++;
    590 
    591 			c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
    592 			mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    593 			func = c->c_func;
    594 			arg = c->c_arg;
    595 			c->c_oncpu = ci;
    596 			c->c_onlwp = l;
    597 
    598 			mutex_spin_exit(&callout_lock);
    599 			if (!mpsafe) {
    600 				KERNEL_LOCK(1, curlwp);
    601 				if (ci->ci_data.cpu_callout_cancel != c)
    602 					(*func)(arg);
    603 				KERNEL_UNLOCK_ONE(curlwp);
    604 			} else
    605 					(*func)(arg);
    606 			mutex_spin_enter(&callout_lock);
    607 
    608 			/*
    609 			 * We can't touch 'c' here because it might be
    610 			 * freed already.  If LWPs waiting for callout
    611 			 * to complete, awaken them.
    612 			 */
    613 			ci->ci_data.cpu_callout_cancel = NULL;
    614 			ci->ci_data.cpu_callout = NULL;
    615 			if ((count = ci->ci_data.cpu_callout_nwait) != 0) {
    616 				ci->ci_data.cpu_callout_nwait = 0;
    617 				/* sleepq_wake() drops the lock. */
    618 				sleepq_wake(&callout_sleepq, ci, count);
    619 				mutex_spin_enter(&callout_lock);
    620 			}
    621 		}
    622 	}
    623 
    624 	mutex_spin_exit(&callout_lock);
    625 }
    626 
    627 #ifdef DDB
    628 static void
    629 db_show_callout_bucket(struct callout_circq *bucket)
    630 {
    631 	callout_impl_t *c;
    632 	db_expr_t offset;
    633 	const char *name;
    634 	static char question[] = "?";
    635 
    636 	if (CIRCQ_EMPTY(bucket))
    637 		return;
    638 
    639 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    640 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    641 		    &offset);
    642 		name = name ? name : question;
    643 #ifdef _LP64
    644 #define	POINTER_WIDTH	"%16lx"
    645 #else
    646 #define	POINTER_WIDTH	"%8lx"
    647 #endif
    648 		db_printf("%9d %2d/%-4d " POINTER_WIDTH "  %s\n",
    649 		    c->c_time - hardclock_ticks,
    650 		    (int)((bucket - timeout_wheel) / WHEELSIZE),
    651 		    (int)(bucket - timeout_wheel), (u_long) c->c_arg, name);
    652 
    653 		if (CIRCQ_LAST(&c->c_list, bucket))
    654 			break;
    655 	}
    656 }
    657 
    658 void
    659 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    660 {
    661 	int b;
    662 
    663 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
    664 #ifdef _LP64
    665 	db_printf("    ticks  wheel               arg  func\n");
    666 #else
    667 	db_printf("    ticks  wheel       arg  func\n");
    668 #endif
    669 
    670 	/*
    671 	 * Don't lock the callwheel; all the other CPUs are paused
    672 	 * anyhow, and we might be called in a circumstance where
    673 	 * some other CPU was paused while holding the lock.
    674 	 */
    675 
    676 	db_show_callout_bucket(&timeout_todo);
    677 	for (b = 0; b < BUCKETS; b++)
    678 		db_show_callout_bucket(&timeout_wheel[b]);
    679 }
    680 #endif /* DDB */
    681