kern_timeout.c revision 1.30 1 /* $NetBSD: kern_timeout.c,v 1.30 2007/12/05 07:06:53 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
41 * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 *
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
57 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
58 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
59 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
60 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
61 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
62 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
63 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
64 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
65 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.30 2007/12/05 07:06:53 ad Exp $");
70
71 /*
72 * Timeouts are kept in a hierarchical timing wheel. The c_time is the
73 * value of the global variable "hardclock_ticks" when the timeout should
74 * be called. There are four levels with 256 buckets each. See 'Scheme 7'
75 * in "Hashed and Hierarchical Timing Wheels: Efficient Data Structures
76 * for Implementing a Timer Facility" by George Varghese and Tony Lauck.
77 *
78 * Some of the "math" in here is a bit tricky. We have to beware of
79 * wrapping ints.
80 *
81 * We use the fact that any element added to the queue must be added with
82 * a positive time. That means that any element `to' on the queue cannot
83 * be scheduled to timeout further in time than INT_MAX, but c->c_time can
84 * be positive or negative so comparing it with anything is dangerous.
85 * The only way we can use the c->c_time value in any predictable way is
86 * when we calculate how far in the future `to' will timeout - "c->c_time
87 * - hardclock_ticks". The result will always be positive for future
88 * timeouts and 0 or negative for due timeouts.
89 */
90
91 #define _CALLOUT_PRIVATE
92
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/kernel.h>
96 #include <sys/lock.h>
97 #include <sys/callout.h>
98 #include <sys/mutex.h>
99 #include <sys/proc.h>
100 #include <sys/sleepq.h>
101 #include <sys/syncobj.h>
102 #include <sys/evcnt.h>
103 #include <sys/intr.h>
104
105 #ifdef DDB
106 #include <machine/db_machdep.h>
107 #include <ddb/db_interface.h>
108 #include <ddb/db_access.h>
109 #include <ddb/db_sym.h>
110 #include <ddb/db_output.h>
111 #endif
112
113 #define BUCKETS 1024
114 #define WHEELSIZE 256
115 #define WHEELMASK 255
116 #define WHEELBITS 8
117
118 static struct callout_circq timeout_wheel[BUCKETS]; /* Queues of timeouts */
119 static struct callout_circq timeout_todo; /* Worklist */
120
121 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
122
123 #define BUCKET(rel, abs) \
124 (((rel) <= (1 << (2*WHEELBITS))) \
125 ? ((rel) <= (1 << WHEELBITS)) \
126 ? &timeout_wheel[MASKWHEEL(0, (abs))] \
127 : &timeout_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
128 : ((rel) <= (1 << (3*WHEELBITS))) \
129 ? &timeout_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
130 : &timeout_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
131
132 #define MOVEBUCKET(wheel, time) \
133 CIRCQ_APPEND(&timeout_todo, \
134 &timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
135
136 /*
137 * Circular queue definitions.
138 */
139
140 #define CIRCQ_INIT(list) \
141 do { \
142 (list)->cq_next_l = (list); \
143 (list)->cq_prev_l = (list); \
144 } while (/*CONSTCOND*/0)
145
146 #define CIRCQ_INSERT(elem, list) \
147 do { \
148 (elem)->cq_prev_e = (list)->cq_prev_e; \
149 (elem)->cq_next_l = (list); \
150 (list)->cq_prev_l->cq_next_l = (elem); \
151 (list)->cq_prev_l = (elem); \
152 } while (/*CONSTCOND*/0)
153
154 #define CIRCQ_APPEND(fst, snd) \
155 do { \
156 if (!CIRCQ_EMPTY(snd)) { \
157 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
158 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
159 (snd)->cq_prev_l->cq_next_l = (fst); \
160 (fst)->cq_prev_l = (snd)->cq_prev_l; \
161 CIRCQ_INIT(snd); \
162 } \
163 } while (/*CONSTCOND*/0)
164
165 #define CIRCQ_REMOVE(elem) \
166 do { \
167 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
168 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
169 } while (/*CONSTCOND*/0)
170
171 #define CIRCQ_FIRST(list) ((list)->cq_next_e)
172 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
173 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
174 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
175
176 static void callout_softclock(void *);
177
178 /*
179 * All wheels are locked with the same lock (which must also block out
180 * all interrupts). Eventually this should become per-CPU.
181 */
182 kmutex_t callout_lock;
183 sleepq_t callout_sleepq;
184 void *callout_si;
185
186 static struct evcnt callout_ev_late;
187 static struct evcnt callout_ev_block;
188
189 /*
190 * callout_barrier:
191 *
192 * If the callout is already running, wait until it completes.
193 * XXX This should do priority inheritance.
194 */
195 static void
196 callout_barrier(callout_impl_t *c)
197 {
198 extern syncobj_t sleep_syncobj;
199 struct cpu_info *ci;
200 struct lwp *l;
201
202 l = curlwp;
203
204 if ((c->c_flags & CALLOUT_MPSAFE) == 0) {
205 /*
206 * Note: we must be called with the kernel lock held,
207 * as we use it to synchronize with callout_softclock().
208 */
209 ci = c->c_oncpu;
210 ci->ci_data.cpu_callout_cancel = c;
211 return;
212 }
213
214 while ((ci = c->c_oncpu) != NULL && ci->ci_data.cpu_callout == c) {
215 KASSERT(l->l_wchan == NULL);
216
217 ci->ci_data.cpu_callout_nwait++;
218 callout_ev_block.ev_count++;
219
220 l->l_kpriority = true;
221 sleepq_enter(&callout_sleepq, l);
222 sleepq_enqueue(&callout_sleepq, ci, "callout", &sleep_syncobj);
223 sleepq_block(0, false);
224 mutex_spin_enter(&callout_lock);
225 }
226 }
227
228 /*
229 * callout_running:
230 *
231 * Return non-zero if callout 'c' is currently executing.
232 */
233 static inline bool
234 callout_running(callout_impl_t *c)
235 {
236 struct cpu_info *ci;
237
238 if ((ci = c->c_oncpu) == NULL)
239 return false;
240 if (ci->ci_data.cpu_callout != c)
241 return false;
242 if (c->c_onlwp == curlwp)
243 return false;
244 return true;
245 }
246
247 /*
248 * callout_startup:
249 *
250 * Initialize the callout facility, called at system startup time.
251 */
252 void
253 callout_startup(void)
254 {
255 int b;
256
257 KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
258
259 CIRCQ_INIT(&timeout_todo);
260 for (b = 0; b < BUCKETS; b++)
261 CIRCQ_INIT(&timeout_wheel[b]);
262
263 mutex_init(&callout_lock, MUTEX_DEFAULT, IPL_SCHED);
264 sleepq_init(&callout_sleepq, &callout_lock);
265
266 evcnt_attach_dynamic(&callout_ev_late, EVCNT_TYPE_MISC,
267 NULL, "callout", "late");
268 evcnt_attach_dynamic(&callout_ev_block, EVCNT_TYPE_MISC,
269 NULL, "callout", "block waiting");
270 }
271
272 /*
273 * callout_startup2:
274 *
275 * Complete initialization once soft interrupts are available.
276 */
277 void
278 callout_startup2(void)
279 {
280
281 callout_si = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
282 callout_softclock, NULL);
283 if (callout_si == NULL)
284 panic("callout_startup2: unable to register softclock intr");
285 }
286
287 /*
288 * callout_init:
289 *
290 * Initialize a callout structure.
291 */
292 void
293 callout_init(callout_t *cs, u_int flags)
294 {
295 callout_impl_t *c = (callout_impl_t *)cs;
296
297 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
298
299 memset(c, 0, sizeof(*c));
300 c->c_flags = flags;
301 c->c_magic = CALLOUT_MAGIC;
302 }
303
304 /*
305 * callout_destroy:
306 *
307 * Destroy a callout structure. The callout must be stopped.
308 */
309 void
310 callout_destroy(callout_t *cs)
311 {
312 callout_impl_t *c = (callout_impl_t *)cs;
313
314 /*
315 * It's not necessary to lock in order to see the correct value
316 * of c->c_flags. If the callout could potentially have been
317 * running, the current thread should have stopped it.
318 */
319 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
320 if (c->c_oncpu != NULL) {
321 KASSERT(
322 ((struct cpu_info *)c->c_oncpu)->ci_data.cpu_callout != c);
323 }
324 KASSERT(c->c_magic == CALLOUT_MAGIC);
325
326 c->c_magic = 0;
327 }
328
329 /*
330 * callout_schedule_locked:
331 *
332 * Schedule a callout to run. The function and argument must
333 * already be set in the callout structure. Must be called with
334 * callout_lock.
335 */
336 static void
337 callout_schedule_locked(callout_impl_t *c, int to_ticks)
338 {
339 int old_time;
340
341 KASSERT(to_ticks >= 0);
342 KASSERT(c->c_func != NULL);
343
344 /* Initialize the time here, it won't change. */
345 old_time = c->c_time;
346 c->c_time = to_ticks + hardclock_ticks;
347 c->c_flags &= ~CALLOUT_FIRED;
348
349 /*
350 * If this timeout is already scheduled and now is moved
351 * earlier, reschedule it now. Otherwise leave it in place
352 * and let it be rescheduled later.
353 */
354 if ((c->c_flags & CALLOUT_PENDING) != 0) {
355 if (c->c_time - old_time < 0) {
356 CIRCQ_REMOVE(&c->c_list);
357 CIRCQ_INSERT(&c->c_list, &timeout_todo);
358 }
359 } else {
360 c->c_flags |= CALLOUT_PENDING;
361 CIRCQ_INSERT(&c->c_list, &timeout_todo);
362 }
363 }
364
365 /*
366 * callout_reset:
367 *
368 * Reset a callout structure with a new function and argument, and
369 * schedule it to run.
370 */
371 void
372 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
373 {
374 callout_impl_t *c = (callout_impl_t *)cs;
375
376 KASSERT(c->c_magic == CALLOUT_MAGIC);
377
378 mutex_spin_enter(&callout_lock);
379
380 c->c_func = func;
381 c->c_arg = arg;
382
383 callout_schedule_locked(c, to_ticks);
384
385 mutex_spin_exit(&callout_lock);
386 }
387
388 /*
389 * callout_schedule:
390 *
391 * Schedule a callout to run. The function and argument must
392 * already be set in the callout structure.
393 */
394 void
395 callout_schedule(callout_t *cs, int to_ticks)
396 {
397 callout_impl_t *c = (callout_impl_t *)cs;
398
399 KASSERT(c->c_magic == CALLOUT_MAGIC);
400
401 mutex_spin_enter(&callout_lock);
402 callout_schedule_locked(c, to_ticks);
403 mutex_spin_exit(&callout_lock);
404 }
405
406 /*
407 * callout_stop:
408 *
409 * Cancel a pending callout.
410 */
411 bool
412 callout_stop(callout_t *cs)
413 {
414 callout_impl_t *c = (callout_impl_t *)cs;
415 bool expired;
416
417 KASSERT(c->c_magic == CALLOUT_MAGIC);
418
419 mutex_spin_enter(&callout_lock);
420
421 if (callout_running(c))
422 callout_barrier(c);
423
424 if ((c->c_flags & CALLOUT_PENDING) != 0)
425 CIRCQ_REMOVE(&c->c_list);
426
427 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
428 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
429
430 mutex_spin_exit(&callout_lock);
431
432 return expired;
433 }
434
435 void
436 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
437 {
438 callout_impl_t *c = (callout_impl_t *)cs;
439
440 KASSERT(c->c_magic == CALLOUT_MAGIC);
441
442 mutex_spin_enter(&callout_lock);
443 c->c_func = func;
444 c->c_arg = arg;
445 mutex_spin_exit(&callout_lock);
446 }
447
448 bool
449 callout_expired(callout_t *cs)
450 {
451 callout_impl_t *c = (callout_impl_t *)cs;
452 bool rv;
453
454 KASSERT(c->c_magic == CALLOUT_MAGIC);
455
456 mutex_spin_enter(&callout_lock);
457 rv = ((c->c_flags & CALLOUT_FIRED) != 0);
458 mutex_spin_exit(&callout_lock);
459
460 return rv;
461 }
462
463 bool
464 callout_active(callout_t *cs)
465 {
466 callout_impl_t *c = (callout_impl_t *)cs;
467 bool rv;
468
469 KASSERT(c->c_magic == CALLOUT_MAGIC);
470
471 mutex_spin_enter(&callout_lock);
472 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
473 mutex_spin_exit(&callout_lock);
474
475 return rv;
476 }
477
478 bool
479 callout_pending(callout_t *cs)
480 {
481 callout_impl_t *c = (callout_impl_t *)cs;
482 bool rv;
483
484 KASSERT(c->c_magic == CALLOUT_MAGIC);
485
486 mutex_spin_enter(&callout_lock);
487 rv = ((c->c_flags & CALLOUT_PENDING) != 0);
488 mutex_spin_exit(&callout_lock);
489
490 return rv;
491 }
492
493 bool
494 callout_invoking(callout_t *cs)
495 {
496 callout_impl_t *c = (callout_impl_t *)cs;
497 bool rv;
498
499 KASSERT(c->c_magic == CALLOUT_MAGIC);
500
501 mutex_spin_enter(&callout_lock);
502 rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
503 mutex_spin_exit(&callout_lock);
504
505 return rv;
506 }
507
508 void
509 callout_ack(callout_t *cs)
510 {
511 callout_impl_t *c = (callout_impl_t *)cs;
512
513 KASSERT(c->c_magic == CALLOUT_MAGIC);
514
515 mutex_spin_enter(&callout_lock);
516 c->c_flags &= ~CALLOUT_INVOKING;
517 mutex_spin_exit(&callout_lock);
518 }
519
520 /*
521 * This is called from hardclock() once every tick.
522 * We schedule callout_softclock() if there is work
523 * to be done.
524 */
525 void
526 callout_hardclock(void)
527 {
528 int needsoftclock;
529
530 mutex_spin_enter(&callout_lock);
531
532 MOVEBUCKET(0, hardclock_ticks);
533 if (MASKWHEEL(0, hardclock_ticks) == 0) {
534 MOVEBUCKET(1, hardclock_ticks);
535 if (MASKWHEEL(1, hardclock_ticks) == 0) {
536 MOVEBUCKET(2, hardclock_ticks);
537 if (MASKWHEEL(2, hardclock_ticks) == 0)
538 MOVEBUCKET(3, hardclock_ticks);
539 }
540 }
541
542 needsoftclock = !CIRCQ_EMPTY(&timeout_todo);
543 mutex_spin_exit(&callout_lock);
544
545 if (needsoftclock)
546 softint_schedule(callout_si);
547 }
548
549 /* ARGSUSED */
550 static void
551 callout_softclock(void *v)
552 {
553 callout_impl_t *c;
554 struct cpu_info *ci;
555 void (*func)(void *);
556 void *arg;
557 u_int mpsafe, count;
558 lwp_t *l;
559
560 l = curlwp;
561 ci = l->l_cpu;
562
563 mutex_spin_enter(&callout_lock);
564
565 while (!CIRCQ_EMPTY(&timeout_todo)) {
566 c = CIRCQ_FIRST(&timeout_todo);
567 KASSERT(c->c_magic == CALLOUT_MAGIC);
568 KASSERT(c->c_func != NULL);
569 KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
570 KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
571 CIRCQ_REMOVE(&c->c_list);
572
573 /* If due run it, otherwise insert it into the right bucket. */
574 if (c->c_time - hardclock_ticks > 0) {
575 CIRCQ_INSERT(&c->c_list,
576 BUCKET((c->c_time - hardclock_ticks), c->c_time));
577 } else {
578 if (c->c_time - hardclock_ticks < 0)
579 callout_ev_late.ev_count++;
580
581 c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
582 mpsafe = (c->c_flags & CALLOUT_MPSAFE);
583 func = c->c_func;
584 arg = c->c_arg;
585 c->c_oncpu = ci;
586 c->c_onlwp = l;
587
588 mutex_spin_exit(&callout_lock);
589 if (!mpsafe) {
590 KERNEL_LOCK(1, curlwp);
591 if (ci->ci_data.cpu_callout_cancel != c)
592 (*func)(arg);
593 KERNEL_UNLOCK_ONE(curlwp);
594 } else
595 (*func)(arg);
596 mutex_spin_enter(&callout_lock);
597
598 /*
599 * We can't touch 'c' here because it might be
600 * freed already. If LWPs waiting for callout
601 * to complete, awaken them.
602 */
603 ci->ci_data.cpu_callout_cancel = NULL;
604 ci->ci_data.cpu_callout = NULL;
605 if ((count = ci->ci_data.cpu_callout_nwait) != 0) {
606 ci->ci_data.cpu_callout_nwait = 0;
607 /* sleepq_wake() drops the lock. */
608 sleepq_wake(&callout_sleepq, ci, count);
609 mutex_spin_enter(&callout_lock);
610 }
611 }
612 }
613
614 mutex_spin_exit(&callout_lock);
615 }
616
617 #ifdef DDB
618 static void
619 db_show_callout_bucket(struct callout_circq *bucket)
620 {
621 callout_impl_t *c;
622 db_expr_t offset;
623 const char *name;
624 static char question[] = "?";
625
626 if (CIRCQ_EMPTY(bucket))
627 return;
628
629 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
630 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
631 &offset);
632 name = name ? name : question;
633 #ifdef _LP64
634 #define POINTER_WIDTH "%16lx"
635 #else
636 #define POINTER_WIDTH "%8lx"
637 #endif
638 db_printf("%9d %2d/%-4d " POINTER_WIDTH " %s\n",
639 c->c_time - hardclock_ticks,
640 (int)((bucket - timeout_wheel) / WHEELSIZE),
641 (int)(bucket - timeout_wheel), (u_long) c->c_arg, name);
642
643 if (CIRCQ_LAST(&c->c_list, bucket))
644 break;
645 }
646 }
647
648 void
649 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
650 {
651 int b;
652
653 db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
654 #ifdef _LP64
655 db_printf(" ticks wheel arg func\n");
656 #else
657 db_printf(" ticks wheel arg func\n");
658 #endif
659
660 /*
661 * Don't lock the callwheel; all the other CPUs are paused
662 * anyhow, and we might be called in a circumstance where
663 * some other CPU was paused while holding the lock.
664 */
665
666 db_show_callout_bucket(&timeout_todo);
667 for (b = 0; b < BUCKETS; b++)
668 db_show_callout_bucket(&timeout_wheel[b]);
669 }
670 #endif /* DDB */
671