kern_timeout.c revision 1.31.6.2 1 /* $NetBSD: kern_timeout.c,v 1.31.6.2 2008/06/02 13:24:10 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
34 * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. The name of the author may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.31.6.2 2008/06/02 13:24:10 mjf Exp $");
63
64 /*
65 * Timeouts are kept in a hierarchical timing wheel. The c_time is the
66 * value of c_cpu->cc_ticks when the timeout should be called. There are
67 * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68 * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69 * a Timer Facility" by George Varghese and Tony Lauck.
70 *
71 * Some of the "math" in here is a bit tricky. We have to beware of
72 * wrapping ints.
73 *
74 * We use the fact that any element added to the queue must be added with
75 * a positive time. That means that any element `to' on the queue cannot
76 * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77 * be positive or negative so comparing it with anything is dangerous.
78 * The only way we can use the c->c_time value in any predictable way is
79 * when we calculate how far in the future `to' will timeout - "c->c_time
80 * - c->c_cpu->cc_ticks". The result will always be positive for future
81 * timeouts and 0 or negative for due timeouts.
82 */
83
84 #define _CALLOUT_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/callout.h>
90 #include <sys/mutex.h>
91 #include <sys/proc.h>
92 #include <sys/sleepq.h>
93 #include <sys/syncobj.h>
94 #include <sys/evcnt.h>
95 #include <sys/intr.h>
96 #include <sys/cpu.h>
97 #include <sys/kmem.h>
98
99 #ifdef DDB
100 #include <machine/db_machdep.h>
101 #include <ddb/db_interface.h>
102 #include <ddb/db_access.h>
103 #include <ddb/db_sym.h>
104 #include <ddb/db_output.h>
105 #endif
106
107 #define BUCKETS 1024
108 #define WHEELSIZE 256
109 #define WHEELMASK 255
110 #define WHEELBITS 8
111
112 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
113
114 #define BUCKET(cc, rel, abs) \
115 (((rel) <= (1 << (2*WHEELBITS))) \
116 ? ((rel) <= (1 << WHEELBITS)) \
117 ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
118 : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
119 : ((rel) <= (1 << (3*WHEELBITS))) \
120 ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
121 : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
122
123 #define MOVEBUCKET(cc, wheel, time) \
124 CIRCQ_APPEND(&(cc)->cc_todo, \
125 &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
126
127 /*
128 * Circular queue definitions.
129 */
130
131 #define CIRCQ_INIT(list) \
132 do { \
133 (list)->cq_next_l = (list); \
134 (list)->cq_prev_l = (list); \
135 } while (/*CONSTCOND*/0)
136
137 #define CIRCQ_INSERT(elem, list) \
138 do { \
139 (elem)->cq_prev_e = (list)->cq_prev_e; \
140 (elem)->cq_next_l = (list); \
141 (list)->cq_prev_l->cq_next_l = (elem); \
142 (list)->cq_prev_l = (elem); \
143 } while (/*CONSTCOND*/0)
144
145 #define CIRCQ_APPEND(fst, snd) \
146 do { \
147 if (!CIRCQ_EMPTY(snd)) { \
148 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
149 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
150 (snd)->cq_prev_l->cq_next_l = (fst); \
151 (fst)->cq_prev_l = (snd)->cq_prev_l; \
152 CIRCQ_INIT(snd); \
153 } \
154 } while (/*CONSTCOND*/0)
155
156 #define CIRCQ_REMOVE(elem) \
157 do { \
158 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
159 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
160 } while (/*CONSTCOND*/0)
161
162 #define CIRCQ_FIRST(list) ((list)->cq_next_e)
163 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
164 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
165 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
166
167 static void callout_softclock(void *);
168
169 struct callout_cpu {
170 kmutex_t cc_lock;
171 sleepq_t cc_sleepq;
172 u_int cc_nwait;
173 u_int cc_ticks;
174 lwp_t *cc_lwp;
175 callout_impl_t *cc_active;
176 callout_impl_t *cc_cancel;
177 struct evcnt cc_ev_late;
178 struct evcnt cc_ev_block;
179 struct callout_circq cc_todo; /* Worklist */
180 struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
181 char cc_name1[12];
182 char cc_name2[12];
183 };
184
185 static struct callout_cpu callout_cpu0;
186 static void *callout_sih;
187
188 static inline kmutex_t *
189 callout_lock(callout_impl_t *c)
190 {
191 kmutex_t *lock;
192
193 for (;;) {
194 lock = &c->c_cpu->cc_lock;
195 mutex_spin_enter(lock);
196 if (__predict_true(lock == &c->c_cpu->cc_lock))
197 return lock;
198 mutex_spin_exit(lock);
199 }
200 }
201
202 /*
203 * callout_startup:
204 *
205 * Initialize the callout facility, called at system startup time.
206 * Do just enough to allow callouts to be safely registered.
207 */
208 void
209 callout_startup(void)
210 {
211 struct callout_cpu *cc;
212 int b;
213
214 KASSERT(curcpu()->ci_data.cpu_callout == NULL);
215
216 cc = &callout_cpu0;
217 mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
218 CIRCQ_INIT(&cc->cc_todo);
219 for (b = 0; b < BUCKETS; b++)
220 CIRCQ_INIT(&cc->cc_wheel[b]);
221 curcpu()->ci_data.cpu_callout = cc;
222 }
223
224 /*
225 * callout_init_cpu:
226 *
227 * Per-CPU initialization.
228 */
229 void
230 callout_init_cpu(struct cpu_info *ci)
231 {
232 struct callout_cpu *cc;
233 int b;
234
235 KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
236
237 if ((cc = ci->ci_data.cpu_callout) == NULL) {
238 cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
239 if (cc == NULL)
240 panic("callout_init_cpu (1)");
241 mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
242 CIRCQ_INIT(&cc->cc_todo);
243 for (b = 0; b < BUCKETS; b++)
244 CIRCQ_INIT(&cc->cc_wheel[b]);
245 } else {
246 /* Boot CPU, one time only. */
247 callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
248 callout_softclock, NULL);
249 if (callout_sih == NULL)
250 panic("callout_init_cpu (2)");
251 }
252
253 sleepq_init(&cc->cc_sleepq);
254
255 snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
256 cpu_index(ci));
257 evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
258 NULL, "callout", cc->cc_name1);
259
260 snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
261 cpu_index(ci));
262 evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
263 NULL, "callout", cc->cc_name2);
264
265 ci->ci_data.cpu_callout = cc;
266 }
267
268 /*
269 * callout_init:
270 *
271 * Initialize a callout structure. This must be quick, so we fill
272 * only the minimum number of fields.
273 */
274 void
275 callout_init(callout_t *cs, u_int flags)
276 {
277 callout_impl_t *c = (callout_impl_t *)cs;
278 struct callout_cpu *cc;
279
280 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
281
282 cc = curcpu()->ci_data.cpu_callout;
283 c->c_func = NULL;
284 c->c_magic = CALLOUT_MAGIC;
285 if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
286 c->c_flags = flags;
287 c->c_cpu = cc;
288 return;
289 }
290 c->c_flags = flags | CALLOUT_BOUND;
291 c->c_cpu = &callout_cpu0;
292 }
293
294 /*
295 * callout_destroy:
296 *
297 * Destroy a callout structure. The callout must be stopped.
298 */
299 void
300 callout_destroy(callout_t *cs)
301 {
302 callout_impl_t *c = (callout_impl_t *)cs;
303
304 /*
305 * It's not necessary to lock in order to see the correct value
306 * of c->c_flags. If the callout could potentially have been
307 * running, the current thread should have stopped it.
308 */
309 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
310 KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
311 KASSERT(c->c_magic == CALLOUT_MAGIC);
312 c->c_magic = 0;
313 }
314
315 /*
316 * callout_schedule_locked:
317 *
318 * Schedule a callout to run. The function and argument must
319 * already be set in the callout structure. Must be called with
320 * callout_lock.
321 */
322 static void
323 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
324 {
325 struct callout_cpu *cc, *occ;
326 int old_time;
327
328 KASSERT(to_ticks >= 0);
329 KASSERT(c->c_func != NULL);
330
331 /* Initialize the time here, it won't change. */
332 occ = c->c_cpu;
333 c->c_flags &= ~CALLOUT_FIRED;
334
335 /*
336 * If this timeout is already scheduled and now is moved
337 * earlier, reschedule it now. Otherwise leave it in place
338 * and let it be rescheduled later.
339 */
340 if ((c->c_flags & CALLOUT_PENDING) != 0) {
341 /* Leave on existing CPU. */
342 old_time = c->c_time;
343 c->c_time = to_ticks + occ->cc_ticks;
344 if (c->c_time - old_time < 0) {
345 CIRCQ_REMOVE(&c->c_list);
346 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
347 }
348 mutex_spin_exit(lock);
349 return;
350 }
351
352 cc = curcpu()->ci_data.cpu_callout;
353 if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
354 !mutex_tryenter(&cc->cc_lock)) {
355 /* Leave on existing CPU. */
356 c->c_time = to_ticks + occ->cc_ticks;
357 c->c_flags |= CALLOUT_PENDING;
358 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
359 } else {
360 /* Move to this CPU. */
361 c->c_cpu = cc;
362 c->c_time = to_ticks + cc->cc_ticks;
363 c->c_flags |= CALLOUT_PENDING;
364 CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
365 mutex_spin_exit(&cc->cc_lock);
366 }
367 mutex_spin_exit(lock);
368 }
369
370 /*
371 * callout_reset:
372 *
373 * Reset a callout structure with a new function and argument, and
374 * schedule it to run.
375 */
376 void
377 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
378 {
379 callout_impl_t *c = (callout_impl_t *)cs;
380 kmutex_t *lock;
381
382 KASSERT(c->c_magic == CALLOUT_MAGIC);
383
384 lock = callout_lock(c);
385 c->c_func = func;
386 c->c_arg = arg;
387 callout_schedule_locked(c, lock, to_ticks);
388 }
389
390 /*
391 * callout_schedule:
392 *
393 * Schedule a callout to run. The function and argument must
394 * already be set in the callout structure.
395 */
396 void
397 callout_schedule(callout_t *cs, int to_ticks)
398 {
399 callout_impl_t *c = (callout_impl_t *)cs;
400 kmutex_t *lock;
401
402 KASSERT(c->c_magic == CALLOUT_MAGIC);
403
404 lock = callout_lock(c);
405 callout_schedule_locked(c, lock, to_ticks);
406 }
407
408 /*
409 * callout_stop:
410 *
411 * Try to cancel a pending callout. It may be too late: the callout
412 * could be running on another CPU. If called from interrupt context,
413 * the callout could already be in progress at a lower priority.
414 */
415 bool
416 callout_stop(callout_t *cs)
417 {
418 callout_impl_t *c = (callout_impl_t *)cs;
419 struct callout_cpu *cc;
420 kmutex_t *lock;
421 bool expired;
422
423 KASSERT(c->c_magic == CALLOUT_MAGIC);
424
425 lock = callout_lock(c);
426
427 if ((c->c_flags & CALLOUT_PENDING) != 0)
428 CIRCQ_REMOVE(&c->c_list);
429 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
430 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
431
432 cc = c->c_cpu;
433 if (cc->cc_active == c) {
434 /*
435 * This is for non-MPSAFE callouts only. To synchronize
436 * effectively we must be called with kernel_lock held.
437 * It's also taken in callout_softclock.
438 */
439 cc->cc_cancel = c;
440 }
441
442 mutex_spin_exit(lock);
443
444 return expired;
445 }
446
447 /*
448 * callout_halt:
449 *
450 * Cancel a pending callout. If in-flight, block until it completes.
451 * May not be called from a hard interrupt handler. If the callout
452 * can take locks, the caller of callout_halt() must not hold any of
453 * those locks, otherwise the two could deadlock. If 'interlock' is
454 * non-NULL and we must wait for the callout to complete, it will be
455 * released and re-acquired before returning.
456 */
457 bool
458 callout_halt(callout_t *cs, void *interlock)
459 {
460 callout_impl_t *c = (callout_impl_t *)cs;
461 struct callout_cpu *cc;
462 struct lwp *l;
463 kmutex_t *lock, *relock;
464 bool expired;
465
466 KASSERT(c->c_magic == CALLOUT_MAGIC);
467 KASSERT(!cpu_intr_p());
468
469 lock = callout_lock(c);
470 relock = NULL;
471
472 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
473 if ((c->c_flags & CALLOUT_PENDING) != 0)
474 CIRCQ_REMOVE(&c->c_list);
475 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
476
477 l = curlwp;
478 for (;;) {
479 cc = c->c_cpu;
480 if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
481 break;
482 if (interlock != NULL) {
483 /*
484 * Avoid potential scheduler lock order problems by
485 * dropping the interlock without the callout lock
486 * held.
487 */
488 mutex_spin_exit(lock);
489 mutex_exit(interlock);
490 relock = interlock;
491 interlock = NULL;
492 } else {
493 /* XXX Better to do priority inheritance. */
494 KASSERT(l->l_wchan == NULL);
495 cc->cc_nwait++;
496 cc->cc_ev_block.ev_count++;
497 l->l_kpriority = true;
498 sleepq_enter(&cc->cc_sleepq, l, &cc->cc_lock);
499 sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
500 &sleep_syncobj);
501 sleepq_block(0, false);
502 }
503 lock = callout_lock(c);
504 }
505
506 mutex_spin_exit(lock);
507 if (__predict_false(relock != NULL))
508 mutex_enter(relock);
509
510 return expired;
511 }
512
513 #ifdef notyet
514 /*
515 * callout_bind:
516 *
517 * Bind a callout so that it will only execute on one CPU.
518 * The callout must be stopped, and must be MPSAFE.
519 *
520 * XXX Disabled for now until it is decided how to handle
521 * offlined CPUs. We may want weak+strong binding.
522 */
523 void
524 callout_bind(callout_t *cs, struct cpu_info *ci)
525 {
526 callout_impl_t *c = (callout_impl_t *)cs;
527 struct callout_cpu *cc;
528 kmutex_t *lock;
529
530 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
531 KASSERT(c->c_cpu->cc_active != c);
532 KASSERT(c->c_magic == CALLOUT_MAGIC);
533 KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
534
535 lock = callout_lock(c);
536 cc = ci->ci_data.cpu_callout;
537 c->c_flags |= CALLOUT_BOUND;
538 if (c->c_cpu != cc) {
539 /*
540 * Assigning c_cpu effectively unlocks the callout
541 * structure, as we don't hold the new CPU's lock.
542 * Issue memory barrier to prevent accesses being
543 * reordered.
544 */
545 membar_exit();
546 c->c_cpu = cc;
547 }
548 mutex_spin_exit(lock);
549 }
550 #endif
551
552 void
553 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
554 {
555 callout_impl_t *c = (callout_impl_t *)cs;
556 kmutex_t *lock;
557
558 KASSERT(c->c_magic == CALLOUT_MAGIC);
559
560 lock = callout_lock(c);
561 c->c_func = func;
562 c->c_arg = arg;
563 mutex_spin_exit(lock);
564 }
565
566 bool
567 callout_expired(callout_t *cs)
568 {
569 callout_impl_t *c = (callout_impl_t *)cs;
570 kmutex_t *lock;
571 bool rv;
572
573 KASSERT(c->c_magic == CALLOUT_MAGIC);
574
575 lock = callout_lock(c);
576 rv = ((c->c_flags & CALLOUT_FIRED) != 0);
577 mutex_spin_exit(lock);
578
579 return rv;
580 }
581
582 bool
583 callout_active(callout_t *cs)
584 {
585 callout_impl_t *c = (callout_impl_t *)cs;
586 kmutex_t *lock;
587 bool rv;
588
589 KASSERT(c->c_magic == CALLOUT_MAGIC);
590
591 lock = callout_lock(c);
592 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
593 mutex_spin_exit(lock);
594
595 return rv;
596 }
597
598 bool
599 callout_pending(callout_t *cs)
600 {
601 callout_impl_t *c = (callout_impl_t *)cs;
602 kmutex_t *lock;
603 bool rv;
604
605 KASSERT(c->c_magic == CALLOUT_MAGIC);
606
607 lock = callout_lock(c);
608 rv = ((c->c_flags & CALLOUT_PENDING) != 0);
609 mutex_spin_exit(lock);
610
611 return rv;
612 }
613
614 bool
615 callout_invoking(callout_t *cs)
616 {
617 callout_impl_t *c = (callout_impl_t *)cs;
618 kmutex_t *lock;
619 bool rv;
620
621 KASSERT(c->c_magic == CALLOUT_MAGIC);
622
623 lock = callout_lock(c);
624 rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
625 mutex_spin_exit(lock);
626
627 return rv;
628 }
629
630 void
631 callout_ack(callout_t *cs)
632 {
633 callout_impl_t *c = (callout_impl_t *)cs;
634 kmutex_t *lock;
635
636 KASSERT(c->c_magic == CALLOUT_MAGIC);
637
638 lock = callout_lock(c);
639 c->c_flags &= ~CALLOUT_INVOKING;
640 mutex_spin_exit(lock);
641 }
642
643 /*
644 * callout_hardclock:
645 *
646 * Called from hardclock() once every tick. We schedule a soft
647 * interrupt if there is work to be done.
648 */
649 void
650 callout_hardclock(void)
651 {
652 struct callout_cpu *cc;
653 int needsoftclock, ticks;
654
655 cc = curcpu()->ci_data.cpu_callout;
656 mutex_spin_enter(&cc->cc_lock);
657
658 ticks = ++cc->cc_ticks;
659
660 MOVEBUCKET(cc, 0, ticks);
661 if (MASKWHEEL(0, ticks) == 0) {
662 MOVEBUCKET(cc, 1, ticks);
663 if (MASKWHEEL(1, ticks) == 0) {
664 MOVEBUCKET(cc, 2, ticks);
665 if (MASKWHEEL(2, ticks) == 0)
666 MOVEBUCKET(cc, 3, ticks);
667 }
668 }
669
670 needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
671 mutex_spin_exit(&cc->cc_lock);
672
673 if (needsoftclock)
674 softint_schedule(callout_sih);
675 }
676
677 /*
678 * callout_softclock:
679 *
680 * Soft interrupt handler, scheduled above if there is work to
681 * be done. Callouts are made in soft interrupt context.
682 */
683 static void
684 callout_softclock(void *v)
685 {
686 callout_impl_t *c;
687 struct callout_cpu *cc;
688 void (*func)(void *);
689 void *arg;
690 int mpsafe, count, ticks, delta;
691 lwp_t *l;
692
693 l = curlwp;
694 KASSERT(l->l_cpu == curcpu());
695 cc = l->l_cpu->ci_data.cpu_callout;
696
697 mutex_spin_enter(&cc->cc_lock);
698 cc->cc_lwp = l;
699 while (!CIRCQ_EMPTY(&cc->cc_todo)) {
700 c = CIRCQ_FIRST(&cc->cc_todo);
701 KASSERT(c->c_magic == CALLOUT_MAGIC);
702 KASSERT(c->c_func != NULL);
703 KASSERT(c->c_cpu == cc);
704 KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
705 KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
706 CIRCQ_REMOVE(&c->c_list);
707
708 /* If due run it, otherwise insert it into the right bucket. */
709 ticks = cc->cc_ticks;
710 delta = c->c_time - ticks;
711 if (delta > 0) {
712 CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
713 continue;
714 }
715 if (delta < 0)
716 cc->cc_ev_late.ev_count++;
717
718 c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
719 mpsafe = (c->c_flags & CALLOUT_MPSAFE);
720 func = c->c_func;
721 arg = c->c_arg;
722 cc->cc_active = c;
723
724 mutex_spin_exit(&cc->cc_lock);
725 if (!mpsafe) {
726 KERNEL_LOCK(1, NULL);
727 (*func)(arg);
728 KERNEL_UNLOCK_ONE(NULL);
729 } else
730 (*func)(arg);
731 mutex_spin_enter(&cc->cc_lock);
732
733 /*
734 * We can't touch 'c' here because it might be
735 * freed already. If LWPs waiting for callout
736 * to complete, awaken them.
737 */
738 cc->cc_active = NULL;
739 if ((count = cc->cc_nwait) != 0) {
740 cc->cc_nwait = 0;
741 /* sleepq_wake() drops the lock. */
742 sleepq_wake(&cc->cc_sleepq, cc, count, &cc->cc_lock);
743 mutex_spin_enter(&cc->cc_lock);
744 }
745 }
746 cc->cc_lwp = NULL;
747 mutex_spin_exit(&cc->cc_lock);
748 }
749
750 #ifdef DDB
751 static void
752 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
753 {
754 callout_impl_t *c;
755 db_expr_t offset;
756 const char *name;
757 static char question[] = "?";
758 int b;
759
760 if (CIRCQ_EMPTY(bucket))
761 return;
762
763 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
764 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
765 &offset);
766 name = name ? name : question;
767 b = (bucket - cc->cc_wheel);
768 if (b < 0)
769 b = -WHEELSIZE;
770 db_printf("%9d %2d/%-4d %16lx %s\n",
771 c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
772 (u_long)c->c_arg, name);
773 if (CIRCQ_LAST(&c->c_list, bucket))
774 break;
775 }
776 }
777
778 void
779 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
780 {
781 CPU_INFO_ITERATOR cii;
782 struct callout_cpu *cc;
783 struct cpu_info *ci;
784 int b;
785
786 db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
787 db_printf(" ticks wheel arg func\n");
788
789 /*
790 * Don't lock the callwheel; all the other CPUs are paused
791 * anyhow, and we might be called in a circumstance where
792 * some other CPU was paused while holding the lock.
793 */
794 for (CPU_INFO_FOREACH(cii, ci)) {
795 cc = ci->ci_data.cpu_callout;
796 db_show_callout_bucket(cc, &cc->cc_todo);
797 }
798 for (b = 0; b < BUCKETS; b++) {
799 for (CPU_INFO_FOREACH(cii, ci)) {
800 cc = ci->ci_data.cpu_callout;
801 db_show_callout_bucket(cc, &cc->cc_wheel[b]);
802 }
803 }
804 }
805 #endif /* DDB */
806